
CS 760: Machine Learning
Reinforcement Learning III

Josiah Hanna

University of Wisconsin-Madison

December 5, 2023

Josiah Hanna, University of Wisconsin — Madison

Announcements
• Homework 7 due December 12 at 9:30 am.

• Final exam: December 18 from 2:45 - 4:45 pm in the Social Sciences
building.

• Course evaluations available until 12/13.

• Currently at 35% participation. > 50% to receive a negative topic list for
final.

Josiah Hanna, University of Wisconsin — Madison

Lecture Goals
At the end of today’s lecture, you will be able to:

1. Implement fundamental dynamic programming approaches to
reinforcement learning.

2. Implement the q-learning algorithm.

3. Explain the key techniques necessary for using neural networks in q-
learning.

Josiah Hanna, University of Wisconsin — Madison

Quiz
You are a video game company and you are developing a car racing game. You
want to develop an AI bot that can beat human drivers. You decide to use
reinforcement learning to train this bot. Describe how you might define the task
Markov decision process.

Possible
States: Position and velocity for all agents on the track. Key requirement is that state is a
sufficient summary of the past for predicting the future.
Actions: driving controls
Reward: +1 for winning, -1 for losing, other rewards for exhibiting desired behaviors.

Josiah Hanna, University of Wisconsin — Madison

Data in Reinforcement Learning

. . . St, At, Rt+1, St+1, At+1, . . .

St+1, Rt+1 ∼ p(⋅ |St, At) At+1 ← π(St+1)

Agent learns from the sequence of data seen while acting in task Markov
decision process:

Josiah Hanna, University of Wisconsin — Madison

Reinforcement Learning

Agent’s objective is to find policy, , so as to maximize the expected
cumulative discounted reward from each state:

π

vπ(s) = E[
∞

∑
t=0

γtRt |S0 = s, At ← π(St), St+1, Rt+1 ∼ p(⋅ |St, At)]

For brevity, will be used for Eπ E[. . . |At ← π(St), St+1, Rt+1 ∼ p(⋅ |St, At)]

For compactness, using for next states and rewards.p

Josiah Hanna, University of Wisconsin — Madison

Bellman Equation
• Bellman equation expresses state-value, , in terms of expected

reward and state-values at next time-step.

• Or to be more explicit, using the definition of expectation:

vπ(s)

vπ(s) = ∑
a

π(a |s)∑
s′

∑
r

p(s′ , r |s, a)[r + γvπ(s′)]

vπ(s) = Eπ[Rt+1 + γvπ(St+1) |St = s]

Note: stochastic policy; gives probability for action a in state s.

Josiah Hanna, University of Wisconsin — Madison

Optimality

• Agent’s objective: find policy that maximizes for all s.

• Possibly multiple but always at least one deterministic optimal policy in a
finite MDP.

•

vπ(s)

π⋆(s) = arg max
a

q⋆(s, a) q⋆(s, a) = E[Rt+1 + γv⋆(St+1) |St = s, At = a]

Value of taking action a and then acting
optimally for all future time-steps.

Josiah Hanna, University of Wisconsin — Madison

Optimal Value Functions

• Like all policies, the optimal policy has a state-value and action-value
function:

•

•

• The optimal policy is greedy with respect to the optimal action-values, i.e.,

v⋆(s) = 𝔼[Rt+1 + γv⋆(St+1) |St = s]

q⋆(s, a) = 𝔼[Rt+1 + γv⋆(St+1) |St = s, At = a]

π⋆(s) = arg max
a

q⋆(s, a)

Josiah Hanna, University of Wisconsin — Madison

Bellman Optimality Equation
v⋆(s) = Eπ⋆[q⋆(s, a)]

= ∑
a

π⋆(a |s)q⋆(s, a)

= max
a

q⋆(s, a)

= max
a

Eπ⋆[Gt |St = s, At = a]

= max
a

Eπ⋆[Rt+1 + γGt+1 |St = s, At = a]

= max
a

Eπ⋆[Rt+1 + γv⋆(St+1) |St = s, At = a]

v⋆(s) = max
a ∑

s′ ,r

p(s′ , r |s, a)[r + γv⋆(s′)]

State-value is expected action-value.

Definition of expectation.

Optimal policy is greedy w.r.t

Definition of action-value .

Recursive definition of return.

Definition of state-value.

Definition of expectation.

q⋆

Josiah Hanna, University of Wisconsin — Madison

Value Iteration
• Turn Bellman optimality equation into a value function update rule.

• Maintain a look-up table of values, one for each state.

• Set all values to zero initially, for all states .

• Then loop over all states and update until convergence to :

• Optimal policy can be determined as:

v0(s) ← 0 s

v⋆(s)

vk+1(s) ← ∑
a

π(a |s)∑
s′

∑
r

p(s′ , r |s, a)[r + γvk(s′)]

vk+1(s) ← max
a ∑

s′ ,r

p(s′ , r |s, a)[r + γvk(s′)]

π⋆(s) ← arg max
a

q⋆(s, a) = arg max
a ∑

s′ ,r

P(s′ , r |s, a)[r + γv⋆(s′)]

Josiah Hanna, University of Wisconsin — Madison

Value Iteration Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Josiah Hanna, University of Wisconsin — Madison

Q-learning
• Value iteration is not a learning method.

• Requires knowledge of transitions and rewards to compute updates and
determine optimal policy.

• Instead, want to learn from transitions (s,a,s’,r) as the agent experiences
them: Agent is in state and takes action and then receives reward
and transitions to state .

• Q-learning: initialize for all states and actions and then, for the
transition at time t, update:

s a r
s′

q(s, a) = 0

vk+1(s) ← ∑
a

π(a |s)∑
s′

∑
r

p(s′ , r |s, a)[r + γvk(s′)]

qt+1(st, at) ← (1 − α)q(st, at) + α(rt+1 + γ max
a′

q(st+1, a′))
Old Estimate Learning Target

Learning rate

Josiah Hanna, University of Wisconsin — Madison

Why is Q-learning reasonable?
• Consider a modified version of value iteration that learns action-values:

• Without we cannot compute right hand side but can approximate it after
experiencing a single sample of the reward and resulting next state.

• With only a single reward and next state the update is noisy.

• Moves towards in expectation but any single update has error.

• Use a step-size parameter, , to mitigate noise:

p

q q⋆

α ∈ (0,1)

vk+1(s) ← ∑
a

π(a |s)∑
s′

∑
r

p(s′ , r |s, a)[r + γvk(s′)]

qk+1(s, a) ← ∑
s′ ,r

p(s′ , r |s, a)[r + γ max
a′

qk(s′ , a′)]

qk+1(s, a) ← (1 − α)qk(s, a) + α(r + γ max
a′

qk(s′ , a′))

qk+1(s, a) ≈ r + γ max
a′

qk(s′ , a′)

Josiah Hanna, University of Wisconsin — Madison

Q-learning Pseudocode
• Parameters: step-size , discount .

• Initialize arbitrarily for all states and actions except terminal states have
 for all a.

• Loop for each episode:

• Initialize initial state

• Loop for each step of episode until is terminal:

• Choose a from using an exploration policy (next slide).

• Take action a and observe and

•

•

α ∈ (0,1) γ ∈ [0,1)
q(s, a)

q(𝚝𝚎𝚛𝚖𝚒𝚗𝚊𝚕, a) = 0

s
s

s
r s′

q(s, a) ← q(s, a) + α(r + γ max
a′

q(s′ , a′) − q(s, a))

s ← s′

vk+1(s) ← ∑
a

π(a |s)∑
s′

∑
r

p(s′ , r |s, a)[r + γvk(s′)]

Equivalent to update on previous slide

Converges to !q⋆(s, a)
*assuming each (s,a) visited an infinite number of times

Josiah Hanna, University of Wisconsin — Madison

Q-learning Exploration
• Must execute some policy to produce data during learning. What policy should we

follow?

• Greedy policy: in state take action .

• Consider an MDP with some state and two actions that both (deterministically) lead to
the same state . Action 1 gives a reward of +1 and action 2 gives a reward of +100. We
initialize action-values to be zero and happen to take action 1 on our first visit to . What
will the greedy policy do on the next visit to ?

• Exploitation only leads to sub-optimal convergence.

• -greedy: With probability take a random action, with probability select the
greedy action.

• How to set

s arg max
a

q(s, a)

s
s′

s
s

ϵ ϵ 1 − ϵ

ϵ?

vk+1(s) ← ∑
a

π(a |s)∑
s′

∑
r

p(s′ , r |s, a)[r + γvk(s′)]

Josiah Hanna, University of Wisconsin — Madison

Q-learning Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

Josiah Hanna, University of Wisconsin — Madison

Q-learning with Function Approximation
• What is difficult about representing action-value function with a look-up table?

• Intractable with large numbers of states and actions.

• Could instead use a class of functions that generalizes to unseen states and
actions. Examples: linear functions or neural networks.

• How to train while learning from transitions ?

• Imagine we had an oracle that told us .

• Could create supervised learning instances)

• Then we could use supervised learning to train via regression.

• We don’t have such an oracle so instead we will use to provide the
training target.

(s, a, s′ , r)
q*(s, a)

((s, a), r + γ max
a′

q*(s′ , a′))

q(s, a, θ)
q(s, a, θ)

vk+1(s) ← ∑
a

π(a |s)∑
s′

∑
r

p(s′ , r |s, a)[r + γvk(s′)]

Josiah Hanna, University of Wisconsin — Madison

Semi-gradient Learning in RL
• Instead of using a table, represent action-values as a function with learnable

parameters, .

• Semi-Gradient Q-learning:

•

• Example: parameter vector, , could be all weights and biases of a neural network.

• Use back propagation to compute gradient of for any .

• Adjust each weight in proportion to gradient of output times temporal difference error.

q(s, a, θ)

θt+1 ← θt + α(rt+1 + γ max
a′

q(st+1, a′ , θt) − q(st, at, θt))∇q(st, at, θt)

θt

q(s, a, θ) (s, a)

Temporal difference error

Josiah Hanna, University of Wisconsin — Madison

Stability with Neural Networks
• Neural networks are typically trained with i.i.d. data and fixed targets.

• and we are learning some underlying function such that
.

• Using neural networks with Q-learning breaks both assumptions.

• Training may be unstable and diverge; lacks theoretical guarantees.

• Deep Q-Network (DQN) uses two key methods to stabilize training:

• Experience replay: keep around old data to update network.

• Target networks: Use an older copy of network parameters to

compute the target for updates; wpdate this older copy at a slower
rate than main parameters used.

xi, yi ∼ D
f(xi) = yi

vk+1(s) ← ∑
a

π(a |s)∑
s′

∑
r

p(s′ , r |s, a)[r + γvk(s′)]

Josiah Hanna, University of Wisconsin — Madison

Experience Replay
• The basic semi-gradient Q-learning algorithm processes

transitions as they are experienced and then discards them.

• Experience replay: save the most recent transitions (in DQN, the past 1
million) and use a random subset to update the action-value function.

• Re-uses data; reduces correlation between samples.

• Learning becomes more like supervised neural network training where
we train from a static data set.

• Other choices besides random subset can improve performance [1].

(s, a, s′ , r)

[1] Prioritized Experience Replay. Schaul et al. 2015.

Josiah Hanna, University of Wisconsin — Madison

Target Networks
• The basic Q-learning algorithm always uses the most recent action-values

to form the training target

• DQN uses a separate target network to compute .

• The target network is infrequently updated by setting the target network
parameters to be the same as the main network’s parameters, i.e.,

.

• Makes the learning target more stable as in supervised learning.

rt+1 + γ max
a′

q(st+1, a′ , θ)

γ max
a′

q(st+1, a′ , θ̃)

θ̃ ← θ

Josiah Hanna, University of Wisconsin — Madison

DQN Architecture

Josiah Hanna, University of Wisconsin — Madison

Looking Forward

• DQN (arguably) launched a surge of
interest in deep reinforcement learning
that has led to many exciting new
applications and RL developments.

• DQN is widely used in practice though
many improvements have been made.

https://www.deepmind.com/blog/agent57-outperforming-the-human-atari-benchmark
Rainbow: Combining Improvements in Deep Reinforcement Learning. Hessel et al. 2018.

Josiah Hanna, University of Wisconsin — Madison

Consider the following MDP which has deterministic transitions and .
In each state, the agent can either stay in the current state or take an action
that takes it to the state given by the red arrows. We run q-learning with all
action-values initially set to 0.

γ = 0.8

Quiz

GA

B C

r(B) = 20; r(A) = 10; r(C) = 20; r(G) = 100

Josiah Hanna, University of Wisconsin — Madison

Summary

• Value Iteration: directly compute optimal value function given knowledge
of task transition and reward function.

• Q-learning: a learning method that approximates value iteration.

• Deep Q-learning: approximates Q-learning with deep neural networks.

Thanks Everyone!

Slides adapted from Advanced Topics in RL and based on Chapter 4 of Reinforcement Learning: An Introduction.

