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Announcements

•HW 5 due Thursday at 9:30am 
•Midterm evaluation follow-up



Graphical Models Motivation

•Still considering generative modeling (unsupervised 
learning). 

•Given a collection of variables: . 

•Want: model of . 
•Why? Make flexible predictions by computing 
posteriors. 

•Example: compute .

X1, X2, . . . , Xk

P(X1 = x1, X2 = x2, . . . , Xk = xk)

P(X1 = x1 |X2 = x2)
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Basics: Joint Distributions

•Joint distribution of 2 random variables X and Y 

•Or more variables. 

•If each of the k variables can take on m values then 
the joint distribution requires storing m^k values.



•Given a joint distribution 

•Compute the distribution of just one variable: 

•This is the “marginal” distribution.

Basics: Marginal Probability
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•Independence for a set of events 

for all possible choices of i1,…,ij with
. 

•Why useful? Dramatically reduces the complexity 
•Collapses joint into product of marginals 

•Note sometimes we have only pair-wise independence.

1 ≤ i1 < i2 < . . . < ij ≤ k

Independence
A1, . . . , AnP(Ai1, Ai2, . . . , Aij) = P(Ai1)P(Ai2)⋯P(Aij)



•For random variables, uncorrelated means 

Note: weaker condition than independence. 
•Independence implies uncorrelated (easy to see)

Uncorrelatedness

E[XY ] = ∑
x∈𝒳

∑
y∈𝒴

Pr(X = x, Y = y)xy

= ∑
x∈𝒳

∑
y∈𝒴

Pr(X = x) Pr(Y = y)xy

= ∑
x∈𝒳

Pr(X = x)x ∑
y∈𝒴

Pr(Y = y)y = E[X ]E[Y ]



Conditional Probability

•When we know something, 

•Conditional independence 
Credit: Devin Soni



Chain Rule (of Probability)

•Apply repeatedly,  

•Holds for any probability distribution over 
 

•Note: probability table is still big!  
•If some conditional independence, can factor! 
•Leads to probabilistic graphical models (this lecture)

A1, A2, . . . , An



Law of Total Probability

•Partition the sample space into disjoint B1, …, Bk 

•Then,



Bayesian Inference

•Bayes rule:  

•Under conditional independence



Random Vectors & Covariance

•Recall variance: 
•For a random vector  

• Note: size d x d. All variables are centered

Diagonals: Variance Covariance



Break & Quiz



Break & Quiz

50% of emails are spam. Software has been applied to filter 
spam. A certain brand of software claims that it can detect 99% 
of spam emails, and the probability for a false positive (a non-
spam email detected as spam) is 5%. Now if an email is detected 
as spam, then what is the probability that it is in fact a nonspam 
email?  

A. 5/104 
B. 95/100 
C. 1/100 
D. 1/2
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Bayesian Networks Example

•Consider the following 5 binary random variables: 
B = a burglary occurs at the house 
E = an earthquake occurs at the house 
A = the alarm goes off 
J  = John calls to report the alarm 
M = Mary calls to report the alarm 

•Suppose the Burglary or Earthquake can trigger Alarm, and 
Alarm can trigger John’s call or Mary’s call 

•Now we want to answer queries like what is  P(B | M, J) ?  



Bayesian Networks Example

•Set up a network that shows how random variables influence 
others:

Burglary Earthquake

Alarm

Burglary Earthquake

Alarm

John Calls Mary Calls
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Bayesian Networks Example

•Set up a network that shows how random variables influence 
others:

Burglary Earthquake

Alarm
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Bayesian Networks: Definition

•A BN consists of a Directed Acyclic Graph (DAG) and a set of 
conditional probability distributions (CPD) 

• The DAG: 
• each node denotes a random variable 
• each edge from X to Y  typically represents a causal link from X to Y 
• formally: each variable X is independent of its non-descendants given its 

parents 

• Each CPD: represents P(X | Parents(X) )
B E

A

J M



Bayesian Networks: Parameter Counting

• Parameter reduction: standard representation of the joint 
distribution for Alarm example has 25 -1 = 31 parameters 

• the BN representation of this distribution has 10 parameters

Burglary Earthquake

Alarm

JohnCalls MaryCalls
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Inference in Bayesian Networks

Given: values for some variables in the network (evidence), 
and a set of query variables 

Inference: compute the posterior distribution over the query 
variables 

•Variables that are neither evidence variables nor query 
variables are hidden variables 

•The BN representation is flexible enough that any set can be 
the evidence variables and any set can be the query variables



Inference by Enumeration

•Let a denote A=true, and ¬a denote A=false
•Suppose we’re given the query: P(b | j, m)
     “probability the house is being burglarized given that John 
and Mary both called” 

•From the graph structure, first compute the joint probability:

A

B E

MJ

sum over possible 
values for E and A
variables (e, ¬e, a, ¬a)

∑∑
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Inference by Enumeration

B E P(A)

t t 0.95

t f 0.94

f t 0.29

f f 0.001
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Inference by Enumeration

•Next do equivalent calculation for P(¬b,  j, m)
and determine P(b | j, m)

So: exact method, but can be intractably hard. 
•Efficient for small BNs 
•Approximate inference sometimes available
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Learning Bayes Nets

•Problem 1 (parameter learning): given a set of training 
instances and the graph structure of a Bayes Net. 

•Goal: infer the parameters of the CPDs

B E A J M

f f f t f
f t f f f
f f t f t

…

Burglary Earthquak
e

Alarm

JohnCalls MaryCalls



Learning Bayes Nets

•Problem 2 (structure learning): given a set of training 
instances

•Goal: infer the graph structure (and then possibly also the 
parameters of the CPDs)

B E A J M

f f f t f
f t f f f
f f t f t

…



Parameter Learning: MLE

•Goal: infer the parameters of the CPDs 
•As usual, can use MLE

independent parameter learning 
problem for each CPD
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Parameter Learning: MLE Example

•Goal: infer the parameters of the CPDs 
•Consider estimating the CPD parameters for B and J in the 
alarm network given the following data set

B E A J M
f f f t f
f t f f f
f f f t t
t f f f t
f f t t f
f f t f t
f f t t t
f f t t t

875.0
8
7)(

125.0
8
1)(

==¬

==

bP

bP

5.0
4
2)|(

5.0
4
2)|(

25.0
4
1)|(

75.0
4
3)|(

==¬¬

==¬

==¬

==

ajP

ajP

ajP

ajP
A

B E

MJ



Parameter Learning: MLE Example

•Goal: infer the parameters of the CPDs 
•Consider estimating the CPD parameters for B and J in the 
alarm network given the following data set

B E A J M
f f f t f
f t f f f
f f f t t
f f f f t
f f t t f
f f t f t
f f t t t
f f t t t
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MJ
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Parameter Learning: Laplace Smoothing

•Instead of estimating parameters strictly from the data, we 
could start with some prior belief for each 

•For example, we could use Laplace estimates 

where nv represents the number of occurrences of value v
•Recall: we did this for Naïve Bayes
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Break & Quiz



Q2-1: Consider a case with 8 binary random variables, how many 
parameters does a BN with the following graph structure have?

1. 12 
2. 14 
3. 16 
4. 26



Q2-1: Consider a case with 8 binary random variables, how many 
parameters does a BN with the following graph structure have?

1. 12 
2. 14 
3. 16 
4. 26

So we have 16 parameters in total.

1 1

4

2 2

222
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Undirected Graphical Models

•Still want to encode conditional independence, but not in a 
causal way (ie, no parents, direction)
• Why? Allows for modeling other distributions that Bayes nets can’t, 

allows for other algorithms 

•Graph directly encodes a type of conditional 
independence. If nodes i,j are not neighbors, 



Markov Random Fields

•A particularly popular kind of undirected model. As above, 
can describe in terms of: 
• 1. Conditional independence: 

• 2. Factorization. (Clique: maximal fully-connected subgraphs) 
• Bayes nets: factorize over CPTs with parents; MRFs: factorize over cliques

Potential functionsPartition function



Ising Models

•Ising models: a particular kind of MRF usually written in 
exponential form 
• Popular in statistical physics 
• Idea: pairwise interactions (biggest cliques of size 2) 

•Challenges: 
• Compute partition function 
• Perform inference/marginalization

Khudier and Fawaz



Ising Model Example

https://www.cs.cmu.edu/~epxing/Class/10708-17/notes-17/10708-scribe-lecture3.pdf
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Structure Learning

•Generally a hard problem, many approaches.  
• Exponentially (or worse) many structures in # variables 
• Can either use heuristics or restrict to some tractable subset of 

networks. Ex: trees  

•Chow-Liu Algorithm 
• Learns a BN with a tree structure that maximizes the likelihood of 

the training data 

1. Compute weight I(Xi, Xj) of each possible edge (Xi, Xj) 
2. Find maximum weight spanning tree (MST)



Chow-Liu: Computing weights

•  Use mutual information to calculate edge weights 
 
 
 
 
 

•The probabilities are calculated empirically using data 
•Recall information theory from decision trees!

∑ ∑
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Chow-Liu: Finding MST

•  Many algorithms for calculating MST (e.g Kruskal’s, Prim’s) 

•Kruskal’s algorithm 
 
 
 
 

given: graph with vertices V and edges E 

Enew  ← { } 
for each (u, v) in E ordered by weight (from high to low) 
{ 
 remove (u, v) from E  
 if adding (u, v) to Enew does not create a cycle 

  add (u, v) to  Enew

} 
return V and Enew which represent an MST 
   



Chow-Liu: Example
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•  First, calculate empirical mutual information for each pair and 
calculate edge weights. 

• Graph is usually fully connected (using a non-complete graph for clarity) 



Chow-Liu: Example (cont’d)
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Chow-Liu: Example (cont’d)
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Chow-Liu Algorithm

1. Finding tree structures is a ‘second order’ approximation 
• First order: product of marginals 
• Second order: allow conditioning on one variable 

2. To assign directions in a Bayes’ network, pick a root and making 
everything directed from root (may require domain expertise)
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Thanks Everyone!
Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov, Fei-Fei Li, Justin Johnson, Serena Yeung, Pieter Abbeel, Peter Chen, Jonathan 
Ho, Aravind Srinivas


