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Announcements

• Enrollment:
• Waitlist is beginning to clear. Email me Thursday if you’re still on it 

AND have a reason for additional priority.
• It will be offered next semester if you don’t get in. 

• Recordings:
• Available on Canvas. Disclaimer: No guarantee of availability. May not 

capture slide annotations.
• Background Knowledge:

• Please look at homework 1 before add/drop deadline.
• Please take background survey on Piazza.

• Homework 1 is due at 9:30 AM on Tuesday, September 19.
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Office Hours

• My office hours are Tuesdays from 11 — 12pm in CS 5391.
• Or by appointment.
• I will meet students in the hall after lecture at 10:45 for quick 

questions and then walk back to my office.
• If you need a longer discussion, please wait to either walk with me 

or meet me at my office.
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Today’s Learning Outcomes

•After today’s lecture:
•You will be able to explain the key aspects of a 
supervised learning problem.

•Provide examples of unsupervised learning 
problems and explain why these are not supervised 
learning problems.

•Explain key challenges of reinforcement learning 
problems.
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•Supervised learning concepts 
•Features, models, training, other terminology 

•Unsupervised learning concepts 
•  Clustering, anomaly detection, dimensionality reduction 

•Reinforcement learning concepts 
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Review: ML Overview: Definition

What is machine learning?

“A computer program is said to learn from experience E with respect to 
some class of tasks T and performance measure P, if its performance at 
tasks in T as measured by P, improves with experience E.” Machine 
Learning, Tom Mitchell, 1997

learning
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Supervised Learning
•Example: Image classification
•Recall Task/Performance measure/Experience definition

• Task: distinguish indoor vs outdoor
• Performance measure: probability of misclassifying
• Experience: labeled examples

indoor
outdoor
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Unsupervised Learning
•Example: Clustering

• Task: produce distinct clusters for a set of data
• Performance measure: closeness to underlying structure
• Experience: available datapoints
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Reinforcement Learning
•Agent interacting with the world; gets rewards for actions
•Goal: learn to perform some activity
•Workflow:

• Create an environment, reward, agent 
• Train: modify policy (mapping from environment states to actions) 

to maximize rewards.
• Deploy in new environment 
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ML Overview: Flavors

Reinforcement Learning
•Example: Controlling aircraft

• Task: keep the aircraft in the air, steer towards a desired goal
• Performance measure: reward for reaching goal quickly
• Experience: data (state/action/reward) from previous flights
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Q1-1: Which of the following is generally NOT a supervised 
learning task?

1. Predicting house prices from past home 
sales. 

2. Email spam detection 
3. Handwriting recognition 
4. Eigenvalue calculation

Eigenvalue 
calculation is a 
mathematical 
problem, and 
we do not have 
any labels for 
this problem.
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Supervised Learning

•Can I eat this?

•Safe or poisonous?

• Never seen it before

•How to decide?
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Supervised Learning: Formal Setup

Problem setting
• Set of possible instances 

• Unknown target function

• Set of models (a.k.a. hypotheses)

Given:
• Training set of instances for unknown target function f,

Goal: model h that best approximates f
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•Examples:
• Input space: feature vectors

• Output space: 
• Binary classification
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•Need a way to represent instance information:

•For each instance, store features as a vector. 

• What kinds of features can we have?

Input Space: Feature Vectors
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Input Space: Feature Types

•nominal (including Boolean) 
• no ordering among values (e.g. animal ∈  {dog, cat, fish}) 

•ordinal 
• values of the feature are totally ordered (e.g. size  ∈  {small, medium, large}) 
  

•numeric (continuous) 
height  ∈  [0, 100] inches

•hierarchical 
• possible values are partially ordered in a hierarchy, e.g. shape 

closed

polygon continuous

trianglesquare circle ellipse



Input Space: Features Example

cap-shape: bell=b,conical=c,convex=x,flat=f, knobbed=k,sunken=s  
cap-surface: fibrous=f,grooves=g,scaly=y,smooth=s  
cap-color: brown=n,buff=b,cinnamon=c,gray=g,green=r, pink=p,purple=u,red=e,white=w,yellow=y  
bruises?: bruises=t,no=f  
odor: almond=a,anise=l,creosote=c,fishy=y,foul=f, musty=m,none=n,pungent=p,spicy=s  
gill-attachment: attached=a,descending=d,free=f,notched=n  
gill-spacing: close=c,crowded=w,distant=d  
gill-size: broad=b,narrow=n  
gill-color: black=k,brown=n,buff=b,chocolate=h,gray=g, green=r,orange=o,pink=p,purple=u,red=e, white=w,yellow=y  
stalk-shape: enlarging=e,tapering=t  
stalk-root: bulbous=b,club=c,cup=u,equal=e, rhizomorphs=z,rooted=r,missing=?  
stalk-surface-above-ring: fibrous=f,scaly=y,silky=k,smooth=s  
stalk-surface-below-ring: fibrous=f,scaly=y,silky=k,smooth=s  
stalk-color-above-ring: brown=n,buff=b,cinnamon=c,gray=g,orange=o, pink=p,red=e,white=w,yellow=y  
stalk-color-below-ring: brown=n,buff=b,cinnamon=c,gray=g,orange=o, pink=p,red=e,white=w,yellow=y  
veil-type: partial=p,universal=u  
veil-color: brown=n,orange=o,white=w,yellow=y  
ring-number: none=n,one=o,two=t  
ring-type: cobwebby=c,evanescent=e,flaring=f,large=l, none=n,pendant=p,sheathing=s,zone=z  
spore-print-color: black=k,brown=n,buff=b,chocolate=h,green=r, orange=o,purple=u,white=w,yellow=y  
population: abundant=a,clustered=c,numerous=n, scattered=s,several=v,solitary=y  
habitat: grasses=g,leaves=l,meadows=m,paths=p, urban=u,waste=w,woods=d 

sunken is one possible value 
of the cap-shape feature

Mushroom features (UCI Repository)
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Input Space: Feature Spaces

•If all features are numeric, we can think of each instance as a 
point in a d-dimensional Euclidean feature space where d is 
the number of features

•Example: optical properties of 
oceans in three spectral bands 
[Traykovski and Sosik, Ocean Optics XIV Conference 
Proceedings, 1998]
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Output space: Classification vs. Regression

Choices of       have special names:
•Discrete: “classification”. The elements of        are classes 

• Note: binary classification is special case when there are two classes.

•Continuous: “regression”
• Example: linear regression

•There are other types…
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Hypothesis class: Linear Functions

•Example class of models: linear models

•How many linear functions are there?
• Can any function be fit by a linear model?

Parameters (weights) Features
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Hypothesis class: Other Examples

Example classes of models: neural networks

Feedforward network
•Each layer: 

• Linear transformation
• Non-linearity

• What are the parameters here?
Wikipedia



Back to Formal Setup

Problem setting 
• Set of possible instances  
• Unknown target function 
• Set of models (a.k.a. hypotheses) 

Get 
• Training set of instances for unknown target function f, 

Goal: model h that best approximates f
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Supervised Learning: Training

Goal: find model h that best approximates f

•One way: empirical risk minimization (ERM)

Model prediction

Loss function: how far is the 
prediction from the label?

Hypothesis Class
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Supervised Learning: Predicting

Now that we have our learned model, we can use it for 
predictions.

... foul,  false, brown,  fibrous, bell,=x

safe or poisonous
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Recall supervised learning workflow

•  Collect a set of examples {data, labels}: training set 

•“Train” a model to match these examples 
•  E.g. Choose a hypothesis class and perform ERM 

 
 
 

• “Test” it on new data

Model prediction

Loss functionHypothesis Class
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From linear to polynomial regression

Another class of models: polynomials:

•We can get a perfect fit by setting d to be very large.
• E.g. In 1D, set d = n-1

•So, are we done?
• How sensitive to noise? 
• How will they extrapolate?
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Generalization

Fitting data isn’t the only task, we want to generalize.
•Apply learned model to unseen data:

• Underlying data distribution:                             

•Can study generalization either theoretically or empirically.
• For theory: need assumptions, ie, training instances are iid
• Not always the case! 

• Sequential data



Break & Quiz



Q2-1: Which of the following is a NOMINAL feature as 
introduced in the lecture?

1. Cost 
2. Awarded 
3. Steak 

4. Attitude 

∈ [0, 100]
∈ {True, False}

∈ {Rare, Medium Rare, Medium, Medium Well, Well Done}

∈ {strongly disagree, disagree, neutral, agree, strongly agree}
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Q2-2: What is the dimension of the following feature space? 
The CIFAR-10 dataset contains 60,000 32x32 color images in 10 different classes. 
(convert each data to a vector)

1. 10  
2. 60,000  
3. 3072 
4. 1024

Every color 
image has 3 
channels (RGB) 
and 32*32 
pixels, so the 
dimension is 
3*32*32=3072.



Q2-3: Are these statements true or false?  
(A) Instances from time series are independent and identically 
distributed. 
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Q2-3: Are these statements true or false?  
(A) Instances from time series are independent and identically 
distributed. 
(B) The primary objective of supervised learning is to find a model that 
achieves the highest accuracy on the training data.

1. True, True  
2. True, False  
3. False, True 
4. False, False

(A)Instances from 
time series 
usually have 
dependencies on 
the previous 
instances. 

(B)The primary 
objective of 
supervised 
learning is to find 
a model that 
generalizes. 
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•Review from last time
•Supervised, unsupervised, reinforcement learning

•Supervised learning concepts
•Features, models, training, other terminology

•Unsupervised learning concepts
•  Clustering, anomaly detection, dimensionality reduction

•Reinforcement learning concepts
•Exploration vs. Exploitation, credit-assignment.
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Unsupervised Learning: Setup

•Given instances 

•Goal: discover interesting regularities/structures/patterns 
that characterize the instances. For example:

• Clustering
• Anomaly detection
• Dimensionality reduction
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Anomaly Detection: Setup

•Given instances 

•Goal: model h that represents 
“normal” x
• Can apply to new data to find 

anomalies 

Let’s say our model is represented by: 
1979-2000 average, ±2 stddev

Does the data for 2012 look anomalous?
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Dimensionality Reduction: Setup

Example: Eigenfaces

What dimension are we using now?

×= )1(
1α ×+ )1(

2α ×++ (1)
20  ... α

=α1
(2) × + α2

(2) × ×++ )2(
20 ... α
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Q3-1: Which generally is NOT an unsupervised learning task?

1. Principal component analysis 
2. Fraud detection 
3. CIFAR-10 image classification 
4. Community detection

1. Principal component 
analysis is a problem of 
dimensionality 
reduction. 

2. You can think fraud 
detection as an anomaly 
detection problem. 

3. CIFAR-10 image 
classification is a 
classification task for 
labeled image data. 

4. Community detection is 
some clustering 
problem.



Model Zoo

Lots of models!
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•Review from last time 
•Supervised, unsupervised, reinforcement learning 

•Supervised learning concepts 
•Features, models, training, other terminology 

•Unsupervised learning concepts 
•  Clustering, anomaly detection, dimensionality reduction 

•Reinforcement learning concepts 
•Exploration vs. Exploitation, credit-assignment.
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Reinforcement Learning
• Given: an agent that can take actions and a reward function 

specifying how good an action is.  
• Goal: learn to choose actions that maximize future reward 

total.

Agent collects data  .s0, a0, r0, s1, a1, r1, . . . , sT, aT, rT

Learn policy  that maximizes .π : 𝒮 → 𝒜
∞

∑
t=0

γtrt



Reinforcement Learning Key Problems



Reinforcement Learning Key Problems
1. Problem: actions may have delayed effects.



Reinforcement Learning Key Problems
1. Problem: actions may have delayed effects.

• Requires credit-assignment



Reinforcement Learning Key Problems
1. Problem: actions may have delayed effects.

• Requires credit-assignment
2. Problem: maximal reward action is unknown



Reinforcement Learning Key Problems
1. Problem: actions may have delayed effects.

• Requires credit-assignment
2. Problem: maximal reward action is unknown

• Exploration-exploitation trade-off



Reinforcement Learning Key Problems
1. Problem: actions may have delayed effects.

• Requires credit-assignment
2. Problem: maximal reward action is unknown

• Exploration-exploitation trade-off

Multi-armed Bandit



Reinforcement Learning Key Problems
1. Problem: actions may have delayed effects.

• Requires credit-assignment
2. Problem: maximal reward action is unknown

• Exploration-exploitation trade-off

Multi-armed Bandit

“..the problem [exploration-exploitation] 
was proposed [by British scientist] to be 
dropped over Germany so that German 
scientists could also waste their time on it.”


- Peter Whittle



Learning Outcomes

•After today’s lecture: 
•You will be able to explain the key aspects of a 
supervised learning problem. 

•Provide examples of unsupervised learning 
problems and explain why these are not supervised 
learning problems. 

•Explain key challenges of reinforcement learning 
problems.



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov, and Fred Sala 


