

CS760 Machine Learning Neural Networks IV Josiah Hanna

University of Wisconsin-Madison
October 17, 2023

Announcements

- Midterm
- Tomorrow at 5:45pm in Noland Hall 132.
- Please do not share answers after you finish your midterm.
- Midterm course evaluations

Review

- Complexity, capacity, flexibility.
- All these pertain to hypothesis class.
- More complexity = more capacity = more flexibility.
- Linear models are usually considered low capacity; polynomial basis functions increase capacity / complexity / flexibility.
- Neural networks are high capacity models; in theory and practice can fit any given function with sufficient sized network.
- Non-parametric vs. parametric methods:
- Non-parametric: capacity can expand with number of data points. E.g., k-NN.

Bias / Variance Trade-off

- Bias / Variance Trade-off:
- With high capacity models the best fit model varies more if data points change.
- Lower capacity models: the best fit will vary less with the particular data points.

Outline

- Convolutional operations
- 2D convolution
- Padding, stride etc
- Multiple input and output channels
- Pooling
- Convolutional Neural Networks \& CNN Architectures

Outline

- Convolutional operations
- 2D convolution
- Padding, stride etc
- Multiple input and output channels
- Pooling
- Convolutional Neural Networks \& CNN Architectures

Multi-layer perceptrons

$$
\begin{aligned}
\mathbf{h}_{1} & =\sigma\left(\mathbf{W}_{1} \mathbf{x}+\mathbf{b}_{1}\right) \\
\mathbf{h}_{2} & =\sigma\left(\mathbf{W}_{2} \mathbf{h}_{1}+\mathbf{b}_{2}\right) \\
\mathbf{h}_{3} & =\sigma\left(\mathbf{W}_{3} \mathbf{h}_{2}+\mathbf{b}_{3}\right) \\
\mathbf{f} & =\mathbf{W}_{4} \mathbf{h}_{3}+\mathbf{b}_{4} \\
\mathbf{y} & =\operatorname{softmax}(\mathbf{f})
\end{aligned}
$$

NNs are composition of nonlinear functions

Classifying Images

How to classify

Cats vs. dogs?

36M floats in a RGB image!

Classifying Images with fully connected NNs

Input

Hidden layer 100 neurons

Cats vs. dogs?

$\sim 36 \mathrm{M}$ elements $\times 100=\sim 3.6 \mathrm{~B}$ parameters!

Convolutions come to rescue!

Why Convolution?

- Reduces number of parameters
- Translation Invariance
- Locality

2-D Convolution

Input		Kernel				
0 1 2 3 4 5 6 7 8$*$0 1 2 3				$\quad=$	19	25
:---	:---					
37	43					

$$
\begin{aligned}
& 0 \times 0+1 \times 1+3 \times 2+4 \times 3=19 \\
& 1 \times 0+2 \times 1+4 \times 2+5 \times 3=25 \\
& 3 \times 0+4 \times 1+6 \times 2+7 \times 3=37 \\
& 4 \times 0+5 \times 1+7 \times 2+8 \times 3=43
\end{aligned}
$$

2-D Convolution Layer

0	1	2
3	4	5
6	7	8

0	1			
2	3	$=$	19	25
:---	:---			
37	43			

- $\mathbf{X}: n_{h} \times n_{w}$ input matrix
- $\mathbf{W}: k_{h} \times k_{w}$ kernel matrix
- b: scalar bias
- Y : $\left(n_{h}-k_{h}+1\right) \times\left(n_{w}-k_{w}+1\right)$ output matrix

$$
\mathbf{Y}=\mathbf{X} \star \mathbf{W}+b
$$

- W and b are learnable parameters

Examples

$$
\left[\begin{array}{rrr}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1
\end{array}\right]
$$

Edge Detection

$$
\left[\begin{array}{rrr}
0 & -1 & 0 \\
-1 & 5 & -1 \\
0 & -1 & 0
\end{array}\right]
$$

Sharpen
(wikipedia)

$$
\frac{1}{16}\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{array}\right]
$$

Convolutional Neural Networks

Convolutional networks: neural networks that use convolution in place of general matrix multiplication in at least one of their layers

Convolutional Neural Network Intuition

Early layers recognize simple visual features, later layers recognize more complex visual features.

Suppose we want to classify images of either cats or dogs. How would you do this?

Look for features of cats or dogs in the image and use for decision.

- Example: cats have cat-like faces, dogs have dog-like faces.
- How do you determine what is a "cat-like" face vs a "dog-like" face?

Look for features of "cat-like" faces and "dog-like" faces.

- Example: Dogs have longer snouts.
- How do you determine what is a long snout?

Feature Learning

Later layers recognize complete objects

Middle layers recognize parts of objects

Early layers recognize simple patterns

Padding

- Given a 32×32 input image
- Apply convolution with 5×5 kernel
- 28×28 output with 1 layer
- 4×4 output with 7 layers

- Shape decreases faster with larger kernels
- Padding preserves edge information!

Padding

Padding adds rows/columns around input

Input

0	0	0	0	0
0	0	1	2	0
---				-
0	3	4	5	0
0	6	7	8	0
0	0	0	0	0

Kernel
Output

0	3	8	4
9	19	25	10
21	37	43	16
6	7	8	0

$$
0 \times 0+0 \times 1+0 \times 2+0 \times 3=0
$$

Padding

- Padding p_{h} rows and p_{w} columns, output shape will be

$$
\left(n_{h}-k_{h}+p_{h}+1\right) \times\left(n_{w}-k_{w}+p_{w}+1\right)
$$

- A common choice is $p_{h}=k_{h}-1$ and $p_{w}=k_{w}-1$
- Odd k_{h} : pad $p_{h} / 2$ on both sides
- Even k_{h} : pad $\left\lceil p_{h} / 2\right\rceil$ on top, $\left\lfloor p_{h} / 2\right\rfloor$ on bottom

Stride

- Stride is the \#rows / \#columns per slid

Strides of 3 and 2 for height and width
Input
Kernel
Output

$$
\begin{aligned}
& 0 \times 0+0 \times 1+1 \times 2+2 \times 3=8 \\
& 0 \times 0+6 \times 1+0 \times 2+0 \times 3=6
\end{aligned}
$$

Stride

- Given stride s_{h} for the height and stride s_{w} for the width, the output shape is

$$
\left\lfloor\left(n_{h}-k_{h}+p_{h}+s_{h}\right) / s_{h}\right\rfloor \times\left\lfloor\left(n_{w}-k_{w}+p_{w}+s_{w}\right) / s_{w}\right\rfloor
$$

- With $p_{h}=k_{h}-1$ and $p_{w}=k_{w}-1$

$$
\left\lfloor\left(n_{h}+s_{h}-1\right) / s_{h}\right\rfloor \times\left\lfloor\left(n_{w}+s_{w}-1\right) / s_{w}\right\rfloor
$$

- If input height/width are divisible by strides

$$
\left(n_{h} / s_{h}\right) \times\left(n_{w} / s_{w}\right)
$$

Q1. Suppose we want to perform convolution on a single channel image of size 7×7 (no padding) with a kernel of size 3×3, and stride $=2$. What is the dimension of the output?

7
A. 3×3
B. $7 x 7$
C. 5×5
D. 2×2

Q1. Suppose we want to perform convolution on a single channel image of size 7×7 (no padding) with a kernel of size 3×3, and stride $=2$. What is the dimension of the output?

7
A. 3×3
B. $7 x 7$
C. 5×5
D. 2×2

7

$$
\left\lfloor\left(n_{h}-k_{h}+p_{h}+s_{h}\right) / s_{h}\right\rfloor \times\left\lfloor\left(n_{w}-k_{w}+p_{w}+s_{w}\right) / s_{w}\right\rfloor
$$

Multiple Input and Output Channels

Multiple Input Channels

- Color image may have three RGB channels

Multiple Input Channels

- Color image may have three RGB channels

Multiple Input Channels

- Have a kernel for each channel, and then sum results over channels

Input

II

Multiple Input Channels

- X : $c_{i} \times n_{h} \times n_{w}$ input
- W: $c_{i} \times k_{h} \times k_{w}$ kernel
- Y: $m_{h} \times m_{w}$ output

$$
\mathbf{Y}=\mathbf{X} \star \mathbf{W}=\sum_{i=0}^{c_{i}} \mathbf{X}_{i,,,:} \star \mathbf{W}_{i,,:,}+b
$$

Multiple Input Channels

- RGB images have 3 channels

Multiple Input Channels

- RGB images have 3 channels

Multiple Input Channels

- RGB images have 3 channels

Multiple Output Channels

- We can have multiple 3-D kernels, each one generates an output channel
- Input X : $c_{i} \times n_{h} \times n_{w}$
- Kernel W: $c_{o} \times c_{i} \times k_{h} \times k_{w}$
- Output Y : $c_{o} \times m_{h} \times m_{w}$

$$
\begin{aligned}
& \mathbf{Y}_{i,, ;:}=\mathbf{X} \star \mathbf{W}_{i,, i,: ;}+b \\
& \text { for } i=1, \ldots, c_{o}
\end{aligned}
$$

Multiple Input/Output Channels

- Each 3-D kernel may recognize a particular pattern

(Gabor filters)

AlexNet Kernels

Each Conv1 kernel is $3 \times 11 \times 11$, can be visualized as an RGB patch:

[Visualizing and Understanding Convolutional Networks. M Zeiler \& R Fergus 2013]
Q. Suppose we want to perform convolution on a RGB image of size 224×224 (no padding) with 64 kernels of size 3×3. Stride $=1$. What is a reasonable estimate of the total number of scalar multiplications involved in this operation (without considering any optimization in matrix multiplication)?
A. $64 \times 3 \times 3 \times 222 \times 222$
B. $64 \times 3 \times 3 \times 222$
C. $3 \times 3 \times 222 \times 222$
D. $64 \times 3 \times 3 \times 3 \times 222 \times 222$
Q. Suppose we want to perform convolution on a RGB image of size 224×224 (no padding) with 64 kernels of size 3×3. Stride $=1$. What is a reasonable estimate of the total number of scalar multiplications involved in this operation (without considering any optimization in matrix multiplication)?
A. $64 \times 3 \times 3 \times 222 \times 222$
B. $64 \times 3 \times 3 \times 222$
C. $3 \times 3 \times 222 \times 222$
D. $64 \times 3 \times 3 \times 3 \times 222 \times 222$
Q. Suppose we want to perform convolution on a RGB image of size 224×224 (no padding) with 64 kernels of size 3×3. Stride $=1$. Which is a reasonable estimate of the total number of learnable parameters?
A. $64 \times 222 \times 222$
B. $64 \times 3 \times 3 \times 222$
C. $3 \times 3 \times 3 \times 64$
D. $(3 \times 3 \times 3+1) \times 64$
Q. Suppose we want to perform convolution on a RGB image of size 224×224 (no padding) with 64 kernels of size 3×3. Stride $=1$. Which is a reasonable estimate of the total number of learnable parameters?
A. $64 \times 222 \times 222$
B. $64 \times 3 \times 3 \times 222$
C. $3 \times 3 \times 3 \times 64$
D. $(3 \times 3 \times 3+1) \times 64$

Pooling

Pooling

2-D Max Pooling

- Returns the maximal value in the sliding window

Input
Output

0	1	2
3	4	5
6	7	8

4	5
7	8

$$
\max (0,1,3,4)=4
$$

Average Pooling

- Max pooling: the strongest pattern signal in a window
- Average pooling: replace max with mean in max pooling - The average signal strength in a window

Max pooling

Average pooling

Padding, Stride, and Multiple Channels

- Pooling layers have similar padding and stride as convolutional layers
- No learnable parameters
- Apply pooling for each input channel to obtain the corresponding output channel

\#output channels = \#input channels
Q. Suppose we want to perform 2×2 average pooling on the following single channel feature map of size 4×4 (no padding), and stride $=2$. What is the output?

A. \quad| 20 | 30 |
| :--- | :--- |
| 70 | 90 |

B.	16	8
20	25	

12	20	30	0
20	12	2	0
0	70	5	2
8	2	90	3

C. | 20 | 30 |
| :--- | :--- |
| 20 | 25 |

D.

12	2
70	5

Q. Suppose we want to perform 2×2 average pooling on the following single channel feature map of size 4×4 (no padding), and stride $=2$. What is the output?

A. \quad| 20 | 30 |
| :--- | :--- |
| 70 | 90 |

B. | 16 | 8 |
| :--- | :--- |
| 20 | 25 |

12	20	30	0
20	12	2	0
0	70	5	2
8	2	90	3

C. | 20 | 30 |
| :--- | :--- |
| 20 | 25 |

D.

12	2
70	5

Q. What is the output if we replace average pooling with 2×2 max pooling (other settings are the same)?

A. \quad| 20 | 30 |
| :--- | :--- |
| 70 | 90 |

B. | 16 | 8 |
| :--- | :--- |
| 20 | 25 |

12	20	30	0
20	12	2	0
0	70	5	2
8	2	90	3

C. | 20 | 30 |
| :--- | :--- |
| 20 | 25 |

D.

12	2
70	5

Q. What is the output if we replace average pooling with 2×2 max pooling (other settings are the same)?

A. \quad| 20 | 30 |
| :--- | :--- |
| 70 | 90 |

B. \quad| 16 | 8 |
| :--- | :--- |
| 20 | 25 |

12	20	30	0
20	12	2	0
0	70	5	2
8	2	90	3

C. | 20 | 30 |
| :--- | :--- |
| 20 | 25 |

D.

12	2
70	5

Outline

- Convolutional operations
- 2D convolution
- Padding, stride etc
- Multiple input and output channels
- Pooling
- Convolutional Neural Networks \& CNN Architectures

Convolutional Neural Networks

Convolutional networks: neural networks that use convolution in place of general matrix multiplication in at least one of their layers

Why CNNs instead of MLPs?

- Translation Invariance
- Locality
- Reduces number of parameters

Why CNNs instead of MLPs?

Sparse interactions!

Fully connected layer, $m \times n$ edges

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

Why CNNs instead of MLPs?

Sparse interactions!

Convolutional layer, $\leq m \times k$ edges

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

Evolution of neural net architectures

LeNet Architecture

Philip Marlowe portuanp gre 970 6381 Hollywood Bled * 615 los Angels, $C A$ 合

$$
\begin{aligned}
& \text { Dave Fennuid } \\
& \text { better, in e } \\
& 509 \text { Cascade Are, Suite H } \\
& \text { Hood Ricer, OR } 97031
\end{aligned}
$$

Handwritten Digit Recognition

MNIST

- Centered and scaled
- 50,000 training data
- 10,000 test data
- 28×28 images
- 10 classes

000000000000 111111111111

22222222222
33333333 333
444444444444
555555555555
666666666666
777777777777
888888888888
999999999999

ATET LeNet 5 RESEARCH $^{\text {LIN }}$ answer: 0

AlexNet

Deng et al. 2009

AlexNet

- AlexNet won ImageNet competition in 2012
- Deeper and bigger LeNet
- Paradigm shift for computer vision

AlexNet Architecture

AlexNet Architecture

AlexNet Architecture

More Differences...

- Change activation function from sigmoid to ReLu (no more vanishing gradient)

More Differences...

- Change activation function from sigmoid to ReLu (no more vanishing gradient)
- Data augmentation

Can we keep adding more layers?

- No! Some problems:
- Vanishing gradients: more layers \rightarrow more likely
- Deeper models are harder to optimize

Reflected in training error:

He et al: "Deep Residual Learning for Image Recognition"

Depth Issues \& Learning Identity

Why would more layers result in worse performance?

- Same architecture, etc.
- If the A can learn f, then so can B, as long as top layers learn identity

Residual Connections

Identity is hard to learn in a NN, but zero is easy!

- Make all the weights tiny, produces zero for output
- Can easily transform learning identity to learning zero:

Left: Conventional layers block
Right: Residual layer block
To learn identity $f(x)=x$, layers now
need to learn $f(x)=0 \rightarrow$ easier

Full ResNet Architecture

[He et al. 2015]

ResNet Architecture

Idea: Residual (skip) connections help make learning easier

- Example architecture:
- Note: residual connections
- Every two layers for ResNet34
- Significantly better performance
- No additional parameters!
- Records on many benchmarks

He et al: "Deep Residual Learning for Image Recognition"

ResNet Training Curves on ImageNet

[He et al., 2015]

A Bit More on ResNets

Idea: Residual (skip) connections help make learning easier

- Note: Can also analyze from backpropagation p.o.v
- Residual connections add paths to computation graph
- Also uses batch normalization
- Normalize the features at each layer to have same mean/variance
- Common deep learning trick
- Highway networks: learn weights for residual connections

Evolution of CNNs

ImageNet competition (error rate)

Credit: Stanford CS 231n

Acknowledgement

Some of the slides in these lectures have been adapted from materials developed by Alex Smola and Mu Li: https://courses.d21.ai/berkeley-stat-157/index.html

