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Announcements

•Homework 4 due Tuesday at 9:30am.

•All midterms have been taken.

•Thank you for completing midterm evaluation! — 86% 
response rate.

Suggested ImprovementsWhat is helpful



Unsupervised Learning

•Goal: find patterns & structures that help better understand 
data.

•No labels; generally won’t be making predictions

•Sometimes model a distribution, but not always

Mulvey and  Gingold
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• Advanced clustering methods
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Clustering

Several types:

Partitional

- Centroid

- Graph-theoretic

- Spectral


Hierarchical

- Agglomerative

- Divisive


Bayesian

- Decision-based

- Nonparametric




K-Means Clustering: Algorithm

k-means is a type of partitional centroid-based clustering

Algorithm:

1. Randomly pick k cluster centers



K-Means Clustering: Algorithm

K-Means clustering

2. Find closest center for each point



K-Means Clustering: Algorithm

K-Means clustering

3. Update cluster centers by computing centroids



K-Means Clustering: Algorithm

K-Means clustering

Repeat Steps 2 & 3 until convergence



K-means clustering algorithm
Input: 


Step 1: select  cluster centers: .

Step 2: for each point, , assign to cluster based on closest center in 
Euclidean distance:


Step 3: update all cluster centers to be the mean of their assigned 
points:


Repeat steps 2 and 3 until cluster centers stop changing.

x1, . . . , xn, k
k c1, . . . , ck

xi

y(xi) = arg min
j

| |xi − cj | |2

cj =
∑n

i=1 xi ⋅ 1{y(xi) = j}

∑n
i=1 1{y(xi) = j}



Questions on k-means

• What is k-means trying to optimize?


• Will k-means stop (converge)?


• Will it find a global or local optimum?


• How to pick starting cluster centers?


• How many clusters should we use?

L({yi}n
i=1, {cj}k

j=1) =
n

∑
i=1

| |xi − cyi
| |2

2

Index of cluster for data xi

Yes

Local

Hyper-parameter 
to tune



 
How to pick starting cluster centers?

• Randomly choosing starting centers can lead to poor performance.

• A smarter strategy: k-means ++       (Arthur & Vassilivitski ‘07)



Outline

• K-means clustering 


• Gaussian Mixture Models

•  Mixtures, Expectation-Maximization algorithm 

• Advanced clustering methods

•hierarchical, spectral clustering



Mixture Models

•Generative modeling approach to clustering.

•Have dataset: 


•One type of model: mixtures

•A function of the latent variable z

•Model:



Gaussian Mixture Models

•Many different types of mixtures, but let us focus on 
Gaussians. 

•What does this mean?

•Latent variable z has a multinomial distribution,


•Then, let us make x be Gaussian conditioned on z

Mean Covariance Matrix 



Gaussian Mixture Models: Likelihood

•How should we learn the parameters?

•Could try our usual way: maximum likelihood

• Log likelihood:


•Turns out to be hard to solve… inner sum leads to problems!



GMMs: Supervised Setting

•What if we already knew  for each ?

• “Supervised” setting…


•First, empirically estimate the multinomial parameters:


•Next the Gaussian components:

z(i) x(i)

Average of x’s 
where z = j 



GMMs: Back to Latent Setting

•But, we don’t get to see the z’s!


•What could we do instead?

•Recall our k-means approach: we don’t know the centers, but 
we pretend we do, perform a clustering, re-center, iterate



GMMs: Expectation Maximization

•EM: an algorithm for dealing with latent variable problems

•Iterative, alternating between two steps:

•E-step: estimate latent variable (probabilities) based on current model

•M-step: update the parameters of 

•Note similarity to k-means clustering.

Jake VanderPlas



GMM EM: E-Step

•Let us write down the formulas.

•E-step: fix parameters, compute posterior:


•These w’s are “soft” assignments of the z terms… probabilities 
over the values z could take. Concretely:



GMM EM: M-Step

•Let’s write down the formulas.

•M-step: fix w, update parameters: Soft version of our counting 

estimator for the supervised case.

Soft version of our 
empirical mean and 
covariances.



EM through the lens of maximum likelihood estimation

•  Why is EM a sensible idea?

•  Let us write out the log likelihood for our problem


•  Letting                                   be any distribution over 



EM through the lens of maximum likelihood estimation

•Letting                                   be any distribution over


•  By an application of Jensen’s inequality: 



EM through the lens of maximum likelihood estimation

•We have a lower bound on the log likelihood: 
 
 
 
 
 

•  If this lower bound is tight, by maximizing the lower bound, 
we can hope to do well in maximizing the likelihood.

•  A good choice is 



General EM Algorithm

On round t of EM: 

•E-Step (Expectation): Update          for all i and j (This effectively 
computes the lower bound) 
 
 

•M-step: Maximize lower bound with respect to parameters	


Do at home: Show that this corresponds to the GMM update equations



More on EM

• Why                                      in the E-step?


• Guarantees that the log likelihood increases each  
iteration. 
 

• EM works on continuous latent variables as well!

•(HW5)



Quiz: State if the following sentences are true or false.

A. In a Gaussian mixture model, the log likelihood is concave.

B. We can maximize the likelihood of a mixture model using gradient 
descent.

C. EM is always guaranteed to find a global maximum

Ans: A: false,    B: true,     C: false

We use EM over GD because it is more efficient than GD.



Quiz: Which of the following  sentences are true.

A. GMMs are generative models

B. When you learn a GMM, you are estimating the density of the 

data.

C. GMMs can be used for clustering.

Ans: All are true
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Credit: Wikipedia

Hierarchical Clustering

Basic idea: build a “hierarchy”

•Want: arrangements from specific to general 

•One advantage: no need for k, number of clusters.

•Input: points.

•Output: a hierarchy (a binary tree)



HC: Agglomerative vs Divisive

Two ways to go:

•Agglomerative: bottom up. 

•Start: each point a cluster. 

•Progressively merge clusters 


•Divisive: top down

•Start: all points in one cluster. 

•Progressively split clusters



HC: Agglomerative Clustering Example

Agglomerative: Start: every point is its own cluster



HC: Agglomerative Clustering Example

Basic idea: build a “hierarchy”

•Get pair of clusters that are closest and merge
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HC: Agglomerative Clustering Example

Basic idea: build a “hierarchy”
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HC: Merging Criteria

Merge: use closest clusters. Define closest?

First define a distance between points                     . Then, 
define distance between clusters.


•Single-linkage


•Complete-linkage


•Average-linkage



We’ll merge using single-linkage

•1-dimensional vectors.

•Initial: all points are clusters

Single-linkage Example

1 2 4 5 7.25



Single-linkage Example

1 2 4 5 7.25

C1



Single-linkage Example

1 2 4 5 7.25

C1 C2



Single-linkage Example

C3

1 2 4 5 7.25

C1 C2



Single-linkage Example

1 2 4 5 7.25

C3

C1 C2

C4



We’ll merge using complete-linkage

•1-dimensional vectors.

•Initial: all points are clusters

Complete-linkage Example

1 2 4 5 7.25



Beginning is the same…

Complete-linkage Example

1 2 4 5 7.25

C1 C2



Now different from single linkage:

Complete-linkage Example

1 2 4 5 7.25

C1 C2

C3



Complete-linkage Example

1 2 4 5 7.25

C1 C2

C3

C4



Break & Quiz



Break & Quiz

Q 2.2: If we do hierarchical clustering on n points, the 
maximum depth of the resulting tree is


•A. 2

•B. log2 n


•C. n/2

•D. n-1
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Graph/proximity based clustering

•Recall: Graph G = (V,E) has vertex set V, edge set E.

•Edges can be weighted or unweighted

•Encode similarity


•Treat each data point as a node in a graph.

•Edges based on similarity of data points

•E.g. for Euclidean vectors! 
 
 

•But they don’t need to be in Euclidean space!



Graph-Based Clustering

Want: partition V into k groups

•   Implies a graph “cut”

• One idea: minimize the weight of the 

cut



Partition-Based Clustering

How do we compute these?


• Hard problem → heuristics

– Greedy algorithm


– “Spectral” approaches


• Spectral clustering approach:

– Adjacency matrix 



Partition-Based Clustering

• Spectral clustering approach:

– Adjacency matrix 

– Degree matrix



Spectral Clustering

• Spectral clustering approach:

– 1. Compute Laplacian L = D – A

(Important tool in graph theory)

Degree Matrix Adjacency Matrix Laplacian



Spectral Clustering

• Spectral clustering approach:

– 1. Compute Laplacian L = D – A

• 1a (optional): compute normalized Laplacian: 

       L = I – D1/2AD1/2,   or  L = I – D-1A

– 2. Compute k smallest eigenvectors of L

– 3. Set U to be the n x k matrix with u1, …, uk as columns. Take the n 

rows formed as points

– 4. Run k-means on the representations 



0.0
1

Why normalized Laplacian?

Want: partition V into V1 and V2


• Implies a graph “cut”

• One idea: minimize the weight of the 

cut

– Downside: might just cut of one node


– Need: “balanced” cut

0.0
1



Why Normalized Laplacian?

Want: partition V into V1 and V2


• Just minimizing weight is not always a good idea.

• We want balance!



Spectral Clustering

Credit: William Fleshman



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov, and Fred Sala 


