
CS 760: Machine Learning
Reinforcement Learning II
Guest Lecturer: Adam Labiosa

University of Wisconsin-Madison

November 30, 2023

Josiah Hanna, University of Wisconsin — Madison

Announcements
• Homework 7 due December 7 at 9:30 am.

• Final exam: December 18 from 2:45 - 4:45 pm in the Social Sciences
building.

• Course evaluations available until 12/13.

Josiah Hanna, University of Wisconsin — Madison

Lecture Goals
At the end of today’s lecture, you will be able to:

1. Implement fundamental dynamic programming approaches to
reinforcement learning.

2. Implement the q-learning algorithm.

Josiah Hanna, University of Wisconsin — Madison

Markov Decision Processes
RL problems are formalized as Markov decision processes, :

• States:

• Actions:

• Rewards:

• State transitions:

• Markov property: next state only depends on current state and action taken.

• Goal: Find a policy, , that maximizes cumulative reward.

⟨𝒮, 𝒜, r, p⟩

s ∈ 𝒮

a ∈ 𝒜

R ∼ r(s, a)

S ∼ p(⋅ |s, a)

π : 𝒮 → 𝒜

Today’s lecture, we will assume
that and are known to us.p r

Josiah Hanna, University of Wisconsin — Madison

Data in Reinforcement Learning

. . . St, At, Rt+1, St+1, At+1, . . .

St+1, Rt+1 ∼ p(⋅ |St, At) At+1 ← π(St+1)

Agent learns from the sequence of data seen while acting in task Markov
decision process:

Josiah Hanna, University of Wisconsin — Madison

Reinforcement Learning

Agent’s objective is to find policy, , so as to maximize the expected
cumulative discounted reward from each state:

π

vπ(s) = E[
∞

∑
t=0

γtRt |S0 = s, At ← π(St), St+1, Rt+1 ∼ p(⋅ |St, At)]

= E[Rt+1 + γRt+2 + γ2Rt+3 + . . . |S0 = s, At ← π(St), St+1, Rt+1 ∼ p(⋅ |St, At)]

For brevity, will be used for Eπ E[. . . |At ← π(St), St+1, Rt+1 ∼ p(⋅ |St, At)]

Josiah Hanna, University of Wisconsin — Madison

Policies

• The agent’s decision making rule.

• Formally, a function outputting the conditional probability of selecting an
action in a particular state: .

• A deterministic policy is a function mapping states to actions: .

π : 𝒮 × 𝒜 → [0,1]

π : 𝒮 → 𝒜

Josiah Hanna, University of Wisconsin — Madison

Returns and Episodes

• Episodes are subsequences of interaction that begin in some initial state
and end in a special terminal state.

• The initial state of one episode is independent of interaction in the
preceding episode.

• The return from step t is:

• Recursive definition: .

Gt := Rt+1 + γRt+2 + γ2Rt+3 + . . .

Gt = Rt+1 + γGt+1

Josiah Hanna, University of Wisconsin — Madison

Value functions

• Many RL algorithms use value functions to aid in long-term credit
assignment.

• Two types of value function: state-value and action-value functions.

vπ(s) = 𝔼π[Gt |St = s] = 𝔼π[
∞

∑
k=0

γkRt+k+1 |St = s]

qπ(s, a) = 𝔼π[Gt |St = s, At = a] = 𝔼π[
∞

∑
k=0

γkRt+k+1 |St = s, At = a]

Josiah Hanna, University of Wisconsin — Madison

Bellman Equation
• Bellman equation expresses state-value, , in terms of expected

reward and state-values at next time-step.

• From the definition of expectation:

vπ(s)

vπ(s) = ∑
a

π(a |s)∑
s′

∑
r

p(s′ , r |s, a)[r + γvπ(s′)]

vπ(s) = Eπ[Rt+1 + γvπ(St+1) |St = s]

Josiah Hanna, University of Wisconsin — Madison

Optimality

• Agent’s objective: find policy that maximizes for all s.

• The optimal policy — policy that has maximal value in all states. if
 for all states and possible policies.

• Possibly multiple but always at least one deterministic optimal policy in a
finite MDP.

•

vπ(s)

π⋆ ≥ π
vπ⋆(s) ≥ vπ(s)

π⋆(s) = arg max
a

q⋆(s, a) q⋆(s, a) = E[Rt+1 + γv⋆(St+1) |St = s, At = a]

Value of taking action a and then acting
optimally for all future time-steps.

Josiah Hanna, University of Wisconsin — Madison

Optimal Value Functions

• Like all policies, the optimal policy has value functions:

•

•

• The optimal policy is greedy with respect to the action-values, i.e.,

vπ⋆(s) = 𝔼[Rt+1 + γvπ⋆(St+1) |St = s]

qπ⋆(s, a) = 𝔼[Rt+1 + γvπ⋆(St+1) |St = s, At = a]

π⋆(s) = arg max
a

qπ⋆(s, a)

Josiah Hanna, University of Wisconsin — Madison

Bellman Optimality Equation
v⋆(s) = Eπ⋆[q⋆(s, A)]

= ∑
a

π⋆(a |s)q⋆(s, a)

= max
a

q⋆(s, a)

= max
a

Eπ⋆[Gt |St = s, At = a]

= max
a

Eπ⋆[Rt+1 + γGt+1 |St = s, At = a]

= max
a

Eπ⋆[Rt+1 + γv⋆(St+1) |St = s, At = a]

v⋆(s) = max
a ∑

s′ ,r

p(s′ , r |s, a)[r + γv⋆(s′)]

Exercise from last time: state-value is expected action-value.

Definition of expectation.

Optimal policy is greedy w.r.t

Definition of action-value .

Recursive definition of return.

Definition of state-value.

Definition of expectation.

q⋆

Josiah Hanna, University of Wisconsin — Madison

Dynamic Programming in RL
• Compute value functions and then use to find policies.

• Dynamic programming methods turn Bellman equations into value function
updates.

• Bellman equation for policy value becomes the policy evaluation update:

• Bellman optimality equation becomes the value iteration update:

vk+1(s) ← ∑
a

π(a |s)∑
s′

∑
r

p(s′ , r |s, a)[r + γvk(s′)]

vk+1(s) ← max
a ∑

s′

∑
r

p(s′ , r |s, a)[r + γvk(s′)]

lim
k→∞

vk(s) = vπ(s)

lim
k→∞

vk(s) = v⋆(s)

Josiah Hanna, University of Wisconsin — Madison

Policy Evaluation
• Given a policy, compute its state- or action-value function.

• When to stop making updates?

• Do these updates converge?

• Yes, update is a contraction mapping with fixed points and respectively.

• Convergence proof for value-iteration.

vπ qπ

vk+1(s) ← ∑
a

π(a |s)∑
s′

∑
r

p(s′ , r |s, a)[r + γvk(s′)]

qk+1(s, a) ← ∑
s′

∑
r

p(s′ , r |s, a)[r + γ∑
a′

qk(s′ , a′)]

http://users.isr.ist.utl.pt/~mtjspaan/readingGroup/ProofQlearning.pdf

Josiah Hanna, University of Wisconsin — Madison

Policy Evaluation Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Josiah Hanna, University of Wisconsin — Madison

Policy Improvement (Control)
• We have for the current policy . How can we improve ?

• Alternate:

• Run policy evaluation updates to find .

• Set

• Why does this update to lead to an improved policy?

vπ(s) π π

vπ

π(s) ← arg max
a ∑

s′ ,r

p(s′ , r |s, a)[r + γvπ(s′)]

π

vk+1(s) ← ∑
a

π(a |s)∑
s′

∑
r

p(s′ , r |s, a)[r + γvk(s′)]

Josiah Hanna, University of Wisconsin — Madison

Policy Improvement Theorem
• Suppose for that there exists such that .

• Let and for all other states.

• What is true about Why?

• As good as or better than , i.e.,

• If is sub-optimal, does there exist such that ?

• Yes, this follows from Bellman Optimality. Must be at least one state where is not greedy w.r.t.
its action-value function.

• Optimal value function:

π s, a qπ(s, a) ≥ vπ(s)

π′ (s) = a π′ (s̃) = π(s̃)

π′ ?

π vπ′
(s) ≥ vπ(s), ∀s

π s, a qπ(s, a) ≥ vπ(s)

π

v⋆(s) = max
a

q⋆(s, a)∀s

vk+1(s) ← ∑
a

π(a |s)∑
s′

∑
r

p(s′ , r |s, a)[r + γvk(s′)]

Josiah Hanna, University of Wisconsin — Madison

Policy Iteration
• First, evaluate to obtain .

• Then, update to such that

• Policy improvement theorem guarantees that .

• Can converge quickly in practice (in terms of policy updates).

π vπ

π π′ π′ (s) = arg max
a ∑

s′ ,r

p(s′ , r |s, a)[r + vπ(s′)]

vπ′
(s) ≥ vπ(s)∀s

vk+1(s) ← ∑
a

π(a |s)∑
s′

∑
r

p(s′ , r |s, a)[r + γvk(s′)]

Josiah Hanna, University of Wisconsin — Madison

Policy Iteration Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Josiah Hanna, University of Wisconsin — Madison

Value Iteration
• What’s wrong with policy iteration?

• Policy evaluation must converge between policy updates.

• We don’t need the exact action-values — just which action has maximal
action-value.

• Value iteration combines policy evaluation and iteration in one step:

vk+1(s) ← ∑
a

π(a |s)∑
s′

∑
r

p(s′ , r |s, a)[r + γvk(s′)]

vk+1(s) ← max
a ∑

s′ ,r

p(s′ , r |s, a)[r + γvk(s′)]

Josiah Hanna, University of Wisconsin — Madison

Value Iteration Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Josiah Hanna, University of Wisconsin — Madison

Consider the following MDP which has deterministic transitions and .
The policy’s action is shown with a red arrow. What is in this MDP?

γ = 0.8
vπ(B)

Quiz

GA

B C

r(B) = 20; r(A) = 10; r(C) = 20; r(G) = 100

Two approaches:

1. Compute reward total for entire (infinite)

sequence).

2. Compute then and then

.
vπ(G) vπ(A)

vπ(B)

Josiah Hanna, University of Wisconsin — Madison

Q-learning
• Value iteration is not a learning method.

• Requires knowledge of transitions and rewards to compute updates.

• Ideally, compute updates without this knowledge.

• Consider the agent is in state and takes action and then receives
reward and transitions to state ; is called a transition.

• Q-learning: initialize for all states and actions and then for each
transition seen update:

s a
r s′ (s, a, s′ , r)

q(s, a) = 0

vk+1(s) ← ∑
a

π(a |s)∑
s′

∑
r

p(s′ , r |s, a)[r + γvk(s′)]

q(s, a) ← (1 − α)q(s, a) + α(r + γ max
a′

q(s′ , a′))

Josiah Hanna, University of Wisconsin — Madison

Why is Q-learning reasonable?
• Consider a modified version of value iteration:

• Without and we cannot compute right hand side but can approximate it
after experiencing a reward and resulting next state.

• With only a single reward and next state the update is noisy.

• Moves towards in expectation but any single update has error.

• Use a step-size parameter, , to control:

p r

q q⋆

α

vk+1(s) ← ∑
a

π(a |s)∑
s′

∑
r

p(s′ , r |s, a)[r + γvk(s′)]

qk+1(s, a) ← ∑
s′ ,r

p(s′ , r |s, a)[r + γ max
a′

qk(s′ , a′)]

qk+1(s, a) ← (1 − α)qk(s, a) + α(r + γ max
a′

qk(s′ , a′))

qk+1(s, a) ≈ r + γ max
a′

qk(s′ , a′)

Josiah Hanna, University of Wisconsin — Madison

Q-learning Pseudocode
• Parameters: step-size

• Initialize arbitrarily for all states and actions except terminal states have
 for all a.

• Loop for each episode:

• Initialize

• Loop for each step of episode until is terminal:

• Choose a from using an exploration policy (more on this later).

• Take action a and observe and

•

•

α
q(s, a)

q(𝚝𝚎𝚛𝚖𝚒𝚗𝚊𝚕, a) = 0

s
s

s
r s′

q(s, a) ← q(s, a) + α(r + γ max
a′

q(s′ , a′) − q(s, a))

s ← s′

vk+1(s) ← ∑
a

π(a |s)∑
s′

∑
r

p(s′ , r |s, a)[r + γvk(s′)]

Equivalent to update on previous slide

Josiah Hanna, University of Wisconsin — Madison

Summary

• Estimating value functions allow us to compute optimal policies.

• Policy Evaluation: find value function for a fixed policy.

• Policy Iteration: compute optimal policy by iterating 1) policy evaluation
and 2) greedy policy improvement.

• Value Iteration: directly compute optimal value function.

• Q-learning: a learning method based based off of value iteration.

Thanks Everyone!

Slides adapted from Advanced Topics in RL and based on Chapter 4 of Reinforcement Learning: An Introduction.

