
CS 760: Machine Learning
Large Language Models

Josiah Hanna

University of Wisconsin-Madison

October 24, 2023

Announcements

•Midterm evaluations
•X% have already filled out. Thank you!
•Please fill out if you haven’t already

•Homework 4 due in one week

Outline

•Finish RNNs (LSTM model)
•Language Models & NLP
•Word embeddings, attention
•Transformer Model
•Properties, architecture breakdown

•Transformer-based Models
• BERT, GPTs, Foundation Models

Outline

•Finish RNNs (LSTM model)
•Language Models & NLP
•Word embeddings, attention
•Transformer Model
•Properties, architecture breakdown

•Transformer-based Models
• BERT, GPTs, Foundation Models

RNN Problems with long sequences

•Training: What happens to gradients in backprop with many
layers?
• In an RNN trained on long sequences (e.g. 100 time steps) the

gradients can easily explode or vanish.
•We can avoid this by initializing the weights very carefully.

•Memory/retention: very hard to detect that current target
output depends on an input from long ago.
•Simple RNNs have difficulty dealing with long-range dependencies.

5

•RNN: can write structure as:

•Long Short-Term Memory Cell: deals with problem of long-
term dependencies.

6

•Long Short-Term Memory Cell: deals with problem.

•
: short term memory

• : long term memory
ht

Ct

LSTM (Long Short-Term Memory)

7

•Step-by-step
• Good reference: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

•“Forget” gate.
•Can remove all or part of any entry in cell state C
• denotes the sigmoid (logistic) activation; think of this as a soft on/

off function
σ

Understanding the LSTM Cell

8

•Step-by-step

•Input gate. Combine:
•What entries in Ct-1 we’ll update

•Candidates for updating:
•Add information to cell state Ct-1 (post-forgetting)

C̃t

Understanding the LSTM Cell

9

•Step-by-step

•Updating Ct-1 to Ct
•Forget, then
•Add new information

Understanding the LSTM Cell

10

•Step-by-step

•Output gate
•Combine hidden state, input as before, but also
•Modify according to cell state Ct

Understanding the LSTM Cell

11

Outline

•Finish RNNs (LSTM model)
•Language Models & NLP
•Word embeddings, attention
•Transformer Model
•Properties, architecture breakdown

•Transformer-based Models
• BERT, GPTs, Foundation Models

Language Models

• Basic idea: use probabilistic models
to assign a probability to a sentence:

• Goes back to Claude Shannon
– “Father of Information Theory”
– Information theory: letters

Language Models: Word Embeddings

•One way to encode words: one-hot vectors
•Does not capture word similarity. Want something smarter…

Distributional semantics: account for relationships
•Representations should be close/similar to other words that
appear in a similar context

Dense vectors:

AKA word embeddings

Word Embeddings

Saurabh Pal – Implementing Word2Vec in Tensorflow

https://medium.com/@saurabhpal97?source=post_page-----44f93cf2665f--------------------------------

Training Word Embeddings

Many approaches (very popular 2010-present)
•Word2vec: a famous approach
•Write out a likelihood

Our word vectors (weights)

All positions

Windows of length 2a

Training Word Embeddings

Word2vec likelihood

•Expression for the probability:

• : occurrence vector for word

• : context vector for word
θw,o w
θw,c w

P(w′ |w, θ) =
exp((θw′ ,o)⊤θw,c)

∑v∈V exp((θv,o)⊤θw,c)

Language Models: RNN Review

•Classical RNN model / Encoder-Decoder variant:

𝑠(𝑡−1) 𝑠(𝑡) 𝑠(𝑡+1)

𝑥(𝑡−1) 𝑥(𝑡) 𝑥(𝑡+1)

𝑈

𝑊

𝑈

𝑊

𝑈

𝑊

𝑜(𝑡−1) 𝑜(𝑡) 𝑜(𝑡+1)

𝑉 𝑉 𝑉

𝐿(𝑡−1) 𝐿(𝑡) 𝐿(𝑡+1)

𝑦(𝑡−1) 𝑦(𝑡) 𝑦(𝑡+1) 𝑠(𝜏−1) 𝑠(𝜏)𝑠(1)

𝑥(𝜏−1) 𝑥(𝜏)𝑥(1)

𝑠(0) …

Encoder

Encoder
State

h(1)

Decoder

𝑦(1)

h(2) h(𝑇−1)

𝑦(𝑇−1)

h(𝑇)

𝑦(𝑇)

Language Models: Attention

•One challenge: dealing with the hidden state
•Everything gets compressed there
•Might lose information

•Solution: attention mechanism
• Similar to residual connections in ResNets (not covered in lecture)

Language Models: Putting it All Together

•Before 2017: best language models
•Use encoder/decoder architectures based on RNNs (LSTMs)
•Use word embeddings for word representations
•Use attention mechanisms

Outline

•Language Models & NLP
•k-gram models, RNN review, word embeddings, attention
•Transformer Model
•Properties, architecture breakdown

•Transformer-based Models
• BERT, GPTs, Foundation Models

Transformers: Idea

•Initial goal for an architecture: encoder-decoder
•Get rid of recurrence (not good for parallelization)
•Replace with self-attention

Vaswani et al. ‘17

Transformers: Architecture

•Sequence-sequence model with stacked encoders/decoders:
•For example, for French-English translation:

Excellent resource: https://jalammar.github.io/illustrated-transformer/

Note that entire sequence is passed at once;
contrast with RNNs.

Transformers: Architecture

•Sequence-sequence model with stacked encoders/decoders:
•What’s inside each encoder/decoder unit?

Transformers: Inside an Encoder

•Let’s take a look at the encoder. Two components:
•1. Self-attention layer
•2. Feedforward nets

Transformers: Self-Attention

•Self-attention is the key layer in a transformer stack
•Get 3 vectors for each embedding: Query, Key, Value

Transformers: Self-Attention

•Self-attention is the key layer
in a transformer stack
• Illustration. Recall the three

vectors for each embedding:
Query, Key, Value

•The sum values are the outputs
of the self-attention layer

•Send these to feedforward NNs

•Highly parallelizable!

Transformers: Multi-Headed Attention

•We can do this multiple times in parallel
•Called multiple heads
•Need to combine the resulting output sums

Transformers: Attention Visualization

•Attention tells us where to focus the information
• Illustration for a sentence:

Transformers: Positional Encodings

•One thing we haven’t discussed: the order of the symbols/
elements in the sequence
•Add a vector containing a special positional formula’s embedding

Transformers: More Tricks

•Residual connections:
•Same idea as ResNets which enabled deeper CNNs.
•And also layer normalizations
•Apply to our encoder layers

Transformers: Decoder
• Similar to encoders (see linked blog post for more details).
• E.g. Generating a translation

Transformers: Putting it All Together

•What does the full architecture look like?

Outline

•Language Models & NLP
•k-gram models, RNN review, word embeddings, attention
•Transformer Model
•Properties, architecture breakdown

•Transformer-based Models
• BERT, GPTs, Foundation Models

Transformer-Based Models: BERT

• Semi-supervised learning + Transformers
•Semi-supervised learning to learn embeddings in encoder

BERT: Concepts

•What makes BERT work? A bunch of ideas:
•1. Use the Transformer architecture
•2. Pre-training on corpora using self-supervised learning.
• Then fine-tune for a particular task

•3. Scale: BERT-Large has 340 million parameters

Results: Devlin et al, BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding

BERT: Training

•BERT is trained on a simple tasks on a huge amount of data:
•Masked word prediction:

BERT: Classification

•Then, fine-tune on a particular task
•Example: binary classification, spam VS not spam

GPT Series of Models

•GPT: Generative Pre-trained Transformer
•Also built on top of transformer model architecture
•Essentially the decoder part only

•Goal: generate text (possibly from a prompt)
•Scale: huge!
•GPT-3: 175 billion parameters

Codex

•Codex: a variant of GPT-3 based on source code
•Outputs code. Ex: show primes

Russell Foltz-Smith

DALL-E

•Create images from text
•Prompt: “an armchair in the shape of an avocado. . . .”

•Note: several online demos. Try it yourself!

https://openai.com/blog/dall-e/

Foundation Models

•Many more large scale models
•Not just focused on text

Bommasani et al, “On the Opportunities and Risks of Foundation Models”

Conclusion

•“Foundation” models based on transformers and beyond
•Huge, expensive to train, challenging in various ways… but
•Remarkably powerful for a vast number of tasks.
•An ingredient for artificial general intelligence?

Bommasani et al, “On the Opportunities and Risks of Foundation Models”

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, Jay Alammar, and Fred Sala

