

CS 760: Machine Learning Neural Networks II

Josiah Hanna

University of Wisconsin-Madison

October 10, 2023

Logistics

•Announcements:

- •HW 3 was due today
- •HW 4 released today; due after midterm

Midterm

- •90 minutes.
- Cheat sheet: one sheet of paper (no larger than Legal size), both sides, printed or hand-written.
- Will cover material up to next Tuesday's class.

Outline

Neural Networks

Introduction, Setup, Components, Activations

Training Neural Networks

• SGD, Computing Gradients, Backpropagation

Regularization

Interpretations

Outline

Neural Networks

Introduction, Setup, Components, Activations

Training Neural Networks

• SGD, Computing Gradients, Backpropagation

Regularization

Interpretations

Perceptron: Components

[McCulloch & Pitts, 1943; Rosenblatt, 1959; Widrow & Hoff, 1960]

Multilayer Neural Network

- Input: two features from spectral analysis of a spoken sound
- •Output: vowel sound occurring in the context "h___d"

figure from Huang & Lippmann, NIPS 1988

Neural Network **Decision Regions**

Neural Network Components

An (L + 1)-layer network

Feature Encoding for NNs

Nominal features usually a one hot encoding

$$A = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \qquad C = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} \qquad G = \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \qquad T = \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$$

•Ordinal features: use a *thermometer* encoding

small=
$$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$$
 medium= $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$ large= $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$

 Real-valued features use individual input units (may want to scale/normalize them first though)

Output Layer: Examples

- •Regression: $y = w^ op h + b$
 - Linear units: no nonlinearity
- •Multi-dimensional regression: $\,Y=W^+h+b^-$
 - Linear units: no nonlinearity

Output Layer: Examples

•Binary classification: $y = \mathrm{sigmoid}(w^{ op}h+b)$

- Corresponds to using logistic regression on inputs.
- •Multiclass classification: $Y = \operatorname{softmax}(W^{ op}h+b)$

Hidden Layers

- Each neuron takes a linear combination of the previous layer's outputs.
 - An activation function is applied to the linear combination
 - Outputs one value for the next layer

$$a = s(w^ op h + b)$$

Hidden Layers

- Typical activation function

 - Threshold: $s(z)=\mathbbm{1}(z\geq 0)$ Sigmoid: $s(z)=\sigma(z)=1/(1+e^{-z})$ Tanh: $s(z)=2\sigma(2z)-1$
- Why not **linear activation** functions?
 - Model would be linear.

 $a = s(w^{\top}h + b)$

•Ex: 1 hidden layer, 1 binary classification output layer: depth 2

Multiclass Classification Output

- Create k output units
- Use softmax (just like logistic regression)

Also no activation function on output for regression tasks.

 $\exp f_{y}(x)$

 $\exp f_i(x)$

18

Break & Quiz

Q: Select the correct option.

Consider a neural network for 10-way classification with 5 neurons in the input and 3 hidden layers with 10 neurons each. How many times is an activation function applied in one forward pass of the network?

- A. 45
- B. 40
- C. 30
- D. 35
- E. 350

Q: Select the correct option.

Consider a neural network for 10-way classification with 5 neurons in the input and 3 hidden layers with 10 neurons each. How many times is an activation function applied in one forward pass of the network?

Α.

45

D. 35

E. 350

Outline

Neural Networks Introduction, Setup, Components, Activations

Training Neural Networks

• SGD, Computing Gradients, Backpropagation

Regularization

• Views, Data Augmentation, Other approaches

Training Neural Networks

- Training the usual way. Pick a loss and optimize it.
- Example: 2 scalar weights

figure from Cho & Chow, Neurocomputing 1999

Training Neural Networks: SGD

•Algorithm:

Get
$$D = \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$$

- Initialize weights
- Until stopping criteria met,
 - Sample training point $(x^{(i)}, y^{(i)})$ without replacement

• Compute:
$$f_{
m network}(x^{(i)})$$
 — Forward Pass

• Compute gradient:
$$\nabla L^{(i)}(w) = \left[\frac{\partial L^{(d)}}{\partial w_0}, \frac{\partial L^{(d)}}{\partial w_1}, \dots, \frac{\partial L^{(d)}}{\partial w_m}\right]^T$$
 — Backward Pass

• Update weights:
$$w \leftarrow w - \alpha \nabla L^{(i)}(w)$$

Training Neural Networks: Minibatch SGD

•Algorithm:

Get
$$D = \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$$

- Initialize weights
- Until stopping criteria met,
 - ullet Sample b points j_1, j_2, \dots, j_b

• Compute:
$$f_{\text{network}}(x^{(j_1)}), \ldots, f_{\text{network}}(x^{(j_b)})$$
 Forward Pass

h

• Update weights:

$$w \leftarrow w - \frac{\alpha}{b} \sum_{k=1}^{b} \nabla L^{(j_k)}(w)$$

Training Neural Networks: Chain Rule

- Will need to compute terms like:
 - But, L is a composition of:
 - Loss with output y
 - Output itself: a composition of softmax with outer layer
 - Outer layer: a combination of outputs from previous layer
 - Outputs from prev. layer: a composition of activations and linear functions...
- •Need the chain rule!

• Suppose
$$L = L(g_1, ..., g_k)$$
 $g_j = g_j(w_1, ..., w_p)$

• Then,

$$\frac{\partial L}{\partial w_i} = \sum_{j=1}^k \frac{\partial L}{\partial g_j} \frac{\partial g_j}{\partial w_i}$$

 $\frac{\partial L}{\partial w_1}$

Intuition: how much does a small change in w_1 change L?

• Want to compute
$$\frac{\partial \ell(\mathbf{x}, y)}{\partial w_{11}}$$

• By chain rule:

$$\frac{\partial l}{\partial x_1} = \frac{\partial l}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z} w_{11} = (\hat{y} - y) w_{11}$$

• By chain rule: $\frac{\partial l}{\partial a_{11}} = (\hat{y} - y)w_{11}^{(2)}, \ \frac{\partial l}{\partial a_{12}} = (\hat{y} - y)w_{21}^{(2)}$

• By chain rule:

$$\frac{\partial l}{\partial w_{11}} = \frac{\partial l}{\partial a_{11}} \frac{\partial a_{11}}{\partial w_{11}^{(1)}} = (\hat{y} - y) w_{11}^{(2)} \frac{\partial a_{11}}{\partial w_{11}^{(1)}}$$

• By chain rule:

Backpropagation

- •Now we can compute derivatives for particular neurons, but we want to automate this process
- •Set up a computation graph and run on the graph
- Go backwards from top to bottom, recursively computing gradients

More on Activations

• Consider gradients... saturating vs. nonsaturating

Break & Quiz

Q2-1: Are these statements true or false?

- (A) Backpropagation is based on the chain rule.
- (B) Backpropagation contains only forward passes.
- 1. True, True
- 2. True, False
- 3. False, True
- 4. False, False

Q2-1: Are these statements true or false?

- (A) Backpropagation is based on the chain rule.
- (B) Backpropagation contains only forward passes.
- 1. True, True
- 2. True, False

- 3. False, True
- 4. False, False

- (A) We use chain rule to calculate the partial derivatives of composite functions like neural network.
- (B) It contains both forward and backward passes.

Outline

Neural Networks

Introduction, Setup, Components, Activations

Training Neural Networks

• SGD, Computing Gradients, Backpropagation

Regularization

Interpretations

Review: Overfitting

- •What is it? When empirical loss and expected loss are different
- Possible solutions:
 - Larger data set
 - Reducing hypothesis space (regularization)

Review: Regularization

In general: any method to prevent overfitting

•One approach: modify the optimization objective

• Different "views"

- Hard constraint,
- Soft constraint,
- Bayesian view

Regularization: Hard Constraint View

Training objective / parametrized version

$$\min_{f} \hat{L}(f) = \frac{1}{n} \sum_{i=1}^{n} l(f, x_i, y_i)$$

$$\min_{\theta} \hat{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} l(\theta, x_i, y_i)$$

subject to: $f \in \mathcal{H}$

subject to:
$$\theta \in \Omega$$

•Constrain θ beyond it's natural choice

$$\min_{\theta} \hat{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} l(\theta, x_i, y_i) \qquad \min_{\theta} \hat{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} l(\theta, x_i, y_i)$$
subject to: $R(\theta) \le r$ subject to: $||\theta||_2^2 \le r^2$

Regularization: Soft Constraint View

•For some parameter $\lambda^* > 0$, hard constraint is equivalent to:

$$\min_{\theta} \hat{L}_{R}(\theta) = \frac{1}{n} \sum_{i=1}^{n} l(\theta, x_{i}, y_{i}) + \lambda^{*} R(\theta)$$

$$\min_{\theta} \hat{L}_R(\theta) = \frac{1}{n} \sum_{i=1}^n l(\theta, x_i, y_i) + \lambda^* ||\theta||_2^2$$

Comes from Lagrangian duality

Regularization: Bayesian Prior View

• Recall our MAP version of training. Bayes rule:

$$p(\theta \mid \{x_i, y_i\}) = \frac{p(\theta)p(\{x_i, y_i\}|\theta)}{p(\{x_i, y_i\})}$$

• MAP:

$$\max_{\theta} \log p(\theta \mid \{x_i, y_i\}) = \min_{\theta} -\log p(\theta) - \log p(\{x_i, y_i\} \mid \theta)$$

$$\prod_{\theta} \log p(\theta \mid \{x_i, y_i\}) = \min_{\theta} -\log p(\theta) - \log p(\{x_i, y_i\} \mid \theta)$$

$$\prod_{\theta} \log p(\theta \mid \{x_i, y_i\}) = \min_{\theta} -\log p(\theta) - \log p(\{x_i, y_i\} \mid \theta)$$

$$\prod_{\theta} \log p(\theta \mid \{x_i, y_i\}) = \min_{\theta} -\log p(\theta) - \log p(\{x_i, y_i\} \mid \theta)$$

$$\prod_{\theta} \log p(\theta \mid \{x_i, y_i\}) = \min_{\theta} -\log p(\theta) - \log p(\{x_i, y_i\} \mid \theta)$$

$$\prod_{\theta} \log p(\theta \mid \{x_i, y_i\}) = \min_{\theta} -\log p(\theta) - \log p(\{x_i, y_i\} \mid \theta)$$

$$\prod_{\theta} \log p(\theta \mid \{x_i, y_i\}) = \min_{\theta} -\log p(\theta) - \log p(\{x_i, y_i\} \mid \theta)$$

$$\prod_{\theta} \log p(\theta \mid \{x_i, y_i\}) = \min_{\theta} -\log p(\theta) - \log p(\{x_i, y_i\} \mid \theta)$$

$$\prod_{\theta} \log p(\theta \mid \{x_i, y_i\}) = \min_{\theta} -\log p(\theta) - \log p(\{x_i, y_i\} \mid \theta)$$

$$\prod_{\theta} \log p(\theta \mid \{x_i, y_i\}) = \min_{\theta} -\log p(\theta) - \log p(\{x_i, y_i\} \mid \theta)$$

Choice of View?

• Typical choice for optimization: soft-constraint

$$\min_{\theta} \hat{L}_R(\theta) = \hat{L}(\theta) + \lambda R(\theta)$$

- •Hard constraint / Bayesian view: conceptual / for derivation
- •Hard-constraint preferred if know the explicit bound
- Bayesian view preferred if domain knowledge easy to represent as a prior

Examples: L2 Regularization

$$\min_{\theta} \hat{L}_{R}(\theta) = \hat{L}(\theta) + \frac{\lambda}{2} ||\theta||_{2}^{2}$$

- •Questions: what are the
 - Effects on (stochastic) gradient descent?
 - Effects on the optimal solution?

L2 Regularization: Effect on GD

Gradient of regularized objective

$$\nabla \widehat{L}_R(\theta) = \nabla \widehat{L}(\theta) + \lambda \theta$$

• Gradient descent update

$$\theta \leftarrow \theta - \eta \nabla \hat{L}_R(\theta) = \theta - \eta \nabla \hat{L}(\theta) - \eta \lambda \theta$$

In words, weight decay

$$= (1 - \eta \lambda)\theta - \eta \nabla \hat{L}(\theta)$$

L2 Regularization: Effect on Optimal Solution

-Consider a quadratic approximation around θ^*

$$\hat{L}(\theta) \approx \hat{L}(\theta^*) + (\theta - \theta^*)^T \nabla \hat{L}(\theta^*) + \frac{1}{2} (\theta - \theta^*)^T H(\theta - \theta^*)$$

•Since θ^* is optimal,

$$\hat{L}(\theta) \approx \hat{L}(\theta^*) + \frac{1}{2}(\theta - \theta^*)^T H(\theta - \theta^*)$$
$$\nabla \hat{L}(\theta) \approx H(\theta - \theta^*)$$

L2 Regularization: Effect on Optimal Solution

•Gradient of regularized objective: $\nabla \hat{L}_R(\theta) \approx H(\theta - \theta^*) + \lambda \theta$

•On the optimal
$$\theta_R^*$$
: $0 = \nabla \hat{L}_R(\theta_R^*) \approx H(\theta_R^* - \theta^*) + \lambda \theta_R^*$
 $\theta_R^* \approx (H + \lambda I)^{-1} H \theta^*$

•*H* has eigendecomp. $H = Q\Lambda Q^T$, assume $(\Lambda + \lambda I)^{-1}$ exists:

$$\theta_R^* \approx (H + \lambda I)^{-1} H \theta^* = Q (\Lambda + \lambda I)^{-1} \Lambda Q^T \theta^*$$

Effect: rescale along eigenvectors of H

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov, Sharon Li