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Linear classification revisited

w⊤x + b = 0

Class +1

Class -1

w

w⊤x + b > 0

w⊤x + b < 0



Linear classification revisited

•Which classifier is better for generalization?

Class +1

Class -1



Linear classification revisited

•Intuitively, expect a large margin to generalize better.

Class +1

Class -1

large margin

Both direction and location of hyperplane affects the margin.



Distance to a hyperplane

 has distance  to the hyperplane   


Proof (on your own): Let  denote the projection of  onto the hyperplane.


Then, we can write  for some  (Why?).


Hence, the distance to the hyperplane is  (Why?). 
 

We have . 

 

Therefore, 
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Support Vector Machines

•We wish to maximize the “minimum margin” over all points.

•The minimum margin over all training data points and margin 

: 


•We can write it equivalently as:


•If  incorrect on some , the margin is negative

w

𝑓𝑤,𝑏 𝑥𝑖

Using our result

yi ∈ {−1,1}

γ(w, b) = min
i

| fw,b(xi) |

| |w | |

γ(w, b) = min
i

yi fw,b(xi)
| |w | |



Support Vector Machines: Candidate Goal

•Assume data is linearly separable for now. 

•One way: maximize margin over all training data points:

max
w,b

γ(w, b) = max
w,b

min
i

yi fw,b(xi)
| |w | |

= max
w,b

min
i

yiw⊤xi + b
| |w | |

Minimax Optimization may be difficult to solve!



SVM: Simplified Goal

•Observation: when  scaled by a factor , the margin 
is unchanged





•Let us consider a fixed scale such that





   where  is the point closest to the hyperplane

(𝑤, 𝑏) 𝑐 > 0

𝑦𝑖(𝑐𝑤𝑇𝑥𝑖 + 𝑐𝑏)
| 𝑐𝑤 |

=
𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏)

| 𝑤 |

𝑦𝑖∗(𝑤𝑇𝑥𝑖∗ + 𝑏) = 1
𝑥𝑖∗



SVM: Simplified Goal

•Let us consider a fixed scale such that





   where  is the point closest to the hyperplane


•Now we have for all data





   and at least for one  the equality holds


•Then the margin over all training points is 

𝑦𝑖∗(𝑤𝑇𝑥𝑖∗ + 𝑏) = 1
𝑥𝑖∗

𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1
𝑖

|w⊤xi + b |
∥w∥

=
1

∥w∥



Writing the SVM as an optimization problem

•Optimization problem can be written as 

                                    subject to  . 

•Instead we will write this as,





subject to   


•Why?

•  This is a Quadratic program (a type of convex program). Many efficient solvers!

•  Allows us to apply the kernel trick for nonlinear classification (coming up)

max
w,b

1
∥w∥2

yi(w⊤xi + b) ≥ 1 ∀i

min
w,b

1
2

∥w∥2
2

yi(w⊤xi + b) ≥ 1 ∀i



SVM: Support Vectors

• Instances where inequality is tight are the support vectors 

• Lie on the margin boundary


• Solution does not change if we delete other instances!

support 
vectors



SVM: Soft Margin

What if our data isn’t linearly separable?

•Can adjust our approach by using slack variables (denoted by 

) to tolerate errors








•  determines the relative importance of maximizing margin 
vs. minimizing slack

𝜁𝑖

min 
𝑤,𝑏,𝜁𝑖

1
2

𝑤
2

+ 𝐶∑
𝑖

𝜁𝑖

𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜁𝑖, 𝜁𝑖 ≥ 0,  ∀𝑖

𝐶



SVM: Soft Margin


min 
𝑤,𝑏,𝜁𝑖

1
2

𝑤
2

+ 𝐶∑
𝑖

𝜁𝑖

𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜁𝑖, 𝜁𝑖 ≥ 0,  ∀𝑖

Ben-Hur & Weston,  Methods in Molecular Biology 2010
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Constrained Optimization

•Consider the optimization problem:










•Generalized Lagrangian:





   where ’s are called Lagrange multipliers

min 
𝑤

𝑓(𝑤)

𝑔𝑖(𝑤) ≤ 0, ∀1 ≤ 𝑖 ≤ 𝑘

h𝑗(𝑤) = 0, ∀1 ≤ 𝑗 ≤ 𝑙

ℒ(𝑤, 𝜶,  𝜷) =  𝑓(𝑤) + ∑
𝑖

𝛼𝑖𝑔𝑖(𝑤) + ∑
𝑗

𝛽𝑗h𝑗(𝑤)

𝛼𝑖, 𝛽𝑗

Objective

Constraints



Lagrangian

•Form the quantity:








•Note:


𝜃𝑃(𝑤) ≔ max
𝜶, 𝜷:𝛼𝑖≥0

ℒ(𝑤, 𝜶,  𝜷)

≔ max
𝜶, 𝜷:𝛼𝑖≥0

𝑓(𝑤) + ∑
𝑖

𝛼𝑖𝑔𝑖(𝑤) + ∑
𝑗

𝛽𝑗h𝑗(𝑤)

𝜃𝑃(𝑤) = {𝑓(𝑤),    if 𝑤 satisfies all the constraints
+ ∞,  if 𝑤 does not satisfy the constraints


𝑔𝑖(𝑤) ≤ 0, ∀1 ≤ 𝑖 ≤ 𝑘

h𝑗(𝑤) = 0, ∀1 ≤ 𝑗 ≤ 𝑙



Lagrangian

•Form the quantity:





•Note:





•Minimizing  with constraints is the same as minimizing 


𝜃𝑃(𝑤) ≔ max
𝜶, 𝜷:𝛼𝑖≥0

ℒ(𝑤, 𝜶,  𝜷)

𝜃𝑃(𝑤) = {𝑓(𝑤),    if 𝑤 satisfies all the constraints
+ ∞,  if 𝑤 does not satisfy the constraints

𝑓(𝑤) 𝜃𝑃(𝑤)

min
𝑤

𝑓(𝑤) = min
𝑤

𝜃𝑃(𝑤) = min
𝑤

max
𝜶, 𝜷:𝛼𝑖≥0

ℒ(𝑤, 𝜶,  𝜷)



Duality

The primal problem 




 
 
 
 
 
 

The dual problem 




•  
 
 
 

•Always true: 

𝑝∗ ≔ min
𝑤

𝑓(𝑤) = min
𝑤

max
𝜶, 𝜷:𝛼𝑖≥0

ℒ(𝑤, 𝜶,  𝜷)

𝑑∗ ≔ max
𝜶, 𝜷:𝛼𝑖≥0

min
𝑤

ℒ(𝑤, 𝜶,  𝜷)

𝑑∗ ≤ 𝑝∗



Duality Gap

•Always true:  

If actual equality, could solve dual instead of primal… when?

• Under some assumptions (ex: Slater’s conditions), there exists 

 such that


•  satisfy Karush-Kuhn-Tucker (KKT) conditions:


,   

𝑑∗ ≤ 𝑝∗

(𝑤∗, 𝜶∗,  𝜷∗)
𝑑∗ = ℒ(𝑤∗, 𝜶∗,  𝜷∗) = 𝑝∗

(𝑤∗, 𝜶∗,  𝜷∗)
𝜕ℒ
𝜕𝑤𝑖

= 0,    𝛼𝑖𝑔𝑖(𝑤) = 0  𝑔𝑖(𝑤) ≤ 0,  h𝑗(𝑤) = 0,  𝛼𝑖 ≥ 0



Alternative optimization procedure for SVMs

•Recall our “primal” SVM optimization problem:








•Dual: Write out the Lagrangian, maximize w.r.t , and then solve the 
maximization problem!


min 
𝑤,𝑏

1
2

𝑤
2

𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1, ∀𝑖

w, b

ℒ(𝑤, 𝑏, 𝜶) =
1
2

𝑤
2

− ∑
𝑖

𝛼𝑖[𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) − 1]



SVM: Optimization

•First, minimimize  w.r.t :


	   (1)


	         (2)


•Plug into :


            (3)


   combined with 

ℒ(w, b, α) w, b
𝜕ℒ
𝜕𝑤

= 0,  𝑤 = ∑
𝑖

𝛼𝑖𝑦𝑖𝑥𝑖

𝜕ℒ
𝜕𝑏

= 0,  0 = ∑
𝑖

𝛼𝑖𝑦𝑖

ℒ

ℒ(𝑤, 𝑏, 𝜶) = ∑
𝑖

𝛼𝑖 −
1
2 ∑

𝑖𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑇
𝑖 𝑥𝑗

0 = ∑
𝑖

𝛼𝑖𝑦𝑖,  𝛼𝑖 ≥ 0

ℒ(𝑤, 𝑏, 𝜶) =
1
2

𝑤
2

− ∑
𝑖

𝛼𝑖[𝑦𝑖(𝑤𝑇 𝑥𝑖 + 𝑏) − 1]

(From solution for b (above) and 
KKT Conditions)



SVM: Training with dual version

•Can write as:








 
Note: training only deals with data via inner products 

max
𝜶  ∑

𝑖

𝛼𝑖 −
1
2 ∑

𝑖𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑇
𝑖 𝑥𝑗

∑
𝑖

𝛼𝑖𝑦𝑖 = 0, 𝛼𝑖 ≥ 0

x⊤
i xj



SVM: Testing with Dual Version
•Suppose the solution is . How do we recover our classifier? 

•
Optimal  is:      (from a couple of slides before) 


•Optimal  is:                 (do at home, hint: look at the primal problem)

 


•To compute a prediction at , we check if   




•Note: testing only deals with data via inner products  (and ).

α⋆

w⋆ w⋆ = ∑
i

α⋆
i yixi

b⋆

b⋆ =
−1
2 ( max

j,yj=−1
(w⋆)⊤xj + min

j,yj=+1
(w⋆)⊤xj) =

−1
2 ( max

j,yj=−1 ∑
i

α⋆yix⊤
i xj + min

j,yj=+1 ∑
i

α⋆yix⊤
i xj)

xtest

(w⋆)⊤xtest + b⋆ = ∑
i

α⋆
i yix⊤

i xtest + b⋆ ≥ 0

x⊤
i xtest x⊤

i xj



SVM: Support Vectors

• Those instances with αi > 0 are called support vectors 


• Lie on the margin boundary


• Solution is a linear combination of support vectors!


• Solution does not change if we delete instances with αi = 0

support 
vectors



Break & Quiz



Quiz
Which of the following statements are true?

A. The solution of an SVM will always change if we remove 

some instances from the training set.

B. If we know that our data is linearly separable, then it does 

not make sense to use slack variables.

C. If you only had access to the labels  and the inner 

products , we can still find the solution to the SVM.

{yi}i

{x⊤
i xj}i,j

A: False,  B: False, C: True
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• Can take a set of features and map them into another

• Do this to construct non-linear features (recall basis functions from 

linear models).

• Then use non-linear features in a linear classifier to learn non-linear 

decision boundaries.

Feature Maps



Feature Maps and SVMs

Goal: use feature space in a linear classifier…


• Downside: dimension might be high (possibly infinite)


• So we do not want to write down  

	 


Recall our SVM dual form:


•Training and testing only rely on inner products  


     s.t

{𝜙(𝑥𝑖)} 

𝜙(𝑥𝑖) = [0.2, 0.3, …]

𝑥𝑇
𝑖 𝑥𝑗

ℒ(𝑤, 𝑏, 𝜶) = ∑
𝑖

𝛼𝑖 −
1
2 ∑

𝑖𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑥𝑇
𝑖 𝑥𝑗 ∑

𝑖

𝛼𝑖𝑦𝑖 = 0, 𝛼𝑖 ≥ 0



Kernel Trick

•Using SVM on the feature space : only need 


•Therefore, no need to design only need to design 


{𝜙(𝑥𝑖)} 𝜙(𝑥𝑖)𝑇𝜙(𝑥𝑗)

𝜙( ⋅ ),  

𝑘(𝑥𝑖, 𝑥𝑗) = 𝜙(𝑥𝑖)𝑇𝜙(𝑥𝑗)

Kernel Feature Maps



Kernel Types: Polynomial
•Fix degree  and constant :





•What are ?


•Expand the expression to get 

𝑑 𝑐

𝑘(𝑥, 𝑥′￼) = (𝑥𝑇𝑥′￼+ 𝑐)𝑑

𝜙(𝑥)
𝜙(𝑥)

Ben-Hur & Weston,  Methods in Molecular Biology 2010



Kernel Types: Gaussian/RBF 

•Fix :





• With RBF kernels, you are projecting to an infinite dimensional space

γ
k(x, x′￼) = exp(−γ∥x − x′￼∥2)

𝛾 = 10 𝛾 = 100 𝛾 = 1000



SVM: Training dual problem with kernels







 
Simply replaced  in the linear SVM with .


Can do so with slack variables as well.

max
α ∑

i

αi −
1
2 ∑

i,j

αiαjyiyjk(xi, xj)

∑
𝑖

𝛼𝑖𝑦𝑖 = 0, 𝛼𝑖 ≥ 0

x⊤
i xj k(xi, xj)



1. Understand maximum margin classification. Why do we 
write this as: 

       subject to  . 

2. Going from primal to dual formulation

3. Kernel trick enables SVM to represent complex non-linear 

decision boundaries.

max
w,b

∥w∥−1
2 (or min

w,b

1
2

∥w∥2
2) yi(w⊤xi + b) ≥ 1 ∀i

SVM Summary



Break & Quiz



Quiz

Which of the following statements are true?

A. SVMs with nonlinear kernels implicitly transform the low 

dimensional features to a high dimensional space and then 
performing linear classification in that space.


B. The “Kernel trick” refers to computing this transformation 
and then applying the dot product between the 
transformed points.

A: True, B: False



Quiz

Consider the kernel  for . Give an 
explicit expression for a feature map  such that 

.


1. 


2. 


3. 


4.

k(x, x′￼) = (xx′￼+ 1)3 x ∈ ℝ
ϕ

ϕ(x)⊤ϕ(x′￼) = k(x, x′￼)

ϕ(x)⊤ = [x3, x2, x,1]

ϕ(x)⊤ = [x3, 3x2, 3x,1]

ϕ(x)⊤ = [x3, 3x2, x, 3]

ϕ(x)⊤ = [x3, 3x2, 3x]

Ans: 2



Quiz

Why might we prefer an SVM over a neural network?

A. With an SVM we can map inputs to an infinite dimensional 

space. With neural networks, we cannot.

B. SVMs are easier to train: An SVM would not get stuck in a 

local optima, whereas a neural network might.

C. Tuning hyper-parameters in an SVM may be easier than in 

neural networks.  

Ans:    all of the above



Kernel Methods VS Neural Networks

• Can think of our kernel SVM approach as fixing a layer of a 
neural network.

• Using kernel feature representations instead of usual 

activation functions (sigmoid, RELU etc)

𝑥1

𝑥2

𝑥2
1

𝑥2
2

2𝑥1𝑥2

2𝑐𝑥1

2𝑐𝑥2

𝑐

𝑦 = sign(𝑤𝑇𝜙(𝑥) + 𝑏)



Kernel Methods VS Neural Networks

• Kernel methods popular in 90’s and 2000’s.


• Kernels are still powerful (and probably better than NNs) in small/
moderate data regimes.


• Challenges with Kernel methods (when we have a lot of data):


• Computational


• Computing all pairs of kernel values requires  memory


• Compute, typically . Solving LP with  constraints or 
inverting the  kernel matrix is needed.


• Representation:


• Using fixed representations is limiting.

O(n2)

O(n3) n
n × n



Thanks Everyone!
Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov, Fei-Fei Li, Justin Johnson, Serena Yeung, Pieter Abbeel, Peter Chen, Jonathan 
Ho, Aravind Srinivas


