. . \ o o Bl e - P S . " -.‘ .-.r_ 'l‘{. _:- ’..;“.;‘-‘ .o"».'.-"..'_:,,"_
- .l & = e e = Y IV S s 4 AR il g el e e

-t .
- "»1 . -’_-..;-nv -,-g"u-' STyt w2 ed™"S

e = e — '
i -"'.'"“;4--:.’3':?.-9“.-%-,5?*-

5

CS 760: Machine Learning
Reinforcement Learning Il

Guest Lecturer: Adam Labiosa

University of Wisconsin-Madison

November 30, 2023

AT
L
.“

——

ar

il

A

e

. .
. ) ) N
hl.\'




Announcements

e Homework 7 due December 7 at 9:30 am.

 Final exam: December 18 from 2:45 - 4:45 pm in the Social Sciences
building.

e Course evaluations available until 12/13.

Josiah Hanna, University of Wisconsin — Madison



| ecture Goals

At the end of today’s lecture, you will be able to:

1. Implement fundamental dynamic programming approaches to
reinforcement learning.

2. Implement the g-learning algorithm.

Josiah Hanna, University of Wisconsin — Madison



Markov Decision Processes

RL problems are formalized as Markov decision processes, (&, A, r, p):
e States: s € &

e Actions:a €

e Rewards: R ~ r(s,a) Today’s lecture, we will assume

that p and r are known to us.
e State transitions: S ~ p( - | s, a)

 Markov property: next state only depends on current state and action taken.

e Goal: Find a policy, 7 : & — &, that maximizes cumulative reward.

Josiah Hanna, University of Wisconsin — Madison



Data in Reinforcement Learning

Agent learns from the sequence of data seen while acting in task Markov
decision process:

state reward

R, .
0 Ap Rt+1’ St+1’At+1’ X

— \

St+1’Rt+1 ~ p( - ‘StaAt) At+1 — ﬂ(SH-l)

Josiah Hanna, University of Wisconsin — Madison



Reinforcement Learning

state reward

R,
'R,
E‘ »
sl Environment

Agent’s objective is to find policy, &, so as to maximize the expected
cumulative reward from each state:

action

sz(s) — E[ Z tht‘SO — S’At < ﬂ(St)’ St+1’Rt+1 ~ p( ' ‘St’ At)]
=0

— E[Rt-l-l + }/Rt_l_z + }/2RH_3 + ... |SO — S’At <« E(St)a St_|_19Rt-|-1 ~ p( ) ‘StaAt)]

For brevity, E_ will be used for E[ ... |A, < #(S),S,. 1, R,.1 ~ p(-|S,,A,)]

Josiah Hanna, University of Wisconsin — Madison



Policies

 The agent’s decision making rule.

 Formally, a function outputting the conditional probability of selecting an
action in a particular state: 7 : & X & — [0,1].

A deterministic policy is a function mapping states to actions: 7 : & — .

Josiah Hanna, University of Wisconsin — Madison



Returns and Episodes

* Episodes are subsequences of interaction that begin in some initial state
and end In a special terminal state.

 The Initial state of one episode is independent of interaction In the
preceding episode.

. The return fromstep tis: G, :== R, + YR, + y*R,.5 + ...

» Recursive definition: G, = R, | + yG,, ;.

Josiah Hanna, University of Wisconsin — Madison



Value functions

« Many RL algorithms use value functions to aid in long-term credit

assignment.

* Two types of value function: state-value and action-value functions.

ij'(s) — _n[Gt‘St — S] —

q.(s,a) =

- G| S, =5,A, =al =

7l Z YRiii1 1S, = 5]

k=0

k=0

ou| Z Vth+k+1 |5, = s,A, = dal

Josiah Hanna, University of Wisconsin — Madison



Bellman Equation

 Bellman equation expresses state-value, vﬂ(s), INn terms of expected
reward and state-values at next time-step.

V]Z'(S) — Eﬂ[Rt+1 T yvﬂ(SHl) ‘ Sz — S]

 From the definition of expectation:

V()= ) mals) ), ) p(srls,a)lr+yv(s)]

Josiah Hanna, University of Wisconsin — Madison



Optimality

Agent’s objective: find policy that maximizes v_(s) for all s.

The optimal policy — policy that has maximal value in all states. T* > mif
v_«(s) = v_(s) for all states and possible policies.

Possibly multiple but always at least one deterministic optimal policy in a
finite MDP.

n*(s) = argmax g, (s, a) qy(s,a) = E[R  +yv, (S, |5, =s,A, = dl
d

Value of taking action a and then acting
optimally for all future time-steps.

Josiah Hanna, University of Wisconsin — Madison



Optimal Value Functions

* Like all policies, the optimal policy has value functions:

* ﬂ*(S) — _[Rt+1 T ]/Vﬂ*(SH_l) ‘ St — S]

° qﬂ*(sa Cl) — _[Rt+1 T an*(StH) ‘ St — S,At — Cl]

 The optimal policy is greedy with respect to the action-values, i.e.,

7% (s) = argmax g_.(s, a)

Josiah Hanna, University of Wisconsin — Madison



Bellman Optimality Equation

V 7‘((S) — E]Z *[q *(S, A)] Exercise from last time: state-value is expected action-value.
_ Z 7*(a|s) q,(s,a) Definition of expectation.
_ HciaX q*( ) Optimal policy is greedy w.r.t g,
— maax Eﬂ G t | St = s, At = a| Definition of action-value .
— mgx Eﬂ*[Rt+1 + }/Gt+1 ‘ St — S,At = a| Recursive definition of return.
= mgx E_ R .{+yv,(S,. ]S =5,A =d] Definition of state-value.
a
v, (s) = max 2 p(s,,rls,a)lr+yv, (s)] Definition of expectation.
“ s'.r

Josiah Hanna, University of Wisconsin — Madison



Compute value functions and then use to find policies.

Dynamic Programming in RL

Dynamic programming methods turn Bellman equations into value function
updates.

Bellman equation for policy value becomes the policy evaluation update:

Ve () « Y mlals) D ) p(s',rl s, a)lr + yv(s)]

lim v, (s) = v_(s)
k— 00

Bellman optimality equation becomes the value iteration update:

Vi

1(8) < max 2 Z p(s,rls,a)lr +yv(s)]

lim v, (s) = v, (s)
k— 00

Josiah Hanna, University of Wisconsin — Madison



Policy Evaluation

e Given a policy, compute its state- or action-value function.

Vk+1(S) < Zﬂ'(d‘S)Z ZP(S/,V‘S, Cl)[l/'+ yvk(sl)]

Gs1(5:0) <= ). Y p(srls,@)lr+y ) qls,a)]

 When to stop making updates?
Do these updates converge?

 Yes, update is a contraction mapping with fixed points v_and ¢, respectively.
o Convergence proof for value-iteration.

Josiah Hanna, University of Wisconsin — Madison


http://users.isr.ist.utl.pt/~mtjspaan/readingGroup/ProofQlearning.pdf

Policy Evaluation Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Josiah Hanna, University of Wisconsin — Madison



Policy Improvement (Control)

» We have v_(s) for the current policy 7. How can we improve 7?

e Alternate:

» Run policy evaluation updates to find v_.

_ Set n(s) < arg max Z p(s,rls,a)lr+yv (s')]

s’ r

 \Why does this update to 7 lead to an improved policy?

Josiah Hanna, University of Wisconsin — Madison



Policy Improvement Iheorem

Suppose for 7 that there exists s, a such that g (s, a) > v_(s).

Let 7'(s) = a and 7'(§) = #(s) for all other states.
What is true about z'? Why?
» As good as or better than x, i.e., v_(s) > v_(s), Vs
If 7 is sub-optimal, does there exist s, a such that g (s, a) > v_(s)?

* Yes, this follows from Bellman Optimality. Must be at least one state where 7 is not greedy w.r.t.
its action-value function.

. Optimal value function: v_(s) = max g, (s, a) Vs
da

Josiah Hanna, University of Wisconsin — Madison



Policy lteration

First, evaluate x to obtain v_.

Then, update 7 to 7’ such that z'(s) = arg max Z p(s,,rls,a)lr+ v (s)]
d

s’ r
Policy improvement theorem guarantees that v_(s) > v_(s) V's.

Can converge quickly in practice (in terms of policy updates).

Josiah Hanna, University of Wisconsin — Madison



Policy Iteration Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Josiah Hanna, University of Wisconsin — Madison



Value lteration

 What’s wrong with policy iteration?
* Policy evaluation must converge between policy updates.

« We don’t need the exact action-values — just which action has maximal
action-value.

* \alue iteration combines policy evaluation and iteration in one step:

Viy1(8) < max Z p(s,rl|s,a)lr+ yv,(s)]

s’ r

Josiah Hanna, University of Wisconsin — Madison



Value lteration Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Josiah Hanna, University of Wisconsin — Madison



Quiz

Consider the following MDP which has deterministic transitions and y = 0.8.
The policy’s action is shown with a red arrow. What is v_(B) in this MDP?

Two approaches:
e a 1. Compute reward total for entire (infinite)

seguence).
2. Compute v_(G) then v_(A) and then

(B) (¢ v(B).

r(B) = 20: r(A) = 10: r(C) = 20: r(G) = 100

Josiah Hanna, University of Wisconsin — Madison



Q-learning

Value iteration is not a learning method.
* Requires knowledge of transitions and rewards to compute updates.

|deally, compute updates without this knowledge.

Consider the agent is in state s and takes action a and then receives
reward r and transitions to state s’ (s, a, s’, r) is called a transition.

Q-learning: initialize g(s, a) = 0O for all states and actions and then for each
transition seen update:
q(s,a) < (1 —a)q(s,a) + a(r + y max g(s’, a’))

A

Josiah Hanna, University of Wisconsin — Madison



Why is Q-learning reasonable?

e Consider a modified version of value iteration:

Gis1(5.a) < Y p(s’r|s,a)lr + y max g,(s’, a)]
d
s’ r
 Without p and r we cannot compute right hand side but can approximate it
after experiencing a reward and resulting next state.

Qrii(S,a) R Tr+y max q.(s’,a’)

a
 With only a single reward and next state the update is noisy.

 Moves g towards ¢, In expectation but any single update has error.

 Use a step-size parameter, a, to control:
Qir1(s,a) < (1 —a)q(s,a) +a(r+vy max q.(s’,a’))

d Josiah Hanna, University of Wisconsin — Madison



Q-learning Pseudocode

« Parameters: step-size a

o Initialize g(s, a) arbitrarily for all states and actions except terminal states have
g(terminal, a) = 0 for all a.

* Loop for each episode:
e Initialize s
 Loop for each step of episode until s is terminal:
 Choose a from s using an exploration policy (more on this later).
» Take action a and observe r and s’

. q(s,a) < q(s,a) + a(r + ymax g(s’,a’) — g(s,a)) Equivalent to update on previous slide
a/

e § «— §

Josiah Hanna, University of Wisconsin — Madison



Summary

Estimating value functions allow us to compute optimal policies.
Policy Evaluation: find value function for a fixed policy.

Policy lteration: compute optimal policy by iterating 1) policy evaluation
and 2) greedy policy improvement.

Value lteration: directly compute optimal value function.

Q-learning: a learning method based based off of value iteration.

Josiah Hanna, University of Wisconsin — Madison



-
™ -~

‘.‘.. .A__‘ . » ‘ = —
J el T

A A R S
o R P N v - ,_': : - N ~" Sl e N . '51 " ~
S L S e e R R T S i St a ) mlﬂ
‘,Q’fz‘:'];.‘-",...- ..*f‘“{‘c.. o = o
<k e AN = B N RO . v o = : _ b S
e : , v --n. = 3 -

. -i:ﬁ

Thanks Everyone!

Slides adapted from Advanced Topics in RL and based on Chapter 4 of Reinforcement Learning: An Introduction.



