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Announcements

•Homework 4 is out (due after midterm)

•  Midterm: next week

•  My office hours are just Tuesdays or by appointment



Outline

• Regularization

•Views, L1/L2 Effects


•Other Forms of Regularization

•  Data Augmentation, Noise, Early Stopping, Dropout 


•Convolutional Neural Networks (maybe next lecture)
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Review: Overfitting

•What is it? When empirical loss and expected loss are 
different


•Possible solutions:

• Larger data set

• Throwing away useless hypotheses also helps (regularization)



Review: Regularization

•In general: any method to prevent overfitting


•One approach: modify the optimization objective


•Different “views”

• Hard constraint,

• Soft constraint,

• Bayesian view



Regularization: Hard Constraint View

•Training objective / parametrized version


•Constrain  beyond it’s natural choiceθ*



Regularization: Soft Constraint View

•Equivalent to, for some parameter 

•For L2,


•Comes from Lagrangian duality 

𝜆∗ > 0



Regularization: Bayesian Prior View

•Recall our MAP version of training. Bayes law:


•MAP (assuming iid data):

Regularization
MLE



Choice of View?

•Typical choice for optimization: soft-constraint


•Hard constraint / Bayesian view: conceptual / for derivation

•Hard-constraint preferred if know the explicit bound 

•Bayesian view preferred if domain knowledge easy to 
represent as a prior



Examples: L2 Regularization

•Questions: what are the


• Effects on (stochastic) gradient descent?


• Effects on the optimal solution?



L2 Regularization: Effect on GD

•Gradient of regularized objective


•Gradient descent update 


•In words, weight decay



L2 Regularization: Effect on Optimal Solution

•Consider a quadratic approximation around  the optimum 
for the unregularized loss.


Here, H is the hessian at  

•Since  is optimal,

θ*

θ*
θ*



L2 Regularization: Effect on Optimal Solution

Effect: shrink along eigenvectors of H



Break & Quiz
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Q:  Which of the following statement(s) is(are) TRUE about regularization parameter 
λ ?

1. True, True


2. True, False


3. False, True


4. False, False

A. λ is the tuning parameter that decides how much we want to penalize the flexibility of 

our model.


B. λ is usually set using cross validation.



Q:  Which of the following statement(s) is(are) TRUE about regularization parameter 
λ ?

1. True, True


2. True, False


3. False, True


4. False, False

A. λ is the tuning parameter that decides how much we want to penalize the flexibility of 

our model.


B. λ is usually set using cross validation.

● The optimization problem can be viewed as 
following: 


● If the regularization parameter is large then it 
requires a small model complexity


● We have learned how to use cross validation to 
set hyperparameters including regularization 
parameters. 




Q:  Select the correct option about regression with L2 regularization (also called 
Ridge Regression).

1. Both statements are true.


2. Both statements are false.


3. Statement A is true, Statement B is false.


4. Statement B is true, Statement A is false.

A. Ridge regression technique prevents coefficients from rising too high.


B.  As λ→∞, the impact of the penalty grows, and the ridge regression coefficient estimates will 

approach infinity.



Q:  Select the correct option about regression with L2 regularization (also called 
Ridge Regression).

1. Both statements are true.


2. Both statements are false.


3. Statement A is true, Statement B is false.


4. Statement B is true, Statement A is false.

A. Ridge regression technique prevents coefficients from rising too high.


B.  As λ→∞, the impact of the penalty grows, and the ridge regression coefficient estimates will 

approach infinity.

As λ→∞, the impact of the 
penalty grows, and the ridge 
regression coefficient estimates 
will approach zero.



Q:  Following figure shows 3-norm sketches: ||x||p<1 for p = 1, 2, ∞.

Recall that ||x||∞ = max{|xi| for all i}

1. A: p=1, B: p=2, C: p=∞

2. A: p=2, B: p=1, C: p=∞

3. A: p=2, B: p=∞, C: p=1

4. A: p=∞, B: p=2, C: p=1

A: B: C:
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Outline

•Review & Regularization

•  Forward/backwards Pass, Views, L1/L2 Effects


•Other Forms of Regularization

•  Data Augmentation, Noise, Early Stopping, Dropout 


•Convolutional Neural Networks (next lecture)
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Data Augmentation

Augmentation: transform + add new samples to dataset

•Transformations: based on domain

•Idea: build invariances into the model


• Ex: if all images have same alignment, model learns to use it


•Keep the label the same!



Data Augmentation: Examples

Examples of transformations for images

•Crop (and zoom)

•Color (change contrast/brightness)

•Rotations+ (translate, stretch, shear, etc)

Many more possibilities. Combine as well!


Q: how to deal with this at test time?

•A: transform, test, average



Combining & Automating Transformations

One way to automate the process:

•Apply every transformation and combinations

•Downside: most don’t help…


Want a good policy, ie, ➔ ➔ ➔ ➔ ➔

•Active area of research: search for good 
policies 1. Ratner et al: “Learning to Compose Domain-Specific 

Transformations for Data Augmentation”

2. Cubuk et al: “AutoAugment: Learning Augmentation 

Strategies from Data”



Data Augmentation: Other Domains

Not just for image data. For example, on text:

• Substitution


• E.g., “It is a great day” ➔ “It is a wonderful day” 

• Use a thesaurus for particular words

• Or, use a model. Pre-trained word embeddings, language models


• Back-translation

• “Given the low budget and production limitations, this movie is very good.” ➔ 

“There are few budget items and production limitations to make this film a 
really good one”

Xie et al: “Unsupervised Data Augmentation for 
Consistency Training”



Adding Noise

•What if we have many solutions?

Class +1

Class -1

H1

H2

H3



Adding Noise

•Adding some amount of noise helps us pick solution:

Class +1

Class -1

Prefer H2 (higher confidence)

H2



Adding Noise

•Too much: hurts instead

Class +1

Class -1

Too much noise leads 
to data points cross 

the boundary

H2



Adding Noise: Equivalence to Weight Decay

•Suppose the hypothesis is  noise is 

•After adding noise, the loss is

f(x) = w⊤x ϵ ∼ N(0,λI)



Early Stopping	

•Idea: don’t train the network to too small training error

• Larger the hypothesis class, easier to find a hypothesis that fits the 

difference between the training and test set.

• So: do not push the hypothesis too much; use validation error to 

decide when to stop

Figure from Deep Learning, 

Goodfellow, Bengio and Courville



Early Stopping	

•Practically: when training, also compute validation error

• Every time validation error improved, store a copy of the weights

• When validation error not improved for some time, stop

• Return the copy of the weights stored



Dropout

•Basic idea: randomly select weights to update


•In each update step

• Randomly apply a binary mask to all the input and hidden units

• Multiply the mask bits with the units and do the update as usual


•Typical dropout prob: 0.2 for input and 0.5 for hidden units



Applying Dropout



Applying Dropout



Break & Quiz
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Q2-2: Are these statements true or false? 
(A) We can use validation data to decide when to stop early. 
(B) We can think of early stopping as a regularization to limit the volume of 
parameter space reachable from the initial parameter. 

1. True, True 

2. True, False 

3. False, True

4. False, False



Q2-2: Are these statements true or false? 
(A) We can use validation data to decide when to stop early. 
(B) We can think of early stopping as a regularization to limit the volume of 
parameter space reachable from the initial parameter. 

1. True, True 

2. True, False 

3. False, True

4. False, False

(A) As is shown in the lecture.

(B) That’s true. Early stopping will 

limit the training time and thus 
potentially limit the space the 
training can search.



Outline

• Regularization

•Views, L1/L2 Effects


•Other Forms of Regularization

•  Data Augmentation, Noise, Early Stopping, Dropout 


•Convolutional Neural Networks (maybe next lecture)
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Multi-layer perceptrons
f1 f2 h1 = σ(W1x + b1)

h2 = σ(W2h1 + b2)
h3 = σ(W3h2 + b3)

f = W4h3 + b4
y = softmax(f)

NNs are composition 
of nonlinear 

functions
40



How to classify 
Cats vs. dogs?

36M floats in a RGB image!

Classifying Images
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Cats vs. dogs?

~ 36M elements x 100 = ~3.6B parameters!

Output 

Hidden layer 
Input 

100 neurons

Classifying Images with fully connected NNs
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Convolutions come to rescue!
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• Reduces number 
of parameters


• Translation 
Invariance


• Locality

Why Convolution?
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2-D Convolution

(vdumoulin@ Github)

0 × 0 + 1 × 1 + 3 × 2 + 4 × 3 = 19,
1 × 0 + 2 × 1 + 4 × 2 + 5 × 3 = 25,
3 × 0 + 4 × 1 + 6 × 2 + 7 × 3 = 37,
4 × 0 + 5 × 1 + 7 × 2 + 8 × 3 = 43.
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2-D Convolution Layer

•                   input matrix

•                   kernel matrix

• b: scalar bias

•                                                  output matrix 

 

• W and b are learnable parameters 

Y = X ⋆ W + b

X : nh × nw

W : kh × kw

Y : (nh − kh + 1) × (nw − kw + 1)
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Examples
Edge Detection

Sharpen

Gaussian Blur

(wikipedia)
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Convolutional Neural Networks

Convolutional networks: neural networks that use convolution in 
place of general matrix multiplication in at least one of their 
layers
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Padding

• Given a 32 x 32 input image

• Apply convolution with 5 x 5 kernel 


• 28 x 28 output with 1 layer

• 4 x 4 output with 7 layers 


• Shape decreases faster with larger kernels   

• Padding preserves edge information!
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Padding

Padding adds rows/columns around input

0 × 0 + 0 × 1 + 0 × 2 + 0 × 3 = 0
51



Padding

• Padding      rows and      columns, output shape will be


• A common choice is                   and

• Odd     : pad         on both sides

• Even     : pad           on top,           on bottom

(nh − kh + ph + 1) × (nw − kw + pw + 1)

ph pw

ph = kh − 1 pw = kw − 1
kh ph/2
kh ⌈ph/2⌉ ⌊ph/2⌋
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Stride

• Stride is the #rows/#columns per slide

Strides of 3 and 2 for height and width

0 × 0 + 0 × 1 + 1 × 2 + 2 × 3 = 8
0 × 0 + 6 × 1 + 0 × 2 + 0 × 3 = 6
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Stride

• Given stride     for the height and stride     for the width,  
the output shape is 


• With                   and


• If input height/width are divisible by strides

sh sw

⌊(nh − kh + ph + sh)/sh⌋ × ⌊(nw − kw + pw + sw)/sw⌋

ph = kh − 1 pw = kw − 1

⌊(nh + sh − 1)/sh⌋ × ⌊(nw + sw − 1)/sw⌋

(nh/sh) × (nw /sw)
54



Q1. Suppose we want to perform convolution on a single channel image 
of size 7x7 (no padding) with a kernel of size 3x3, and stride = 2. What is 
the dimension of the output?  

A.3x3


B.7x7


C.5x5


D.2x2

7

7
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Q1. Suppose we want to perform convolution on a single channel image 
of size 7x7 (no padding) with a kernel of size 3x3, and stride = 2. What is 
the dimension of the output?  

A.3x3


B.7x7


C.5x5


D.2x2

7

7

⌊(nh − kh + ph + sh)/sh⌋ × ⌊(nw − kw + pw + sw)/sw⌋
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Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov, Sharon Li, and Fred Sala 57


