

CS 760: Machine Learning **Reinforcement Learning I**

University of Wisconsin-Madison

Josiah Hanna

November 28, 2023

Announcements

- Homework 7 due December 7 at 9:30 am.
- Final exam: December 18 from 2:45 4:45 pm in the Social Sciences building.
- Course evaluation due 12/13.
- Looking ahead: this week and next on RL; then societal impacts.

Lecture Goals

At the end of today's lecture, you will be able to:

- 1. Formulate a sequential decision-making application as a reinforcement learning (RL) problem.
- 2. Be able to define key RL terminology such as policies and value functions.

What is Reinforcement Learning?

- and error interaction.
- to take actions that lead to the most reward.
- Think: training a dog to do tricks.

Machine learning paradigm that focuses on learning from rewards and trial

The learning agent takes actions, receives rewards, and over time learns

RL within Artificial Intelligence

- Supervised learning: learn from labelled examples.
 - Given a data set of $\{(x_i, y_i)\}_{i=1}^m \{(X, Y)\}$, learn to map new instances of x to appropriate y.
 - Ex: image classification, object detection, spam filtering.
- Unsupervised learning: discover structure in unlabelled data. • Ex: clustering, generating images, language modeling
- Reinforcement learning: learn from rewarded interaction.
- Reinforcement learning also relates to non-learning AI planning methods.

What Can RL Do?

- Play video games
- Play board games
- Control robots
- Recommend ads and web content
- Trade stocks
- Recommend medical treatments
- Control home thermostat systems
- Cooling of data centers
- Networking
- Databases
- Program Synthesis

Be an RL Agent*

- You (as a class) are the learning agent.
- Three actions: stand, clap, or wave
- Observations: colors
- Rewards: depends on color you see and action you take.
- Goal: find the optimal policy.
 - Policy: mapping from colors to actions.
 - Optimal policy: policy that gives you the most reward.
- * Activity credit to Peter Stone.

- How did you learn?
- What structure does the world have?

Be an RL Agent

Challenges of Reinforcement Learning

- Credit Assignment:
 - important?
 - the studying or the yogurt that led to the A?
- Exploration vs. Exploitation
 - actions that might lead to even more reward?

• May take many actions before reward is received. Which ones were most

• Example: you study 15 minutes a day all semester. The morning of the final exam, you eat a bowl of yogurt. You receive an A on the final. Was it

Should you keep trying actions that led to reward in the past or try new

Markov Decision Processes

RL problems are formalized as Markov decision processes, $\langle \mathcal{S}, \mathcal{A}, r, p \rangle$:

- States: $s \in \mathcal{S}$
- Actions: $a \in \mathcal{A}$
- Rewards: $R \sim r(s, a)$
- State transitions: $S \sim p(\cdot | s, a)$
 - \bullet
- Goal: Find a policy, $\pi: \mathcal{S} \to \mathcal{A}$, that maximizes cumulative reward.

We do not know *r* and *p*. This is the learning challenge!

For brevity will use $p(s', r \mid s, a)$ to denote joint probability of next state and reward.

Markov property: next state only depends on current state and action taken.

Data in Reinforcement Learning

Agent learns from the sequence of data seen while acting in task Markov decision process:

Reinforcement Learning

Agent's objective is to find policy, π , so as to maximize the expected cumulative discounted reward from each state:

$$v_{\pi}(s) = \mathbf{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R_{t} | S_{0} = s, A_{t} \leftarrow \pi(S_{t}), S_{t+1} \sim p(\cdot | S_{t}, A_{t})\right]$$

 $= \mathbf{E}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R$

For brevity, \mathbf{E}_{π} will be used for $\mathbf{E}[\dots | A_t \leftarrow \pi(S_t), S_{t+1}, R_{t+1} \sim p(\cdot | S_t, A_t)]$

$$S_{t+3} + \dots | S_0 = s, A_t \leftarrow \pi(S_t), S_{t+1} \sim p(\cdot | S_t),$$

Example RL Problems

- What are the states? Actions? Rewards?
- Atari Breakout
- Home thermostat
- Stock trading

Defining State

- Informally, state is the information available to the agent to base its decision on.
- Formally, an element of the state space, i.e., $s \in S$.
- Must include information about all aspects of the past that affect the future.
- Markov property: future is conditionally independent of the past given current state.

$$\Pr(S_{t+1} = s, R_{t+1} = r | s_t, a_t) = \Pr(S_{t+1} = s, R_{t+1} = r | s_t, a_t, s_{t-1}, a_{t-1}, \ldots)$$

Josiah Hanna, University of Wisconsin - Madison

.)

- States as elements of a finite set.
 - Simpler model to analyze.
- time.
 - location, where other vehicles are, road conditions, etc.
 - I.e., states are feature vectors in \mathbb{R}^d .

Thinking about State

State as a collection of variables that describe the world at that moment in

• For example, an autonomous vehicle's state includes the vehicle's

State Examples

- Recommendation agent for a social media timeline.
- A robot with a camera and a laser range finder.
- Home thermostat system.
- Recommending medical treatment.

Defining Reward

- The agent's objective is to maximize its cumulative reward.
- a in state s.
- Ideally, communicates what to achieve not how to achieve it.

• Expected reward, r(s, a), gives immediate benefit or cost of taking action

• In practice, reward often used to guide learning agent ("shaping" reward).

0	0
0	0
0	0
0	
0	0

Reward Examples

0	Start
0	0
0	0
0	+1

0	0
0	0
0.5	0.4
0.6	
0.7	0.8

Reward Examples

0	Start
0	0.1
0.3	0.2
0.9	+1

- Recommendation agent for a social media timeline.
- An autonomous vehicle learning to drive.
- Home thermostat system.
- Recommending medical treatment.

Reward Examples

- The agent's decision making rule.
- Formally, a function outputting the conditional probability of selecting an action in a particular state: $\pi : \mathcal{S} \times \mathcal{A} \rightarrow [0,1]$.
- A deterministic policy is a function mapping states to actions: $\pi : \mathcal{S} \to \mathscr{A}$.

Policies

Returns and Episodes

- Episodes are subsequences of interaction that begin in some initial state and end in a special terminal state.
- The initial state of one episode is independent of interaction in the preceding episode.
- The return from step t is: $G_t := R_t$
- Recursive definition: $G_t = R_{t+1} + \gamma G_{t+1}$.

$$_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots$$

Value functions

- Many RL algorithms use value functions to aid in long-term credit assignment.
- Two types of value function: state-value and action-value functions.

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t | S_t = s] = \mathbb{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s]$$

= $\mathbb{E}_{\pi}[G_t | S_t = s, A_t = a] = \mathbb{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s, A_t = a]$

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t | S_t = s] = \mathbb{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s]$$
$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a] = \mathbb{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s, A_t = a]$$

Recursive Relationship of State Values

 $v_{\pi}(s) := \mathbb{E}_{\pi}[G_t | S_t = s]$

Recursive definition of return

Definition of expectation

Definition of state-value

S' ra

Final equation is called the Bellman equation for state values.

Page 59 of "Reinforcement Learning: An Introduction"

 $= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} | S_t = s]$

 $= \sum \pi(a \mid s) \sum \sum p(s', r \mid s, a) [r + \gamma \mathbb{E}_{\pi}[G_{t+1} \mid S_{t+1} = s']]$

 $= \sum \pi(a \mid s) \sum \sum p(s', r \mid s, a) [r + \gamma v_{\pi}(s')]$

Action Values

Write action-values in terms of environment dynamics and state-values:

 $q_{\pi}(s,a) := \mathbb{E}_{\pi}[$

Definition of return

Definition of expectation

Definition of state-value

 $= \mathbb{E}_{\pi}[R_t]$ $=\sum \sum$ s' r $=\sum \sum i$ r

Exercise 3.13, page 58 of "Reinforcement Learning: An Introduction"

$$[G_{t} | S_{t} = s, A_{t} = a]$$

$$F_{t+1} + \gamma G_{t+1} | S_{t} = s, A_{t} = a]$$

$$[p(s', r | s, a)[r + \gamma \mathbb{E}_{\pi}[G_{t+1} | S_{t+1} = s']]$$

$$[p(s', r | s, a)[r + \gamma v_{\pi}(s')]$$

Action Values

Write state-values in terms of action-values:

From previous slide

From two slides back.

 $q_{\pi}(s,a) = \sum p($ $\mathbf{s}' \quad \mathbf{r}$ $v_{\pi}(s) = \sum \pi(a \mid s) \sum \sum p(s', r \mid s, a)[r + \gamma v_{\pi}(s')]$ s' ra $q_{\pi}(s,a)$ $v_{\pi}(s) = \sum \pi(a \mid s) q_{\pi}(s, a)$ \mathcal{A}

Exercise 3.12, page 58.

$$(s', r \mid s, a)[r + \gamma v_{\pi}(s')]$$

Golf Example

- State is ball location. Actions are putt (short distance, accurate) or drive ball (long distance, less accurate).
- Reward is -1 until the ball goes in the hole.
- What is value of policy that always putts?

Figure 3.3: A golf example: the state-value function for putting (upper) and the optimal actionvalue function for using the driver (lower).

Optimality

- Agent's objective: find policy that maximizes $v_{\pi}(s)$ for all s.
- The optimal policy policy that has maximal value in all states. $\pi^* \geq \pi$ if $v_{\pi\star}(s) \ge v_{\pi}(s)$ for all states and possible policies.
- Possibly multiple but always at least one deterministic optimal policy in a finite MDP.

•
$$\pi^{\star}(s) = \arg\max_{a} q_{\star}(s, a)$$
 $q_{\star}(s, a) = \mathbf{E}_{\pi}[R_{t+1} + \gamma v_{\star}(S_{t+1}) | S_t = s, A_t = a]$

Value of taking action a and then acting optimally for all future time-steps.

Golf Example

- State is ball location. Actions are putt (short distance, accurate) or drive ball (long distance, less accurate).
- Reward is -1 until the ball goes in the hole.
- What is action-value of using driver and then following the optimal policy?

Figure 3.3: A golf example: the state-value function for putting (upper) and the optimal actionvalue function for using the driver (lower).

Quiz

Consider an MDP with 2 states, {A,B}, and 2 actions, {"stay", "move"}. Let r be the reward function such that r(A) = 1 and r(B) = 0. Let γ be the discount factor and let $\pi(A) = \pi(B) = \text{move.}$ What is the value function $v_{\pi}(A)$?

4. 1

Quiz

Consider an MDP with 2 states, {A,B}, and 2 actions, {"stay", "move"}. Let r be the reward function such that r(A) = 1 and r(B) = 0. Let γ be the discount factor and let $\pi(A) = \pi(B) = \text{move}$. What is the value function $v_{\pi}(A)$?

1. 0

2.
$$\frac{1}{1-\gamma}$$
 The
3. $\frac{1}{1-\gamma^2} = 1 + \gamma(0) + \gamma^2(1) + \gamma^3(0) + \gamma^4(1) + \ldots = \sum_{k=0}^{\infty} 1(\gamma^2)^k$

4. 1

Or can solve using Bellman equations:

$$v_{\pi}(A) = 1 + \gamma v_{\pi}(B)$$
$$v_{\pi}(B) = 0 + \gamma v_{\pi}(A)$$

Thus, $v_{\pi}(A) = 1 + \gamma^2 v_{\pi}(A)$ Then solve for $v_{\pi}(A)$

r(B) = 20; r(A) = 10; r(C) = 20; r(G) = 100

Quiz

Consider the following MDP which has deterministic transitions and $\gamma = 0.8$. The policy's action is shown with a red arrow. What is $v_{\pi}(B)$ in this MDP?

Two approaches:

- 1. Compute reward total for entire (infinite) sequence).
- 2. Compute $v_{\pi}(G)$ then $v_{\pi}(A)$ and then $v_{\pi}(B)$.

Summary

- Formalized RL problems (Markov decision processes) and the learning objective.
- Agent's state must include all information from past that is needed to predict the future — Markov property.
- Terms to know: Policy, return, value function.
- The value of a policy in a given state is the expected return from that state.
- The optimal policy maximizes the value function in all states.

Slides adapted from Advanced Topics in RL and based on Chapter 3 of Reinforcement Learning: An Introduction.

Thanks Everyone!