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Announcements

• Homework 4 due today; homework 5 released today. 

•👻 Happy Halloween! 🎃



Learning Outcomes

At the end of today’s lecture, you will be able to: 
1. Explain the four main types of clustering we 
consider in this course. 
2. Explain the use of principle component analysis 
(PCA) and how it finds a lower dimensional 
representation of data.
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•Clustering Review 
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•Spectral clustering 
•Graph Laplacian, algorithm, comparison to k-means 

•Principal Components Analysis 
•Definition, Algorithm, Interpretations, Analysis
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K-Means (Lloyd’s) Clustering

k-means is a type of partitional centroid-based clustering 
Algorithm: 
1. Randomly pick k cluster centers



K-Means Clustering: Algorithm

K-Means clustering 
2. Find closest center for each point



K-Means Clustering: Algorithm

K-Means clustering 
3. Update cluster centers by computing centroids



K-Means Clustering: Algorithm

K-Means clustering 
Repeat Steps 2 & 3 until convergence



HC: Agglomerative Clustering Example

Agglomerative: Start: every point is its own cluster
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•Get pair of clusters that are closest and merge
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HC: Merging Criteria

Merge: use closest clusters. Define closest? 

•Single-linkage 

•Complete-linkage 

•Average-linkage
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Graph/proximity based clustering

•Recall: Graph G = (V,E) has vertex set V, edge set E. 
• Edges can be weighted or unweighted 
• Encode similarity 

•Treat each data point as a node in a graph. 
•Edges based on similarity of data points 
•E.g. for Euclidean vectors: 
 
 

•But they don’t need to be in Euclidean space!



Graph-Based Clustering

Want: partition V into k groups 
•   Implies a graph “cut” 
• One idea: minimize the weight of the 

cut



Partition-Based Clustering

How do we compute these? 

• Hard problem → heuristics 
– Greedy algorithm 

– “Spectral” approaches 

• Spectral clustering approach: 
– Adjacency matrix 



Partition-Based Clustering

• Spectral clustering approach: 
– Adjacency matrix  
– Degree matrix



Spectral Clustering

• Spectral clustering approach: 
– 1. Compute Laplacian L = D – A 
(Important tool in graph theory)

Degree Matrix Adjacency Matrix Laplacian



Spectral Clustering
• Spectral clustering approach: 

– 1. Compute Laplacian L = D – A 
• 1a (optional): compute normalized Laplacian: 

       L = I – D-1/2AD-1/2,   or  L = I – D-1A 
– 2. Compute k smallest eigenvectors of L 
– 3. Set U to be the n x k matrix with eigenvectors u1, …, uk as 

columns. Take the n rows formed as points 
– 4. Run k-means on the representations 



0.0
1

Why normalized Laplacian?

Want: partition V into V1 and V2 

• Implies a graph “cut” 
• One idea: minimize the weight of the cut 

– Downside: might just cut off one node 

– Need: “balanced” cut

0.0
1



Why Normalized Laplacian?

Want: partition V into V1 and V2 

• Just minimizing weight is not always a good idea. 
• We want balance!



Spectral Clustering

Credit: William Fleshman



Break & Quiz



Break & Quiz

Q 2.1: You have seven 2-dimensional points. You run 3-means on it, with initial 
clusters 

Cluster centroids at the next iteration are? 

•A. C1: (4,4), C2: (2,2), C3: (7,7) 

•B. C1: (6,6), C2: (4,4), C3: (9,9) 

•C. C1: (2,2), C2: (0,0), C3: (5,5) 

•D. C1: (2,6), C2: (0,4), C3: (5,9)
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Break & Quiz

Q 2.2: If we do hierarchical clustering on n points, the 
maximum depth of the resulting tree is 

•A. 2 
•B. log n 
•C. n/2 
•D. n-1



Break & Quiz

Q 2.2: If we do hierarchical clustering on n points, the 
maximum depth of the resulting tree is 

•A. 2 
•B. log n 
•C. n/2 
•D. n-1



Outline

•Clustering Review 
•k-means, hierarchical 

•Spectral clustering 
•Graph Laplacian, algorithm, comparison to k-means 

•Principal Components Analysis 
•Definition, Algorithm, Interpretations, Analysis



High-Dimensional Data

•High-dimensions = lots of features 
•We’ve seen this repeatedly, but some examples: 
•Example: Document classification 

• Features per document = thousands of words/unigrams millions of 
bigrams,  contextual information 

•Example: Surveys - Netflix 
   480189 users x 17770 movies



Dealing with Dimensionality

•Goal: Discover hidden (potentially lower dimensional) 
structure in high dimensional datasets. 

•Example algorithms: PCA, Kernel PCA, ICA 
•Some uses: 

• Visualization   
• More efficient use of resources (e.g., time, memory, communication) 
• Noise removal (improving data quality) 
• Further processing by machine learning algorithms 

 



Principal Components Analysis

•Unsupervised technique for extracting variance structure 
from high dimensional datasets 
• And also reduces dimensionality 

•PCA: orthogonal projection / transformation of the data  
• Into a (possibly lower dimensional) subspace  
• So that the variance of the projected data is maximized. 

 



•The dimension of the ambient space (ie, Rd) might be much higher 
than the intrinsic data dimension 

•Question: Can we transform the features so that we only need to 
preserve one latent feature? 
• Or a few?  

 

PCA Intuition



PCA Intuition

•Some more visualizations 

•In case where data  lies on or near a low d-dimensional linear 
subspace, axes of this subspace are an effective 
representation of the data. 



PCA: Principal Components

•Principal Components (PCs) are orthogonal directions that 
capture most of the variance in the data. 

• First PC – direction of greatest variability in data. 
• Projection of data points along first PC discriminates data most 

along any one direction 

1s
t  PC



PCA: Principal Components and Projection

•How does dimensionality reduction work? From d dimensions to r 
dimensions: 

• Get  
• Orthogonal! 

• Want to represent each . 

• New representation of  is . 

•Maximizing variability is equivalent to minimizing reconstruction error 

•Obtain representation by projecting each x onto principle 
components.

v1, v2, . . . , vr ∈ ℝd

x ≈ α1v1 + α2v2 + . . . + αrvr

x [α1, α2, . . . , αr]



PCA Approach Overview

•Want unit vector directions (i.e., components) so that: 
• Projecting data maximizes variance 
•Specifically, for centered (i.e., mean zero) data: 

•Then transform  (how in 2 slides) and do this recursively 
• Get orthogonal directions

X

max
v

n

∑
i=1

⟨xi, v⟩2 = | |Xv | |2



PCA First Step

•First component, 

•Same as getting 

 



PCA Recursion

•Once we have k-1 components, how do we get the next? 

•Then do the same thing 

 

Deflation



PCA Interpretations

•The v’s are eigenvectors of XXT (Gram matrix) 
•We’ll see why in a second 

•XXT (proportional to) sample covariance matrix 
•When data is 0 mean! 
•I.e., PCA is eigendecomposition of sample covariance 

•Nested subspaces span(v1), span(v1,v2),…,



PCA Interpretations: First Component

•Two specific ways to think about the first component 
•Maximum variance direction  

• What we saw so far 

•Minimum reconstruction error  
• A direction so that projection yields minimum MSE in reconstruction 



PCA Interpretations: Equivalence

•Interpretation 1.  
Maximum variance direction  

•Interpretation 2.  
Minimum reconstruction error 

•Why are these equivalent? 
• Use Pythagorean theorem. 
• Maximizing blue segment is the same as minimizing the green

xi
v

v ⋅   xi



PCA Gram Matrix Interpretation

•Recall our first PC, maximized variance: 

•Constrained optimization 
• The usual approach: Lagrangian + KKT conditions

See appendix in “Pattern Recognition and Machine Learning” for intro to Lagrange multipliers.



•So…                                
•Means that v (the first PC) is an eigenvector of XXT  
•Its eigenvalue denotes the amount of variability captured 
along that dimension 

•PCs are just the eigenvectors… 
• How to find them? Eigendecomposition  

•Don’t need to keep all eigenvectors 
• Just the ones for largest eigenvalues

𝜆 

x1

x2 vT x1v Tx2

PCA Covariance Matrix Interpretation



PCA Dimensionality Reduction

•In high-dimensional problems, data sometimes lies near a 
linear subspace, as noise introduces small variability 

•Only keep data projections onto principal components with 
large eigenvalues  

•Can ignore the components of smaller significance.  
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Example of PCA on Face Images

•Given instances  

•Goal: model h that represents x with   
• lower-dim. feature vectors 
• preserving information 

•Example: Eigenfaces



Dimensionality Reduction: Setup

Example: Eigenfaces 

×= )1(
1α ×+ )1(

2α ×++ (1)
20  ... α

=α1
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20 ... α



Application: Image Compression

•Start with image; divide into 12x12 patches 

• I.E., 144-D vector 

• Original image:



Application: Image Compression

•Project to 6D, 

Compressed Original



Q2-2: Are these statements true or false? 
(A) The principal component with the largest eigenvalue maximizes the 
reconstruction error. 
(B) The dimension of original data representation is always higher than the 
dimension of transformed representation of PCA.

1. True, True  
2. True, False  
3. False, True 
4. False, False



Q2-2: Are these statements true or false? 
(A) The principal component with the largest eigenvalue maximizes the 
reconstruction error. 
(B) The dimension of the original data representation is always higher than 
the dimension of transformed representation of PCA.

1. True, True  
2. True, False  
3. False, True 
4. False, False

(A) The principal component with the largest eigenvalue 
captures the maximum amount of variability which is 
equivalent to minimum reconstruction error. 

(B) If the matrix  is full-rank, they can be of the 
same dimension.

𝑋𝑋𝑇



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov 


