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Announcements

« HW 6 due Tuesday.
« Midterm regrade deadline is tonight.
e For grading mistakes not arguing for partial credit.
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Why learning theory?

«Formal analysis of algorithms is important in all areas of computer
science.

«Example: binary search has time complexity O(log n).

«Desire a rigorous understanding of algorithms:
« Be able to predict how an algorithm will work on new problem:s.
eUnderstand when a problem is inherently hard (lower bounds).

eUnderstand when a problem can be learned efficiently (time,
space, training set size).

«Provide guarantees on performance under certain conditions.
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Formal Definition of Learning

«X: set of all possible inputs.

oc : X = {0,1} is the target concept to learn.
«(: a set of possible target concepts.

«[: a probability distribution over X.

. Z D(x) = 1 and Vx, D(x) > 0.

xeX
.S: a training sample of size m, {(x;, c¢(x;)) }'_,



Formal Definition of Learning

«H is a hypothesis class (e.g., the set of all linear
classifiers).

A learning algorithm receives sample S and selects a
hypothesis /g from H with the goal of approximating c.

Note: we abstract away details of selection (e.g.,
linear regression).



True vs Empirical Risk / Error

How do we quantify our learning goal?
«True Risk (unobservable, test error):

R(h) = E, pl1ih(x) # c(x)}]

«Empirical Risk (observable, training error):

R 1 &
Ry(h) = — D 1{h(x) # c(x))}

j=1



PAC-Learning

* PAC learning: Probably learning.

e Concept class Cis PAC-learnable if there exists a learning

algorithm such that, for all c € C, ,0 > (), and all
distributions D,

Pr(Rthy) <€|S~D)>1-35
1 1

where S has size m which is a polynomial function of —and —.
€

In words: with probability 1 — o, true error is less than
with a polynomial sized training set.



Sample Complexity Analysis: Consistent Case

* Goal: want to bound how poor a trained classifier could be after
receiving m samples.

*Theorem:
o Let H be a finite class of functions from X to {0,1}.
Let L be an algorithm that returns a consistent hypothesis, i.e.,
Ry(hg) = 0.
«Then for any 0 > 0, we have with probability 1 — o,

1 1
R(hg) < —(log |H| + log —)
m )



Sample Complexity Proof: Consistent Case

Forany € > 0, define H, = {h € H|R(h) > €}. We want to proof with
probability 1 — 6 that a consistent /i will have low true error.

[~

P[ﬁs(hs) — 0= R(hg) < e] >1-6 < P|Rs(hs) = 0A R(hs) > e] <5

AN

oP|Rs(hs) = 0A hs € H] <.

P[HheH: Es(h):O/\heHe]

=P|Rs(h) =0V ...V Rs(hym, ) = 0]

< P[ﬁs(h) = ] (union bound)



Sample Complexity Proof: Consistent Case

We want to proof with probability 1 — 6 that a consistent /i will

have low true error.

Set 0 equal to upper bound from previous slide and
solve for €:

o= |H|e™ ™
Obtain:

1 1
e =—(og|H| + log —)
m 0



Sample Complexity Analysis: Inconsistent Case

«Goal: still want to bound how poor a trained classifier
could be after receiving m samples.

« However, we want to drop the assumption that

ﬁ(hS) = ( for hg returned by our algorithm. Why?



Sample Complexity Analysis: Inconsistent Case

B Theorem:let H be a finite hypothesis set, then, for
any 6 >0, with probability at least 1—4,

log |H| + log 2

2m

Vh € H, R(h) < Rg(h) + \/
® Proof: By the union bound,

Pr hneag |R(R) — Rs(h)| >e]

= Pr [[R(h) = Rs(h1)|>e V...V |R(hjz) = Rs(hym)| > ]
<Y Pr [|R(h) — Rs(h)] >e}

he H

<2|H|exp(—2me”). (Hoeffding’s Inequality) From Mehryar Mohri lecture slides
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VC-Dimension

eFormal measure of capacity for a function class.
oi.e., flexibility, representational power, complexity

A function class shatters a set of points if for all [abeling
of the points there is a function in the class that perfectly
classifies the points.

*\V/C dimension of a function class is the size of the largest
set of points that can be shattered by that class.



VC-Dimension Example
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Linear classifiers (in R?)
cannot shatter sets of
four points

In general, VC dimension of linear classifiers in Reisd + 1.

Only need one arrangement of points but must consider all possible labelings.



Why VC-Dimension is Useful?

«Useful for characterizing infinite hypothesis classes.

«Sample complexity bounds can depend on VC-
dimension instead of size of hypothesis classes.

«Example Hardness Result (lower bound):

B Theorem:let H be a hypothesis set with VC-

dimensiond >1.Then, for any learning a

d—1
aD,3f € H, Pr |Rp(hs, f) >

S~Dm™ 32m

See given reading for proof.

gorithm L,
> 1/100.



Summary

eLearning theory enables rigorous understanding of
machine learning problems and algorithmes.

«(Some) key questions learning theory attempts to
answer:

« How hard is a problem?
e Can we upper bound error for a given sample size?
e |s a problem efficiently learnable?

oIn terms of space, time, and training set size.



e e N

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mehryar Mohair



