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Announcements
• Homework 7 due December 7 at 9:30 am.


• Final exam: December 18 from 2:45 - 4:45 pm in the Social Sciences 
building.


• Course evaluations available until 12/13.
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Lecture Goals
At the end of today’s lecture, you will be able to: 

1. Implement fundamental dynamic programming approaches to 
reinforcement learning.


2. Implement the q-learning algorithm.
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Markov Decision Processes
RL problems are formalized as Markov decision processes, :


• States: 


• Actions: 


• Rewards: 


• State transitions: 


• Markov property: next state only depends on current state and action taken. 

• Goal: Find a policy, , that maximizes cumulative reward.

⟨𝒮, 𝒜, r, p⟩

s ∈ 𝒮

a ∈ 𝒜

R ∼ r(s, a)

S ∼ p( ⋅ |s, a)

π : 𝒮 → 𝒜

Today’s lecture, we will assume 
that  and  are known to us.p r
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Data in Reinforcement Learning

. . . St, At, Rt+1, St+1, At+1, . . .

St+1, Rt+1 ∼ p( ⋅ |St, At) At+1 ← π(St+1)

Agent learns from the sequence of data seen while acting in task Markov 
decision process:
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Reinforcement Learning

Agent’s objective is to find policy, , so as to maximize the expected 
cumulative discounted reward from each state:

π

vπ(s) = E[
∞

∑
t=0

γtRt |S0 = s, At ← π(St), St+1, Rt+1 ∼ p( ⋅ |St, At)]

= E[Rt+1 + γRt+2 + γ2Rt+3 + . . . |S0 = s, At ← π(St), St+1, Rt+1 ∼ p( ⋅ |St, At)]

For brevity,  will be used for Eπ E[ . . . |At ← π(St), St+1, Rt+1 ∼ p( ⋅ |St, At)]
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Policies

• The agent’s decision making rule.


• Formally, a function outputting the conditional probability of selecting an 
action in a particular state: .


• A deterministic policy is a function mapping states to actions: .

π : 𝒮 × 𝒜 → [0,1]

π : 𝒮 → 𝒜
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Returns and Episodes

• Episodes are subsequences of interaction that begin in some initial state 
and end in a special terminal state. 


• The initial state of one episode is independent of interaction in the 
preceding episode. 

• The return from step t is: 


• Recursive definition: . 

Gt := Rt+1 + γRt+2 + γ2Rt+3 + . . .

Gt = Rt+1 + γGt+1
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Value functions

• Many RL algorithms use value functions to aid in long-term credit 
assignment. 

• Two types of value function: state-value and action-value functions.

vπ(s) = 𝔼π[Gt |St = s] = 𝔼π[
∞

∑
k=0

γkRt+k+1 |St = s]

qπ(s, a) = 𝔼π[Gt |St = s, At = a] = 𝔼π[
∞

∑
k=0

γkRt+k+1 |St = s, At = a]
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Bellman Equation
• Bellman equation expresses state-value, , in terms of expected 

reward and state-values at next time-step.


• From the definition of expectation: 

vπ(s)

vπ(s) = ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvπ(s′￼)]

vπ(s) = Eπ[Rt+1 + γvπ(St+1) |St = s]
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Optimality

• Agent’s objective: find policy that maximizes  for all s.


• The optimal policy — policy that has maximal value in all states.  if 
 for all states and possible policies.


• Possibly multiple but always at least one deterministic optimal policy in a 
finite MDP.


•

vπ(s)

π⋆ ≥ π
vπ⋆(s) ≥ vπ(s)

π⋆(s) = arg max
a

q⋆(s, a) q⋆(s, a) = E[Rt+1 + γv⋆(St+1) |St = s, At = a]

Value of taking action a and then acting 
optimally for all future time-steps.
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Optimal Value Functions

• Like all policies, the optimal policy has value functions:


• 


• 


• The optimal policy is greedy with respect to the action-values, i.e., 

vπ⋆(s) = 𝔼[Rt+1 + γvπ⋆(St+1) |St = s]

qπ⋆(s, a) = 𝔼[Rt+1 + γvπ⋆(St+1) |St = s, At = a]

π⋆(s) = arg max
a

qπ⋆(s, a)
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Bellman Optimality Equation
v⋆(s) = Eπ⋆[q⋆(s, A)]

= ∑
a

π⋆(a |s)q⋆(s, a)

= max
a

q⋆(s, a)

= max
a

Eπ⋆[Gt |St = s, At = a]

= max
a

Eπ⋆[Rt+1 + γGt+1 |St = s, At = a]

= max
a

Eπ⋆[Rt+1 + γv⋆(St+1) |St = s, At = a]

v⋆(s) = max
a ∑

s′￼,r

p(s′￼, r |s, a)[r + γv⋆(s′￼)]

Exercise from last time: state-value is expected action-value.


Definition of expectation.


Optimal policy is greedy w.r.t 


Definition of action-value .


Recursive definition of return.


Definition of state-value.


Definition of expectation.

q⋆
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Dynamic Programming in RL
• Compute value functions and then use to find policies.


• Dynamic programming methods turn Bellman equations into value function 
updates.


• Bellman equation for policy value becomes the policy evaluation update:


• Bellman optimality equation becomes the value iteration update:

vk+1(s) ← ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvk(s′￼)]

vk+1(s) ← max
a ∑

s′￼

∑
r

p(s′￼, r |s, a)[r + γvk(s′￼)]

lim
k→∞

vk(s) = vπ(s)

lim
k→∞

vk(s) = v⋆(s)
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Policy Evaluation
• Given a policy, compute its state- or action-value function.


• When to stop making updates?

• Do these updates converge?


• Yes, update is a contraction mapping with fixed points  and  respectively.

• Convergence proof for value-iteration.

vπ qπ

vk+1(s) ← ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvk(s′￼)]

qk+1(s, a) ← ∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γ∑
a′￼

qk(s′￼, a′￼)]

http://users.isr.ist.utl.pt/~mtjspaan/readingGroup/ProofQlearning.pdf
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Policy Evaluation Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
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Policy Improvement (Control)
• We have  for the current policy . How can we improve ?


• Alternate:


• Run policy evaluation updates to find .


• Set 


• Why does this update to  lead to an improved policy?

vπ(s) π π

vπ

π(s) ← arg max
a ∑

s′￼,r

p(s′￼, r |s, a)[r + γvπ(s′￼)]

π

vk+1(s) ← ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvk(s′￼)]
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Policy Improvement Theorem
• Suppose for  that there exists  such that .


• Let  and  for all other states.


• What is true about  Why?


• As good as or better than , i.e., 


• If  is sub-optimal, does there exist  such that ?


• Yes, this follows from Bellman Optimality. Must be at least one state where  is not greedy w.r.t. 
its action-value function.


• Optimal value function: 

π s, a qπ(s, a) ≥ vπ(s)

π′￼(s) = a π′￼(s̃) = π(s̃)

π′￼?

π vπ′￼
(s) ≥ vπ(s), ∀s

π s, a qπ(s, a) ≥ vπ(s)

π

v⋆(s) = max
a

q⋆(s, a)∀s

vk+1(s) ← ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvk(s′￼)]
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Policy Iteration
• First, evaluate  to obtain .


• Then, update  to  such that 


• Policy improvement theorem guarantees that .


• Can converge quickly in practice (in terms of policy updates).

π vπ

π π′￼ π′￼(s) = arg max
a ∑

s′￼,r

p(s′￼, r |s, a)[r + vπ(s′￼)]

vπ′￼
(s) ≥ vπ(s)∀s

vk+1(s) ← ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvk(s′￼)]
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Policy Iteration Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
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Value Iteration
• What’s wrong with policy iteration?


• Policy evaluation must converge between policy updates.


• We don’t need the exact action-values — just which action has maximal 
action-value.


• Value iteration combines policy evaluation and iteration in one step:

vk+1(s) ← ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvk(s′￼)]

vk+1(s) ← max
a ∑

s′￼,r

p(s′￼, r |s, a)[r + γvk(s′￼)]
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Value Iteration Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
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Consider the following MDP which has deterministic transitions and . 
The policy’s action is shown with a red arrow. What is  in this MDP?

γ = 0.8
vπ(B)

Quiz

GA

B C

r(B) = 20; r(A) = 10; r(C) = 20; r(G) = 100

Two approaches: 

1. Compute reward total for entire (infinite) 

sequence).

2. Compute  then  and then 

.
vπ(G) vπ(A)

vπ(B)
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Q-learning
• Value iteration is not a learning method.


• Requires knowledge of transitions and rewards to compute updates.


• Ideally, compute updates without this knowledge.


• Consider the agent is in state  and takes action  and then receives 
reward  and transitions to state ;  is called a transition.


• Q-learning: initialize  for all states and actions and then for each 
transition seen update:

s a
r s′￼ (s, a, s′￼, r)

q(s, a) = 0

vk+1(s) ← ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvk(s′￼)]

q(s, a) ← (1 − α)q(s, a) + α(r + γ max
a′￼

q(s′￼, a′￼))
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Why is Q-learning reasonable?
• Consider a modified version of value iteration:


• Without  and  we cannot compute right hand side but can approximate it 
after experiencing a reward and resulting next state.


• With only a single reward and next state the update is noisy.


• Moves  towards  in expectation but any single update has error.


• Use a step-size parameter, , to control:

p r

q q⋆

α

vk+1(s) ← ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvk(s′￼)]

qk+1(s, a) ← ∑
s′￼,r

p(s′￼, r |s, a)[r + γ max
a′￼

qk(s′￼, a′￼)]

qk+1(s, a) ← (1 − α)qk(s, a) + α(r + γ max
a′￼

qk(s′￼, a′￼))

qk+1(s, a) ≈ r + γ max
a′￼

qk(s′￼, a′￼)
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Q-learning Pseudocode
• Parameters: step-size 


• Initialize  arbitrarily for all states and actions except terminal states have 
 for all a.


• Loop for each episode:


• Initialize 


• Loop for each step of episode until  is terminal:


• Choose a from  using an exploration policy (more on this later).


• Take action a and observe  and 


• 


•

α
q(s, a)

q(𝚝𝚎𝚛𝚖𝚒𝚗𝚊𝚕, a) = 0

s
s

s
r s′￼

q(s, a) ← q(s, a) + α(r + γ max
a′￼

q(s′￼, a′￼) − q(s, a))

s ← s′￼

vk+1(s) ← ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvk(s′￼)]

Equivalent to update on previous slide
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Summary

• Estimating value functions allow us to compute optimal policies.


• Policy Evaluation: find value function for a fixed policy.


• Policy Iteration: compute optimal policy by iterating 1) policy evaluation 
and 2) greedy policy improvement.


• Value Iteration: directly compute optimal value function.


• Q-learning: a learning method based based off of value iteration.



Thanks Everyone!

Slides adapted from Advanced Topics in RL and based on Chapter 4 of Reinforcement Learning: An Introduction.


