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Announcements

Homework 2 due next Thursday @ 9:29 AM

Project proposals due Thursday @ midnight central time.
Start reading chapter 8 for next week (Models and Planning).
Robotics Seminar 1pm Wednesday — Kris Hauser, UIUC

« “Towards Open-World Robotics”
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This Week

Temporal difference learning for prediction.

 Monte Carlo vs TD-Learning vs Dynamic Programming
 N-step returns

SARSA for control.

Q-learning for control.

Expected SARSA.
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Review

 Dynamic Programming Methods
* Require a model of the environment (know p).

 Bootstrap, i.e., use the current value function estimate, v,, to compute v _ ;.

e Monte Carlo Methods

e No need for an environment model.

 No bootstrapping and wait until termination to update v, to v;_ ;.
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TD(0) Prediction

Basic learning rule: V(S,) < V(S, + alY, — V($))].

Y, is a learning target.

Monte Carlo update: V(S,) < V(S) + a|G, — V($,)]

TD update: V(S,) <« V(S) + a[R,. | +yV(S,,) — V(S))]

Compare to dynamic programming:

Vir1(8) < Z n(a| S)ZP(S', ris,a)lr+ yvs]
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Driving Home Example

y
Cumulative reward V() Z R, + V(S;)
=0

Elapsed Time  Predicted —Pred-zicted

State (minutes) Time to Go Total Time
leaving office, friday at 6 0 30 30
reach car, raining 5 35 40
exiting highway 20 15 39
2ndary road. behind truck 30 10 40
entering home street 40 3 43
arrive home 43 0 43
45 - 45
_._Aactual outcome_ ____ actual
outcome
, 40 - 40
Predicted
total
time
30-] 30
leaving reach exiting 2ndary home  arrive leaving reach exiling 2ndary home  arrive
office car highway road street home office  car highway road sireet home
Situation Situation

Figure 6.1: Changes recommended in the driving home example by Monte Carlo methods (left)
and TD methods (right).

Josiah Hanna, University of Wisconsin — Madison



TD(0) / Monte Carlo

Neither require an environment model.

TD methods are online and incremental.

* Learning happens at every time-step and only requires constant storage.
* Can be used for continuing tasks, i.e., no termination.

(To be shown) More robust to off-policy exploratory actions.

Monte Carlo methods rely less on the Markov property.

Monte Carlo methods may propagate values faster.
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N-Step Returns

Possible to combine Monte Carlo and TD-Learning.
General Update: V(S,) <« V(S,) + alY, — V($,)]
Consider Y, := R+ YR »+ ...+ 7"V(S,.,)

TD(0) is n = 1 and Monte Carlo is n = o0o; TD(A) blends between extremes.

Agent’s Path

TD(0)
Figure 7.4

10-step TD
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Convergence

 TD(0) and Monte Carlo both converge but TD methods are usually faster
when using a constant step-size.

e \Where do these methods fall on the bias-variance trade-off?
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Figure 7.2: Performance of n-step TD methods as a function of a. for various values of n, on 0 < 50 75 100
a 19-state random walk task (Example 7.1). n - i )

Walks / Episodes
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Certainty Equivalence Updating

 Consider a Markov reward process — not an MDP!

* |f policy is fixed (as in prediction) then we can consider it part of the environment.

» Given a batch of data D = {(s,, r;, 5;) }, compute the value function.

» For TD(0), update value function with the sum of all increments— Number of times we observed s, 7, s’

47

Vir1(8) < vi(s) +a Z (s, 1, sHr+yv.(s) —v.(s)]

— Estimate of p
O 7S, 7,87) ,
 Vent(8) <) +a Z [+ yvils) — ()]
s’ r (S)
. Viep1(8) < a/Zﬁ(S', r|s)r+yv(s)] This is dynamic programming!

s'.r

Note: For MDPs, see Reducing Sampling Error in Batch Temporal Difference Learning [Pavse et al. 2020]
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https://pages.cs.wisc.edu/~jphanna/papers/pavse2020reducing.pdf
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SARSA

Same generalized policy iteration scheme from past two weeks.

 Evaluate .

» Make ;| greedy with respect to ;.

Now, use TD(0) to learn action-values:

0, A) <« 06, A) +alR, + 701,441 — OB, A)]

Is this on- or off-policy?

What does generalized policy iteration with TD action-values and e-greedy
exploration converge to?
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Ross’s Presentation

Slides



https://docs.google.com/presentation/d/1VbKEpIm-FuNX2ipHSKiuiHGLaQ_H3eHJhNFi0r26AAI/edit?invite=CLbHiNkN#slide=id.p

After-States

In RL, the environment is usually a blackbox.

But sometimes we have intermediate state changes that are available
immediately after an action is taken.

Such knowledge can be built into RL algorithms to help generalize

learning.
+ X 0| X
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Summary

 Temporal Difference learning enables online learning without a model of
the environment.

 TD-learning often learns faster than Monte Carlo methods in MDPs but
can combine the two approaches through n-step returns.

« SARSA uses TD-learning of action-values for policy evaluation in policy
iteration — enables incremental, model-free policy improvement.
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Action ltems

e Homework 2 due Thursday @ 9:29 am.
* Project proposal due midnight Thursday.

* Begin reading Chapter 8.
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