

CS 760: Machine Learning Graphical Models - II

Josiah Hanna

University of Wisconsin-Madison
November 9, 2023

Announcements

-Homework 5 due today; homework 6 due Nov 21. -No class on Tuesday, Nov 21.

Outline

-Bayesian Networks Review

-Definition, examples, inference, learning
-Structure learning
-Chow-Liu Algorithm
-D-separation

Outline

-Bayesian Networks Review
-Definition, examples, inference, learning
-Structure learning
-Chow-Liu Algorithm
-D-separation

Bayesian Networks Example

- Set up a network that shows how random variables influence others:

Bayesian Networks Example

- Let's construct a Bayes Network to help us understand a pandemic.

Bayesian Networks Example

-Consider the following 5 binary random variables:
$B=\mathrm{a}$ burglary occurs at the house
$E=$ an earthquake occurs at the house
$A=$ the alarm goes off
$J=$ John calls to report the alarm
$M=$ Mary calls to report the alarm

- Suppose the Burglary or Earthquake can trigger Alarm, and Alarm can trigger John's call or Mary's call
- Now we want to answer queries like what is $P(B \mid M, J)$?

Bayesian Networks Example

- Set up a network that shows how random variables influence others:

Bayesian Networks Example

- Set up a network that shows how random variables influence others:

Bayesian Networks Example

- Set up a network that shows how random variables influence others:

Bayesian Networks Example

- Set up a network that shows how random variables influence others:

Bayesian Networks Example

- Set up a network that shows how random variables influence others:

$P(J \mid A)$

$P(J \mid A)$		
A	t	f
t	0.9	0.1
f	0.05	0.95

Bayesian Networks Example

- Set up a network that shows how random variables influence others:

$P(J \mid A)$

$P(J / A)$
A
t
f
:---:
f

Bayesian Networks: Definition

- A BN consists of a Directed Acyclic Graph (DAG) and a set of conditional probability distributions (CPD)
-The DAG:
- each node denotes a random variable
- each edge from X to Y typically represents a causal link from X to Y
- formally: each variable X is independent of its non-descendants given its parents
- Each CPD: represents $P(X \mid$ Parents $(X))$

$$
p\left(x_{1}, \ldots, x_{d}\right)=\prod_{v \in V} p\left(x_{v} \mid x_{\mathrm{pa}(v)}\right)
$$

Bayesian Networks: Parameter Counting

- Parameter reduction: standard representation of the joint distribution for Alarm example has $2^{5}-1=31$ parameters
- the BN representation of this distribution has 10 parameters

Inference in Bayesian Networks

Given: values for some variables in the network (evidence), and a set of query variables
Inference: compute the posterior distribution over the query variables

- Variables that are neither evidence variables nor query variables are hidden variables
-The BN representation is flexible enough that any set can be the evidence variables and any set can be the query variables

Inference by Enumeration

- Let a denote $\boldsymbol{A}=$ true, and $\neg a$ denote $\boldsymbol{A}=$ false
- Suppose we're given the query: $P(b \mid j, m)$
"probability the house is being burglarized given that John and Mary both called"
-From the graph structure, first compute the joint probability:

Inference by Enumeration

Inference by Enumeration

- Next do equivalent calculation for $P(\neg b, j, m)$ and determine $P(b \mid j, m)$

$$
P(b \mid j, m)=\frac{P(b, j, m)}{P(j, m)}=\frac{P(b, j, m)}{P(b, j, m)+P(\neg b, j, m)}
$$

So: exact method, but can be intractably hard.
-Efficient for small BNs
-Approximate inference sometimes available.

- Example: Markov chain Monte Carlo (MCMC) approaches.

Learning Bayes Nets

-Problem 1 (parameter learning): given a set of training instances and the graph structure of a Bayes Net.

B	E	A	J	M
f	f	f	t	f
f	t	f	f	f
f	f	t	f	t
		\ldots		

-Goal: infer the parameters of the CPDs

Learning Bayes Nets

- Problem 2 (structure learning): given a set of training instances

B	E	A	J	M
f	f	f	t	f
f	t	f	f	f
f	f	t	f	t
		\ldots		

- Goal: infer the graph structure (and then possibly also the parameters of the CPDs)

Parameter Learning: MLE

-Goal: infer the parameters of the CPDs
-As usual, can use maximum likelihood estimation.

Parameter Learning: MLE Example

-Goal: infer the parameters of the CPDs
-Consider estimating the CPD parameters for B and J in the alarm network given the following data set

B	E	A	J	M
f	f	f	t	f
f	t	f	f	f
f	f	f	t	t
t	f	f	f	t
f	f	t	t	f
f	f	t	f	t
f	f	t	t	t
f	f	t	t	t

$$
\begin{aligned}
& P(b)=\frac{1}{8}=0.125 \\
& P(\neg b)=\frac{7}{8}=0.875 \\
& P(j \mid a)=\frac{3}{4}=0.75 \\
& P(\neg j \mid a)=\frac{1}{4}=0.25 \\
& P(j \mid \neg a)=\frac{2}{4}=0.5 \\
& P(\neg j \mid \neg a)=\frac{2}{4}=0.5
\end{aligned}
$$

Parameter Learning: MLE Example

-Goal: infer the parameters of the CPDs
-Consider estimating the CPD parameters for B and J in the alarm network given the following data set

Parameter Learning: Laplace Smoothing

- Instead of estimating parameters strictly from the data, we could start with some prior belief for each
-For example, we could use Laplace estimates

$$
P(X=x)={\frac{n_{x}+1}{\sum_{v \in \operatorname{vancs}(x)}\left(n_{y}+1\right)}}_{\text {pseudocounts }}
$$

where n_{v} represents the number of occurrences of value v
-Recall: we did this for Naïve Bayes

Break \& Quiz

Quiz

Can the Naïve Bayes' model be represented as a Bayesian network?
If no, explain why. If yes, draw the network.

Ans: Yes

Undirected Graphical Models

- Still want to encode conditional independence, but not in a causal way (ie, no parents, direction)
- Why? Allows for modeling other distributions that Bayes nets can't, allows for other algorithms
- Graph directly encodes a type of conditional independence. If nodes i,j are not neighbors,

$$
X_{i} \perp X_{j} \mid X_{V \backslash\{i, j\}}
$$

Outline

-Bayesian Networks Review

-Definition, examples, inference, learning
-Structure learning
-Chow-Liu Algorithm
-D-separation

Structure Learning

-Generally a hard problem, many approaches.

- Exponentially (or worse) many structures in \# variables
- Can either use heuristics or restrict to some tractable subset of networks. Ex: trees
-Chow-Liu Algorithm
- Learns a BN with a tree structure that maximizes the likelihood of the training data

1. Compute weight $I\left(X_{i}, X_{j}\right)$ of each possible edge $\left(X_{i}, X_{j}\right)$
2. Find maximum weight spanning tree (MST)

Chow-Liu: Computing weights

- Use mutual information to calculate edge weights

$$
I(X, Y)=\sum_{x \in \operatorname{vantus}(X)} \sum_{y \in \operatorname{values}(Y)} P(x, y) \log _{2} \frac{P(x, y)}{P(x) P(y)}
$$

-The probabilities are calculated empirically using data.
-Recall decision trees: how much information does knowing Y give us about the value of X.

Chow-Liu: Finding MST

- Many algorithms for calculating MST (e.g Kruskal's, Prim's)
- Kruskal's algorithm

```
given: graph with vertices }V\mathrm{ and edges }
E new
for each (u,v) in E ordered by weight (from high to low)
{
    remove (u,v) from E
    if adding (u,v) to E E new
        add (u,v) to E E new
}
return V and }\mp@subsup{E}{\mathrm{ new }}{}\mathrm{ which represent an MST
```


Chow-Liu: Example

- First, calculate empirical mutual information for each pair and calculate edge weights.
- Graph is usually fully connected (using a non-complete graph for clarity)

Chow-Liu: Example (cont’d)

iii.

ii.

iv.

Chow-Liu: Example (cont'd)

Chow-Liu Algorithm

1. Finding tree structures is a 'second order' approximation

- First order: product of marginals

$$
\begin{aligned}
& P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i}\right) \\
& \text { variable }
\end{aligned}
$$

- Second order: allow conditioning on one variable

$$
P\left(X_{1}, \ldots, X_{n}\right)=P\left(X_{1}\right) \prod_{i=2}^{n} P\left(X_{i} \mid X_{i-1}\right)
$$

2. To assign directions in a Bayes' network, pick a root and making everything directed from root (may require domain expertise)

Outline

-Bayesian Networks Review

-Definition, examples, inference, learning
-Structure learning
-Chow-Liu Algorithm
-D-separation

D-separation in Bayesian Networks

- Which of the following are true?

1. $\mathrm{J} \Perp \mathrm{M}$
2. $J \Perp M \mid A$
3. $\mathrm{B} \Perp \mathrm{J}$
4. $B \Perp J \mid A$
5. $B \Perp E$
6. $B \Perp E \mid A$

D-separation in Bayesian Networks

- Still want to encode conditional independence, but not in a,

- Which of the following are true?

1. J $\Perp \mathrm{M}$ (False)
2. J $\Perp \mathrm{M} \mid \mathrm{A}$ (True)
3. $B \Perp J$ (False)
4. $B \Perp J \mid A(T r u e)$
5. $B \Perp E$ (True)
6. $B \Perp E \mid A(F a l s e)$

D-separation in Bayesian Networks

-D-separation: A formal way to answer questions of conditional independence:
$\bullet E . g . J \Perp M|A, \quad J \Perp E| B, M$ etc.
-Triples: Any 3 connected vertices

- We say that a triple is active if
-(Causal chain): $X \rightarrow Y \rightarrow Z$
(Y is unobserved)

-(Common cause): $X \leftarrow Y \rightarrow Z \quad$ (Y is unobserved)
-(Common effect): $X \rightarrow Y \in Z \quad$ (Y or any descendent of Y is observed)
- An (undirected) path is active if all of it's triples are active.

D-separation in Bayesian Networks

-Goal: Answer queries of the form: $A \Perp B \mid\{C, D, \ldots\}$
-D-separation Algorithm:

- For all (undirected) paths from A to B
- Check if path is active (i.e all triples are active)
- Return "A $\Perp B \mid\{C, D, \ldots\}$ is not guaranteed"
- If all paths are inactive:
- Return "A $\Perp B \mid\{C, D, \ldots\}$ is true"

D-separation Examples

- Are the following conditional independences guaranteed?

1. $B \Perp M$
2. $B \Perp M \mid A_{3}$
3. $E \Perp B$
4. $E \Perp B \mid A_{1}$
5. $E \Perp B \mid A_{2}$
6. $E \Perp B \mid J$
7. $A_{1} \Perp A_{2}$
8. $A_{1} \Perp A_{2} \mid E$
9. $A_{2} \Perp A_{3} \mid B$
10. $\mathrm{J} \Perp \mathrm{M}$
11. $J \Perp M \mid A_{3}$

D-separation Examples

- Are the following conditional independences guaranteed?

1. $B \Perp M$ (False)
2. $B \Perp M \mid A_{3}$ (True)
3. $E \Perp B$ (True)
4. $E \Perp B \mid A_{1}$ (False)
5. $E \Perp B \mid A_{2}$ (True)
6. $E \Perp B \mid J$ (False)
7. $A_{1} \Perp A_{2}$ (False)
8. $A_{1} \Perp A_{2} \mid E$ (False)
9. $A_{2} \Perp A_{3} \mid B$ (True)
10. J $\Perp \mathrm{M}$ (False)
11. $J \Perp M \mid A_{3}$ (True)

Break \& Quiz

Quiz

True or False:

Bayesian networks can be used for unsupervised learning only. They cannot be used for supervised learning.

Ans: False

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov, Fei-Fei Li, Justin Johnson, Serena Yeung, Pieter Abbeel, Peter Chen, Jonathan Ho, Aravind Srinivas, and Fred Sala

