

CS 760: Machine Learning **Reinforcement Learning II**

Guest Lecturer: Adam Labiosa

University of Wisconsin-Madison

November 30, 2023

Announcements

- Homework 7 due December 7 at 9:30 am.
- Final exam: December 18 from 2:45 4:45 pm in the Social Sciences building.
- Course evaluations available until 12/13.

Lecture Goals

At the end of today's lecture, you will be able to:

- 1. Implement fundamental dynamic programming approaches to reinforcement learning.
- 2. Implement the q-learning algorithm.

Markov Decision Processes

RL problems are formalized as Markov decision processes, $\langle \mathcal{S}, \mathcal{A}, r, p \rangle$:

- States: $s \in \mathcal{S}$
- Actions: $a \in \mathcal{A}$
- Rewards: $R \sim r(s, a)$
- State transitions: $S \sim p(\cdot | s, a)$
 - \bullet
- Goal: Find a policy, $\pi: \mathcal{S} \to \mathcal{A}$, that maximizes cumulative reward.

Today's lecture, we will assume that p and r are known to us.

Markov property: next state only depends on current state and action taken.

Data in Reinforcement Learning

Agent learns from the sequence of data seen while acting in task Markov decision process:

Reinforcement Learning

Agent's objective is to find policy, π , so as to maximize the expected cumulative discounted reward from each state:

$$v_{\pi}(s) = \mathbf{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R_{t} | S_{0} = s, A_{t} \leftarrow \pi(S_{t}), S_{t+1}, R_{t+1} \sim p(\cdot | S_{t}, A_{t})\right]$$
$$= \mathbf{E}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots | S_{0} = s, A_{t} \leftarrow \pi(S_{t}), S_{t+1}, R_{t+1} \sim p(\cdot | S_{t})$$

For brevity, \mathbf{E}_{π} will be used for $\mathbf{E}[\ldots | A_t \leftarrow \pi(S_t),$

$$S_{t+1}, R_{t+1} \sim p(\cdot | S_t, A_t)]$$

- The agent's decision making rule.
- Formally, a function outputting the conditional probability of selecting an action in a particular state: $\pi : \mathcal{S} \times \mathcal{A} \rightarrow [0,1]$.
- A deterministic policy is a function mapping states to actions: $\pi : \mathcal{S} \to \mathscr{A}$.

Policies

Returns and Episodes

- Episodes are subsequences of interaction that begin in some initial state and end in a special terminal state.
- The initial state of one episode is independent of interaction in the preceding episode.
- The return from step t is: $G_t := R_t$
- Recursive definition: $G_t = R_{t+1} + \gamma G_{t+1}$.

$$_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots$$

Value functions

- Many RL algorithms use value functions to aid in long-term credit assignment.
- Two types of value function: state-value and action-value functions.

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t | S_t = s] = \mathbb{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s]$$

= $\mathbb{E}_{\pi}[G_t | S_t = s, A_t = a] = \mathbb{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s, A_t = a]$

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t | S_t = s] = \mathbb{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s]$$
$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a] = \mathbb{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s, A_t = a]$$

Bellman Equation

• Bellman equation expresses state-value, $v_{\pi}(s)$, in terms of expected reward and state-values at next time-step.

$$v_{\pi}(s) = \mathbf{E}_{\pi}[R_{t+1}]$$

• From the definition of expectation:

$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s'}^{n}$$

 $_{1} + \gamma v_{\pi}(S_{t+1}) | S_t = S]$

 $\sum p(s', r \mid s, a)[r + \gamma v_{\pi}(s')]$

Optimality

- Agent's objective: find policy that maximizes $v_{\pi}(s)$ for all s.
- The optimal policy policy that has maximal value in all states. $\pi^* \geq \pi$ if $v_{\pi\star}(s) \ge v_{\pi}(s)$ for all states and possible policies.
- Possibly multiple but always at least one deterministic optimal policy in a finite MDP.

•
$$\pi^{\star}(s) = \arg\max_{a} q_{\star}(s, a)$$
 $q_{\star}(s, a) = \mathbf{E}[R_{t+1} + \gamma v_{\star}(S_{t+1}) | S_t = s, A_t = a]$

Value of taking action a and then acting optimally for all future time-steps.

Optimal Value Functions

• Like all policies, the optimal policy has value functions:

•
$$v_{\pi^*}(s) = \mathbb{E}[R_{t+1} + \gamma v_{\pi^*}(S_{t+1})]$$

- $q_{\pi^*}(s, a) = \mathbb{E}[R_{t+1} + \gamma v_{\pi^*}(S_{t+1}) | S_t = s, A_t = a]$
- The optimal policy is greedy with respect to the action-values, i.e., $\pi^{\star}(s) = \arg \max q_{\pi^{\star}}(s, a)$ \boldsymbol{a}

 $S_{t} = s$]

Bellman Optimality Equation $v_{\star}(s) = \mathbf{E}_{\pi^{\star}}[q_{\star}(s,A)]$

 $= \sum \pi^{\star}(a \,|\, s) q_{\star}(s, a)$ $= \max^{a} q_{\star}(s, a)$ \mathcal{A} $= \max_{a} \mathbf{E}_{\pi^{\star}}[G_t | S_t = s, A_t = a]$ $= \max_{a} \mathbf{E}_{\pi^{\star}}[R_{t+1} + \gamma G_{t+1} | S_t = s, A_t = a]$ = $\max_{a} \mathbf{E}_{\pi^{\star}}[R_{t+1} + \gamma v_{\star}(S_{t+1}) | S_t = s, A_t = a]$ \boldsymbol{a} $v_{\star}(s) = \max_{a} \sum_{s} p(s', r \mid s, a) [r + \gamma v_{\star}(s')]$ s',r

Exercise from last time: state-value is expected action-value.

Definition of expectation.

Optimal policy is greedy w.r.t q_{\star}

Definition of action-value.

Recursive definition of return.

Definition of state-value.

Definition of expectation.

Dynamic Programming in RL

- Compute value functions and then use to find policies.
- Dynamic programming methods turn Bellman equations into value function updates.
- Bellman equation for policy value becomes the policy evaluation update:

$$v_{k+1}(s) \leftarrow \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', s') = \sum_{s' \in r} p(s', s')$$

Bellman optimality equation becomes the value iteration update:

$$v_{k+1}(s) \leftarrow \max_{a} \sum_{s' \neq r} \sum_{r} p(s', r \mid s, a)$$

 $r[s,a)[r + \gamma v_k(s')] \qquad \lim_{k \to \infty} v_k(s) = v_{\pi}(s)$

 $(r + \gamma v_k(s'))$

$$\lim_{k \to \infty} v_k(s) = v_\star(s)$$

Policy Evaluation

Given a policy, compute its state- or action-value function.

$$v_{k+1}(s) \leftarrow \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) [r + \gamma v_k(s')]$$
$$q_{k+1}(s, a) \leftarrow \sum_{s'} \sum_{r} p(s', r \mid s, a) [r + \gamma \sum_{a'} q_k(s', a')]$$

- When to stop making updates?
- Do these updates converge?

 - Convergence proof for value-iteration.

• Yes, update is a contraction mapping with fixed points v_{π} and q_{π} respectively.

Policy Evaluation Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Policy Improvement (Control)

- We have $v_{\pi}(s)$ for the current policy π . How can we improve π ?
- Alternate:
 - Run policy evaluation updates to find v_{π} .

• Set
$$\pi(s) \leftarrow \arg \max_{a} \sum_{s',r} p(s', r)$$

Why does this update to π lead to an improved policy? \bullet

 $r[s,a)[r+\gamma v_{\pi}(s')]$

Policy Improvement Theorem

- Suppose for π that there exists s, a such that $q_{\pi}(s, a) \ge v_{\pi}(s)$.
- Let $\pi'(s) = a$ and $\pi'(\tilde{s}) = \pi(\tilde{s})$ for all other states.
- What is true about π' ? Why?
 - As good as or better than π , i.e., $v_{\pi'}(s) \ge v_{\pi}(s), \forall s$
- If π is sub-optimal, does there exist s, a such that $q_{\pi}(s, a) \ge v_{\pi}(s)$?
 - its action-value function.
 - Optimal value function: $v_{\star}(s) = \max q_{\star}(s, a) \forall s$

• Yes, this follows from Bellman Optimality. Must be at least one state where π is not greedy w.r.t.

- First, evaluate π to obtain v_{π} .

- Policy improvement theorem guarantees that $v_{\pi'}(s) \ge v_{\pi}(s) \forall s$.
- Can converge quickly in practice (in terms of policy updates).

Policy Iteration

Then, update π to π' such that $\pi'(s) = \arg \max_{a} \sum_{s',r} p(s', r \mid s, a) [r + v_{\pi}(s')]$

Policy Iteration Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

- What's wrong with policy iteration?
 - Policy evaluation must converge between policy updates.
 - We don't need the exact action-values just which action has maximal action-value.
- Value iteration combines policy evaluation and iteration in one step:

$$v_{k+1}(s) \leftarrow \max_{a} \sum_{s',r} p(s',r \mid s,a)[r + \gamma v_k(s')]$$

Value Iteration

Value Iteration Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

r(B) = 20; r(A) = 10; r(C) = 20; r(G) = 100

Quiz

Consider the following MDP which has deterministic transitions and $\gamma = 0.8$. The policy's action is shown with a red arrow. What is $v_{\pi}(B)$ in this MDP?

Two approaches:

- 1. Compute reward total for entire (infinite) sequence).
- 2. Compute $v_{\pi}(G)$ then $v_{\pi}(A)$ and then $v_{\pi}(B)$.

Q-learning

- Value iteration is not a learning method.
 - Requires knowledge of transitions and rewards to compute updates.
- Ideally, compute updates without this knowledge.
- Consider the agent is in state s and takes action a and then receives reward r and transitions to state s'; (s, a, s', r) is called a transition.
- Q-learning: initialize q(s, a) = 0 for all states and actions and then for each transition seen update:

 $q(s,a) \leftarrow (1-\alpha)q(s,a)$

$$a) + \alpha(r + \gamma \max_{a'} q(s', a'))$$

Why is Q-learning reasonable?

- Consider a modified version of value iteration: $q_{k+1}(s,a) \leftarrow \sum$
- after experiencing a reward and resulting next state. $q_{k+1}(s,a) \approx$
- With only a single reward and next state the update is noisy.

 - Use a step-size parameter, α , to control: $q_{k+1}(s,a) \leftarrow (1-\alpha)q_k(a)$

$$\sum_{i',r} p(s', r \mid s, a) [r + \gamma \max_{a'} q_k(s', a')]$$

• Without p and r we cannot compute right hand side **but** can approximate it

$$r + \gamma \max_{a'} q_k(s', a')$$

• Moves q towards q_{\star} in expectation but any single update has error.

$$(s, a) + \alpha(r + \gamma \max_{a'} q_k(s', a'))$$

- Parameters: step-size α
- Initialize q(s, a) arbitrarily for all states and actions except terminal states have q(terminal, a) = 0 for all a.
- Loop for each episode:
 - Initialize s
 - Loop for each step of episode until *s* is terminal:
 - Choose a from s using an exploration policy (more on this later).
 - Take action a and observe r and s'
 - $q(s,a) \leftarrow q(s,a) + \alpha(r + \gamma \max q(s',a') q(s,a))$
 - $s \leftarrow s'$

Q-learning Pseudocode

Equivalent to update on previous slide

Summary

- Estimating value functions allow us to compute optimal policies.
- Policy Evaluation: find value function for a fixed policy.
- Policy Iteration: compute optimal policy by iterating 1) policy evaluation and 2) greedy policy improvement.
- Value Iteration: directly compute optimal value function.
- Q-learning: a learning method based based off of value iteration.

Slides adapted from Advanced Topics in RL and based on Chapter 4 of Reinforcement Learning: An Introduction.

Thanks Everyone!