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Announcements

•Homework 4 due Tuesday at 9:30am. 
•All midterms have been taken. 
•Thank you for completing midterm evaluation! — 86% 
response rate.

Suggested ImprovementsWhat is helpful



Unsupervised Learning

•Goal: find patterns & structures that help better understand 
data. 
•No labels; generally won’t be making predictions 
•Sometimes model a distribution, but not always

Mulvey and  Gingold
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• K-means clustering  

• Gaussian Mixture Models 
•  Mixtures, Expectation-Maximization algorithm 

• Advanced clustering methods 
•hierarchical, spectral clustering
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Clustering

Several types:

Partitional 
- Centroid 
- Graph-theoretic 
- Spectral 

Hierarchical 
- Agglomerative 
- Divisive 

Bayesian 
- Decision-based 
- Nonparametric 



K-Means Clustering: Algorithm

k-means is a type of partitional centroid-based clustering 
Algorithm: 
1. Randomly pick k cluster centers



K-Means Clustering: Algorithm

K-Means clustering 
2. Find closest center for each point



K-Means Clustering: Algorithm

K-Means clustering 
3. Update cluster centers by computing centroids



K-Means Clustering: Algorithm

K-Means clustering 
Repeat Steps 2 & 3 until convergence



K-means clustering algorithm
Input:  

Step 1: select  cluster centers: . 
Step 2: for each point, , assign to cluster based on closest center in 
Euclidean distance: 

Step 3: update all cluster centers to be the mean of their assigned 
points: 

Repeat steps 2 and 3 until cluster centers stop changing.

x1, . . . , xn, k
k c1, . . . , ck

xi

y(xi) = arg min
j

| |xi − cj | |2

cj =
∑n

i=1 xi ⋅ 1{y(xi) = j}

∑n
i=1 1{y(xi) = j}



Questions on k-means

• What is k-means trying to optimize? 

• Will k-means stop (converge)? 

• Will it find a global or local optimum? 

• How to pick starting cluster centers? 

• How many clusters should we use?

L({yi}n
i=1, {cj}k

j=1) =
n

∑
i=1

| |xi − cyi
| |2

2

Index of cluster for data xi

Yes

Local

Hyper-parameter 
to tune



 
How to pick starting cluster centers?

• Randomly choosing starting centers can lead to poor performance. 
• A smarter strategy: k-means ++       (Arthur & Vassilivitski ‘07)
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Mixture Models

•Generative modeling approach to clustering. 
•Have dataset:  

•One type of model: mixtures 
•A function of the latent variable z 
•Model:



Gaussian Mixture Models

•Many different types of mixtures, but let us focus on 
Gaussians.  
•What does this mean? 
•Latent variable z has a multinomial distribution, 

•Then, let us make x be Gaussian conditioned on z

Mean Covariance Matrix 



Gaussian Mixture Models: Likelihood

•How should we learn the parameters? 
•Could try our usual way: maximum likelihood 
• Log likelihood: 

•Turns out to be hard to solve… inner sum leads to problems!



GMMs: Supervised Setting

•What if we already knew  for each ? 
• “Supervised” setting… 

•First, empirically estimate the multinomial parameters: 

•Next the Gaussian components:

z(i) x(i)

Average of x’s 
where z = j 



GMMs: Back to Latent Setting

•But, we don’t get to see the z’s! 

•What could we do instead? 
•Recall our k-means approach: we don’t know the centers, but 
we pretend we do, perform a clustering, re-center, iterate



GMMs: Expectation Maximization

•EM: an algorithm for dealing with latent variable problems 
•Iterative, alternating between two steps: 
•E-step: estimate latent variable (probabilities) based on current model 
•M-step: update the parameters of  
•Note similarity to k-means clustering.

Jake VanderPlas



GMM EM: E-Step

•Let us write down the formulas. 
•E-step: fix parameters, compute posterior: 

•These w’s are “soft” assignments of the z terms… probabilities 
over the values z could take. Concretely:



GMM EM: M-Step

•Let’s write down the formulas. 
•M-step: fix w, update parameters: Soft version of our counting 

estimator for the supervised case.

Soft version of our 
empirical mean and 
covariances.



EM through the lens of maximum likelihood estimation

•  Why is EM a sensible idea? 
•  Let us write out the log likelihood for our problem 

•  Letting                                   be any distribution over 



EM through the lens of maximum likelihood estimation

•Letting                                   be any distribution over 

•  By an application of Jensen’s inequality: 



EM through the lens of maximum likelihood estimation

•We have a lower bound on the log likelihood: 
 
 
 
 
 

•  If this lower bound is tight, by maximizing the lower bound, 
we can hope to do well in maximizing the likelihood. 
•  A good choice is 



General EM Algorithm

On round t of EM: 

•E-Step (Expectation): Update          for all i and j (This effectively 
computes the lower bound) 
 
 

•M-step: Maximize lower bound with respect to parameters  

Do at home: Show that this corresponds to the GMM update equations



More on EM

• Why                                      in the E-step? 

• Guarantees that the log likelihood increases each  
iteration. 
 

• EM works on continuous latent variables as well! 
•(HW5)



Quiz: State if the following sentences are true or false. 
A. In a Gaussian mixture model, the log likelihood is concave. 
B. We can maximize the likelihood of a mixture model using gradient 
descent. 
C. EM is always guaranteed to find a global maximum

Ans: A: false,    B: true,     C: false 
We use EM over GD because it is more efficient than GD.



Quiz: Which of the following  sentences are true. 
A. GMMs are generative models 
B. When you learn a GMM, you are estimating the density of the 

data. 
C. GMMs can be used for clustering.

Ans: All are true
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Credit: Wikipedia

Hierarchical Clustering

Basic idea: build a “hierarchy” 
•Want: arrangements from specific to general  
•One advantage: no need for k, number of clusters. 
•Input: points. 
•Output: a hierarchy (a binary tree)



HC: Agglomerative vs Divisive

Two ways to go: 
•Agglomerative: bottom up.  
•Start: each point a cluster.  
•Progressively merge clusters  

•Divisive: top down 
•Start: all points in one cluster.  
•Progressively split clusters



HC: Agglomerative Clustering Example

Agglomerative: Start: every point is its own cluster



HC: Agglomerative Clustering Example

Basic idea: build a “hierarchy” 
•Get pair of clusters that are closest and merge
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HC: Merging Criteria

Merge: use closest clusters. Define closest? 
First define a distance between points                     . Then, 
define distance between clusters. 

•Single-linkage 

•Complete-linkage 

•Average-linkage



We’ll merge using single-linkage 
•1-dimensional vectors. 
•Initial: all points are clusters

Single-linkage Example

1 2 4 5 7.25
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Single-linkage Example

C3

1 2 4 5 7.25

C1 C2



Single-linkage Example

1 2 4 5 7.25

C3

C1 C2

C4



We’ll merge using complete-linkage 
•1-dimensional vectors. 
•Initial: all points are clusters

Complete-linkage Example

1 2 4 5 7.25



Beginning is the same…

Complete-linkage Example

1 2 4 5 7.25

C1 C2



Now different from single linkage:

Complete-linkage Example

1 2 4 5 7.25

C1 C2

C3



Complete-linkage Example

1 2 4 5 7.25

C1 C2

C3

C4



Break & Quiz



Break & Quiz

Q 2.2: If we do hierarchical clustering on n points, the 
maximum depth of the resulting tree is 

•A. 2 
•B. log2 n 

•C. n/2 
•D. n-1
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Graph/proximity based clustering

•Recall: Graph G = (V,E) has vertex set V, edge set E. 
•Edges can be weighted or unweighted 
•Encode similarity 

•Treat each data point as a node in a graph. 
•Edges based on similarity of data points 
•E.g. for Euclidean vectors! 
 
 

•But they don’t need to be in Euclidean space!



Graph-Based Clustering

Want: partition V into k groups 
•   Implies a graph “cut” 
• One idea: minimize the weight of the 

cut



Partition-Based Clustering

How do we compute these? 

• Hard problem → heuristics 
– Greedy algorithm 

– “Spectral” approaches 

• Spectral clustering approach: 
– Adjacency matrix 



Partition-Based Clustering

• Spectral clustering approach: 
– Adjacency matrix  
– Degree matrix



Spectral Clustering

• Spectral clustering approach: 
– 1. Compute Laplacian L = D – A 
(Important tool in graph theory)

Degree Matrix Adjacency Matrix Laplacian



Spectral Clustering

• Spectral clustering approach: 
– 1. Compute Laplacian L = D – A 
• 1a (optional): compute normalized Laplacian: 

       L = I – D1/2AD1/2,   or  L = I – D-1A 
– 2. Compute k smallest eigenvectors of L 
– 3. Set U to be the n x k matrix with u1, …, uk as columns. Take the n 

rows formed as points 
– 4. Run k-means on the representations 



0.0
1

Why normalized Laplacian?

Want: partition V into V1 and V2 

• Implies a graph “cut” 
• One idea: minimize the weight of the 

cut 
– Downside: might just cut of one node 

– Need: “balanced” cut

0.0
1



Why Normalized Laplacian?

Want: partition V into V1 and V2 

• Just minimizing weight is not always a good idea. 
• We want balance!



Spectral Clustering

Credit: William Fleshman



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov, and Fred Sala 


