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Announcements

•Homework 5 due today; homework 6 due Nov 21. 
•No class on Tuesday, Nov 21.
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•Bayesian Networks Review 
•Definition, examples, inference, learning 

•Structure learning 
•Chow-Liu Algorithm 

•D-separation
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Bayesian Networks Example

•Set up a network that shows how random variables influence 
others:
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Bayesian Networks Example

•Let’s construct a Bayes Network to help us understand a 
pandemic.



Bayesian Networks Example

•Consider the following 5 binary random variables: 
B = a burglary occurs at the house 
E = an earthquake occurs at the house 
A = the alarm goes off 
J  = John calls to report the alarm 
M = Mary calls to report the alarm 

•Suppose the Burglary or Earthquake can trigger Alarm, and 
Alarm can trigger John’s call or Mary’s call 

•Now we want to answer queries like what is  P(B | M, J) ?  
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Bayesian Networks Example

•Set up a network that shows how random variables influence 
others:

Burglary Earthquake

Alarm
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Bayesian Networks: Definition

•A BN consists of a Directed Acyclic Graph (DAG) and a set of 
conditional probability distributions (CPD) 

• The DAG: 
• each node denotes a random variable 
• each edge from X to Y  typically represents a causal link from X to Y 
• formally: each variable X is independent of its non-descendants given its 

parents 

• Each CPD: represents P(X | Parents(X) )
B E

A

J M



Bayesian Networks: Parameter Counting

• Parameter reduction: standard representation of the joint 
distribution for Alarm example has 25 -1 = 31 parameters 

• the BN representation of this distribution has 10 parameters
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Inference in Bayesian Networks

Given: values for some variables in the network (evidence), 
and a set of query variables 

Inference: compute the posterior distribution over the query 
variables 

•Variables that are neither evidence variables nor query 
variables are hidden variables 

•The BN representation is flexible enough that any set can be 
the evidence variables and any set can be the query variables



Inference by Enumeration

•Let a denote A=true, and ¬a denote A=false
•Suppose we’re given the query: P(b | j, m)
     “probability the house is being burglarized given that John 
and Mary both called” 

•From the graph structure, first compute the joint probability:
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Inference by Enumeration
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Inference by Enumeration

•Next do equivalent calculation for P(¬b,  j, m)
and determine P(b | j, m)

So: exact method, but can be intractably hard. 
•Efficient for small BNs 
•Approximate inference sometimes available. 

•Example: Markov chain Monte Carlo (MCMC) approaches.
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Learning Bayes Nets

•Problem 1 (parameter learning): given a set of training 
instances and the graph structure of a Bayes Net. 

•Goal: infer the parameters of the CPDs

B E A J M
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Learning Bayes Nets

•Problem 2 (structure learning): given a set of training 
instances

•Goal: infer the graph structure (and then possibly also the 
parameters of the CPDs)

B E A J M

f f f t f
f t f f f
f f t f t

…



Parameter Learning: MLE

•Goal: infer the parameters of the CPDs 
•As usual, can use maximum likelihood estimation.

independent parameter learning 
problem for each CPD

Probabilities depend on θ

Data Graph
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Parameter Learning: MLE Example

•Goal: infer the parameters of the CPDs 
•Consider estimating the CPD parameters for B and J in the 
alarm network given the following data set
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Parameter Learning: MLE Example

•Goal: infer the parameters of the CPDs 
•Consider estimating the CPD parameters for B and J in the 
alarm network given the following data set
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Parameter Learning: Laplace Smoothing

•Instead of estimating parameters strictly from the data, we 
could start with some prior belief for each 

•For example, we could use Laplace estimates 

where nv represents the number of occurrences of value v
•Recall: we did this for Naïve Bayes
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Break & Quiz



Quiz

Can the Naïve Bayes’ model be represented as a Bayesian 
network? 
If no, explain why. If yes, draw the network. 

Ans: Yes



Undirected Graphical Models

•Still want to encode conditional independence, but not in a 
causal way (ie, no parents, direction)
• Why? Allows for modeling other distributions that Bayes nets can’t, 

allows for other algorithms 

•Graph directly encodes a type of conditional 
independence. If nodes i,j are not neighbors, 
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Structure Learning

•Generally a hard problem, many approaches.  
• Exponentially (or worse) many structures in # variables 
• Can either use heuristics or restrict to some tractable subset of 

networks. Ex: trees  

•Chow-Liu Algorithm 
• Learns a BN with a tree structure that maximizes the likelihood of 

the training data 

1. Compute weight I(Xi, Xj) of each possible edge (Xi, Xj) 
2. Find maximum weight spanning tree (MST)



Chow-Liu: Computing weights

•  Use mutual information to calculate edge weights 
 
 
 
 
 

•The probabilities are calculated empirically using data. 
•Recall decision trees: how much information does knowing 
Y give us about the value of X.
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Chow-Liu: Finding MST

•  Many algorithms for calculating MST (e.g Kruskal’s, Prim’s) 

•Kruskal’s algorithm 
 
 
 
 

given: graph with vertices V and edges E 

Enew  ← { } 
for each (u, v) in E ordered by weight (from high to low) 
{ 
 remove (u, v) from E  
 if adding (u, v) to Enew does not create a cycle 

  add (u, v) to  Enew

} 
return V and Enew which represent an MST 
   



Chow-Liu: Example
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•  First, calculate empirical mutual information for each pair and 
calculate edge weights. 

• Graph is usually fully connected (using a non-complete graph for clarity) 



Chow-Liu: Example (cont’d)
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Chow-Liu: Example (cont’d)
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Chow-Liu Algorithm

1. Finding tree structures is a ‘second order’ approximation 
• First order: product of marginals 
• Second order: allow conditioning on one variable 

2. To assign directions in a Bayes’ network, pick a root and making 
everything directed from root (may require domain expertise)
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D-separation in Bayesian Networks

A

B E

MJ

•  Which of the following are true? 
1. J ⫫ M   
2. J ⫫ M  | A 
3. B ⫫ J   
4. B ⫫ J   | A   
5. B ⫫ E 
6. B ⫫ E  |  A



D-separation in Bayesian Networks

•Still want to encode conditional independence, but not in a, 

A

B E

MJ

•  Which of the following are true? 
1. J ⫫ M   (False) 
2. J ⫫ M  | A  (True)                
3. B ⫫ J  (False) 
4. B ⫫ J   | A  (True) 
5. B ⫫ E   (True) 
6. B ⫫ E  |  A (False)



D-separation in Bayesian Networks

•D-separation: A formal way to answer questions of 
conditional independence: 
• E.g. J ⫫ M  | A,       J ⫫ E  | B, M  etc.

A

B E

M

•Triples: Any 3 connected vertices 
•  We say that a triple is active if 

• (Causal chain):  X ➔ Y ➔ Z          (Y is unobserved) 
• (Common cause): X  Y ➔ Z      (Y is unobserved) 
• (Common effect): X ➔ Y  Z      (Y or any descendent of Y is observed) 

•An (undirected) path is active if all of it’s triples are active.  

J



D-separation in Bayesian Networks

•Goal: Answer queries of the form:   A ⫫ B | {C, D, …} 
•D-separation Algorithm: 

• For all (undirected) paths from A to B 
• Check if path is active (i.e all triples are active) 

• Return “A ⫫ B | {C, D, …} is not guaranteed” 

• If all paths are inactive: 
• Return “A ⫫ B | {C, D, …} is true”



D-separation Examples

A1

E B

M

•  Are the following conditional independences guaranteed? 
1. B ⫫ M 
2. B ⫫ M | A3 
3. E ⫫ B    
4. E ⫫ B | A1   
5. E ⫫ B | A2 
6. E ⫫ B  |  J 
7. A1 ⫫ A2 
8. A1 ⫫ A2  | E 
9. A2 ⫫ A3 | B 
10.  J ⫫ M 
11.  J ⫫ M | A3 

A2 A3

J



D-separation Examples
•  Are the following conditional independences guaranteed? 

1. B ⫫ M   (False) 
2. B ⫫ M | A3  (True)                
3. E ⫫ B   (True)   
4. E ⫫ B | A1  (False) 

5. E ⫫ B | A2  (True) 
6. E ⫫ B  |  J (False) 
7. A1 ⫫ A2  (False) 
8. A1 ⫫ A2  | E  (False) 
9. A2 ⫫ A3 | B  (True) 
10.  J ⫫ M    (False) 
11.  J ⫫ M | A3  (True) 

A1

E B

M

A2 A3

J



Break & Quiz



Quiz

A

B E

MJ

True or False:  
Bayesian networks can be used for unsupervised 
learning only. They cannot be used for supervised 
learning.

Ans: False



Thanks Everyone!
Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov, Fei-Fei Li, Justin Johnson, Serena Yeung, Pieter Abbeel, Peter Chen, Jonathan 
Ho, Aravind Srinivas, and Fred Sala


