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Announcements

•Midterm evaluations 
•X% have already filled out. Thank you! 
•Please fill out if you haven’t already 

•Homework 4 due in one week 



Outline

•Finish RNNs (LSTM model) 
•Language Models & NLP 
•Word embeddings, attention 
•Transformer Model 
•Properties, architecture breakdown 

•Transformer-based Models 
•  BERT, GPTs, Foundation Models
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RNN Problems with long sequences

•Training: What happens to gradients in backprop with many 
layers?  
• In an RNN trained on long sequences (e.g. 100 time steps) the 

gradients can easily explode or vanish. 
•We can avoid this by initializing the weights very carefully. 

•Memory/retention: very hard to detect that current target 
output depends on an input from long ago. 
•Simple RNNs have difficulty dealing with long-range dependencies.
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•RNN: can write structure as: 

•Long Short-Term Memory Cell: deals with problem of long-
term dependencies.
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•Long Short-Term Memory Cell: deals with problem. 
 
 
 
 
 

•  
: short term memory 

• : long term memory
ht

Ct

LSTM (Long Short-Term Memory)
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•Step-by-step 
• Good reference: https://colah.github.io/posts/2015-08-Understanding-LSTMs/  

•“Forget” gate.  
•Can remove all or part of any entry in cell state C  
•  denotes the sigmoid (logistic) activation; think of this as a soft on/

off function
σ

Understanding the LSTM Cell
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•Step-by-step 

•Input gate. Combine: 
•What entries in Ct-1 we’ll update  

•Candidates for updating:  
•Add information to cell state Ct-1 (post-forgetting)

C̃t

Understanding the LSTM Cell
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•Step-by-step 

•Updating Ct-1 to Ct  
•Forget, then 
•Add new information

Understanding the LSTM Cell
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•Step-by-step 

•Output gate 
•Combine hidden state, input as before, but also 
•Modify according to cell state Ct

Understanding the LSTM Cell
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Language Models

• Basic idea: use probabilistic models 
to assign a probability to a sentence: 

• Goes back to Claude Shannon 
– “Father of Information Theory” 
– Information theory: letters



Language Models: Word Embeddings

•One way to encode words: one-hot vectors 
•Does not capture word similarity. Want something smarter… 

Distributional semantics: account for relationships 
•Representations should be close/similar to other words that 
appear in a similar context 

Dense vectors: 

AKA word embeddings



Word Embeddings

Saurabh Pal – Implementing Word2Vec in Tensorflow

https://medium.com/@saurabhpal97?source=post_page-----44f93cf2665f--------------------------------


Training Word Embeddings

Many approaches (very popular 2010-present) 
•Word2vec: a famous approach 
•Write out a likelihood

Our word vectors (weights)

All positions

Windows of length 2a



Training Word Embeddings

Word2vec likelihood 

•Expression for the probability: 
 
 

• : occurrence vector for word  

• : context vector for word 
θw,o w
θw,c w

P(w′ |w, θ) =
exp((θw′ ,o)⊤θw,c)

∑v∈V exp((θv,o)⊤θw,c)



Language Models: RNN Review

•Classical RNN model / Encoder-Decoder variant:
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Language Models: Attention

•One challenge: dealing with the hidden state 
•Everything gets compressed there 
•Might lose information 

•Solution: attention mechanism 
•  Similar to residual connections in ResNets (not covered in lecture)



Language Models: Putting it All Together

•Before 2017: best language models 
•Use encoder/decoder architectures based on RNNs (LSTMs) 
•Use word embeddings for word representations 
•Use attention mechanisms
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Transformers: Idea

•Initial goal for an architecture: encoder-decoder 
•Get rid of recurrence (not good for parallelization) 
•Replace with self-attention

Vaswani et al. ‘17



Transformers: Architecture

•Sequence-sequence model with stacked encoders/decoders: 
•For example, for French-English translation:

Excellent resource: https://jalammar.github.io/illustrated-transformer/

Note that entire sequence is passed at once; 
contrast with RNNs.



Transformers: Architecture

•Sequence-sequence model with stacked encoders/decoders: 
•What’s inside each encoder/decoder unit?



Transformers: Inside an Encoder

•Let’s take a look at the encoder. Two components: 
•1. Self-attention layer 
•2. Feedforward nets



Transformers: Self-Attention

•Self-attention is the key layer in a transformer stack 
•Get 3 vectors for each embedding: Query, Key, Value



Transformers: Self-Attention

•Self-attention is the key layer 
in a transformer stack 
• Illustration. Recall the three 

vectors for each embedding: 
Query, Key, Value 

•The sum values are the outputs 
of the self-attention layer  

•Send these to feedforward NNs 

•Highly parallelizable!



Transformers: Multi-Headed Attention

•We can do this multiple times in parallel 
•Called multiple heads 
•Need to combine the resulting output sums



Transformers: Attention Visualization

•Attention tells us where to focus the information 
• Illustration for a sentence:



Transformers: Positional Encodings

•One thing we haven’t discussed: the order of the symbols/
elements in the sequence 
•Add a vector containing a special positional formula’s embedding



Transformers: More Tricks

•Residual connections: 
•Same idea as ResNets which enabled deeper CNNs. 
•And also layer normalizations 
•Apply to our encoder layers



Transformers: Decoder
•  Similar to encoders (see linked blog post for more details). 
•  E.g. Generating a translation



Transformers: Putting it All Together

•What does the full architecture look like?
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Transformer-Based Models: BERT

•  Semi-supervised learning + Transformers 
•Semi-supervised learning to learn embeddings in encoder



BERT: Concepts

•What makes BERT work? A bunch of ideas: 
•1. Use the Transformer architecture  
•2. Pre-training on corpora using self-supervised learning. 
• Then fine-tune for a particular task 

•3. Scale: BERT-Large has 340 million parameters

Results: Devlin et al, BERT: Pre-training of Deep Bidirectional 
Transformers for Language Understanding



BERT: Training

•BERT is trained on a simple tasks on a huge amount of data: 
•Masked word prediction:



BERT: Classification

•Then, fine-tune on a particular task 
•Example: binary classification, spam VS not spam



GPT Series of Models

•GPT: Generative Pre-trained Transformer 
•Also built on top of transformer model architecture 
•Essentially the decoder part only  

•Goal: generate text (possibly from a prompt) 
•Scale: huge! 
•GPT-3: 175 billion parameters



Codex

•Codex: a variant of GPT-3 based on source code 
•Outputs code. Ex: show primes

Russell Foltz-Smith



DALL-E

•Create images from text 
•Prompt: “an armchair in the shape of an avocado. . . .” 

•Note: several online demos. Try it yourself!

https://openai.com/blog/dall-e/



Foundation Models

•Many more large scale models 
•Not just focused on text

Bommasani et al, “On the Opportunities and Risks of Foundation Models”



Conclusion

•“Foundation” models based on transformers and beyond 
•Huge, expensive to train, challenging in various ways… but 
•Remarkably powerful for a vast number of tasks. 
•An ingredient for artificial general intelligence?

Bommasani et al, “On the Opportunities and Risks of Foundation Models”



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov, Jay Alammar, and Fred Sala


