4 : R - T A M'-ﬁ}-"r-"?:h“'.;,d
- P N S o L L Tt AR . o A e T ~ - “
e L Sy FENEN e e 2 Y mmsm. e ..-:N?, TN~ P
: . : e 23 . .
) - - - - . > ~ P . B — - o v e ¥ 9 o renws’ 3 S S
— 's.' & - g - e : - -y -‘~..’. e - B el 3 o N, Al - B oy N '.. |
-) e e - S . vV e_s - £ v - -
. ‘-....v - - G - B - .‘ S
e . A"“-~“.‘P "_" - o 5 s - & >XL ::. 'A« _‘-\ BOA M
— -_ " . Ay
...l"‘ 11
't 3
R, . (== p—

CS 760: Machine Learnin
Reinforcement Learning

Josiah Hanna

University of Wisconsin-Madison

December 7, 2023

Announcements

Homework 7 due December 12 at 9:30 am.

Final exam: December 18 from 2:45 - 4:45 pm in the Social Sciences
building.

Course evaluations available until 12/13.

 Currently at 52% participation. > 75% to receive 2 points extra credit on
final.

| ecture Goals

At the end of today’s lecture, you will be able to:

1. EXxplain the key techniqgues necessary for using neural networks in g-
learning.

2. Explain the policy gradient objective and optimization approach.

3. Explain how to combine value-based and policy-based reinforcement
learning to obtain actor-critic methods.

Beyond lables

So far:

e Represent everything with a table
«Value function V: table size |S| % 1

¢Q function: table size |S| X A'

«ToO big to store in memory for many tasks

eBackgammon: 1020 states. Go: 3361 states
Need some other approach

Semi-gradient Q-Learning

Instead of using a table, represent action-values as a function with learnable
parameters, g(s, a, 0).

Semi-Gradient Q-learning:

o U1 < 0+ a(ry +ymaxq(s,,a,0)—q(s,a,0))Vq(s,a,0)
a

Temporal difference error
Example: parameter vector, @, could be all weights and biases of a neural network.

Use back propagation to compute gradient of g(s, a, 8) for any (s, a).

Adjust each weight in proportion to gradient of output times temporal difference error.

Deep Q-learning

Convolution Convolution Fully connected
w w w

ﬁ
=
oy
o
“
-
@
0
~
@
Q

|
®

O
&
&

rMelelcVISIST
SEEELEEERE <]

A
+
O

Mnih et al, "Human-level control through deep reinforcement learning"

https://www.youtube.com/watch?v=TmPfTpjtdgg

Stability with Neural Networks

* Neural networks are typically trained with 1.i.d. data and fixed targets.

e X;,¥; ~ D and we are learning some underlying function such that
Jx;) = y;
* Using neural networks with Q-learning breaks both assumptions.
* Training may be unstable and diverge; lacks theoretical guarantees.
 Deep Q-Network (DQN) uses two key methods to stabilize training:
* EXperience replay: keep around old data to update network.

o Target networks: Use an older copy of network parameters to
compute the target for updates; update this older copy at a slower
rate than main parameters used.

EXperience Replay

» The basic semi-gradient Q-learning algorithm processes (s, a, s’, r)
transitions as they are experienced and then discards them.

 Experience replay: save the most recent transitions (in DQN, the past 1
million) and use a random subset to update the action-value function.

 Re-uses data and reduces correlation between samples.

* Learning becomes more like supervised neural network training where
we train from a static data set.

* Other choices besides random subset can improve performance [1].

[1] Prioritized Experience Replay. Schaul et al. 2015.

larget Networks

* The basic Q-learning algorithm always uses the most recent action-values

to form the training target ., | + y max q(s,, {,a’, 0)
a/

. DQN uses a separate target network to compute y max g(s,, {, d’, 0).
a/

* The target network is infrequently updated by setting the target network
parameters to be the same as the main network’s parameters, I.e.,

0 < 0.

 Makes the learning target more stable as in supervised learning.

DQN Architecture

DQN Loss

Gracdhent
wrt loss

argmax_Q(s,a; 8)

. Target
Environment hEEEEEEEEN Q Network 5

Q Network

L ooking Forward

DQN
DDQN
Prioritized DDQN

i Dueling DDQN /\/\
200% - A3C

|1

* DQN (arguably) launched a surge of " romoon PN M
interest in deep reinforcement learning = foneo AN

that has led to many exciting new

applications and RL developments.

 DQN is widely used in practice though
many improvements have been made.

Median human-normalized score

| |
7 44 100 200

: .. : : : Millions of frames
Rainbow: Combining Improvements in Deep Reinforcement Learning. Hessel et al. 2018.

https://www.deepmind.com/blog/agent57-outperforming-the-human-atari-benchmark

Quiz

Consider the following MDP which has deterministic transitions and y = 0.8.
In each state, the agent can either stay in the current state or take an action

that takes It to the state given by the red arrows. We run g-learning with all
action-values Initially set to 0. Write the action-value table after observing the

state sequence, B, A, G, G.

(Mg
B ©

r(B) = 20: r(A) = 10: r(C) = 20; r(G) = 100

Model-Free Reinforcement Learning

Value-based methods Policy Gradient methods

Actor-Critic Methods

Q-learning
DQN

REINFORCE

Proximal Policy
Optimization

Policy-based RL

So far the policy is implicit. Q-learning learns a value function and then
acts greedily w.r.t. values.

Policy-based methods instead explicitly learn the policy.
nyals) =Pr(A, =alS, =s;0)

Objective is to find policy that maximizes expected future reward:

— Expected sum of discounted
future rewards from s under 7

J(O) :=) pg(8)v,,(5)

Frequency of visitations
to s under 7,

Why Policy-based?

* Advantages to policy-based methods?
 More easily handle continuous actions.

* Policy gradient theorem provides stronger convergence guarantees under function
approximation.

o Useful for partial observability.
* Policy may be simpler to approximate.
* Disadvantages?
 May be easier to approximate action-values.

* Policy is a simple function of the action-values.

Policy Parameterizations

Policy can be any parameterized and differentiable distribution.
Need 7)(A, = a|s) and V, r (A, = a|s) exists.

For discrete action RL tasks, typically use a softmax distribution with
logits given by a neural network.

e Same model that we use for multi-class classification.

For continuous action RL tasks, typically use a Gaussian dlstrlbutlon with

mean and variance each given by a neural network. e e e e e e e
M| w0 o0 —|3
* Same model used for multiple regression. IO s
AN
|\ \\\

111111111

Policy Gradient Theorem

JO) :=) tg(s)v,,(8)

V,J(0) « Z Z Uo(S)my(a | S)qﬂg(s, a)Vylog my(als)

\) A
= Elq, (s,a) Vylog my(a|s)|s ~ pug,a ~ my(- | 5)]
The direction in which an infinitesimally small change to 6 produces the
maximum increase in J(6).

Nice property: V,J(60) does not depend on any gradients of p or u,(s).

* Only have to differentiate policy which is known by the learner.

REINFORCE

. V,J(0) = Elg, (s, a) Vologmy(als)|s ~ pg,a ~ my(- |s)] cannot be
directly computed.

« But it can be estimated using data obtained by running 7.

« Approximate qﬂe(st, a,) with the sum of discounted rewards following s,

and a,, i.e., G,

e 0., < 0,+aG,Vylogn(a,|s,)

REINFORCE

REINFORCE: Monte-Carlo Policy-Gradient Control (episodic) for r,

Input: a differentiable policy parameterization m(als, @)
Algorithm parameter: step size a > 0

Initialize policy parameter 8 € R? (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sy, Ag, R1,...,S7_1,Ar_1, R, following 7 (-|-,0)
Loop for each step of the episode t =0,1,...,7T — 1:
G, o of R,
0« 0+ o. Vin7w(A|S:, 0)

Usually dropped In practice

Is the policy gradient a gradient? Nota and Thomas. 2020.
Bias in Natural Actor-Critic Algorithms. Thomas. 2014.

Actor-Critic Methods

 Basic REINFORCE does not use a value function.
* | earns directly from the sum of discounted rewards following an action.

* Actor-critic methods use learned value functions to drive policy changes.

' ot PBIIC
» New update: o
A A cnne T;
c 5t < Rt+1 T VV(StH) — V(St) xv—{ F"a";‘? L e
reward
{ Environment }

Actor-Critic Methods

One-step Actor—Critic (episodic), for estimating 79 =~ .,

Input: a differentiable policy parameterization 7 (a|s,)
Input: a differentiable state-value function parameterization 0(s,w)
Parameters: step sizes a? > 0, a% > 0
Initialize policy parameter @ € RY and state-value weights w € R¢ (e.g., to 0)
Loop forever (for each episode):
Initialize S (first state of episode)
I+ 1
Loop while S is not terminal (for each time step):
A~ 7(-]S,0)
Take action A, observe S’, R
§d — R+~9(S",w) —9(S,w) (if S’ is terminal, then ©(S’,w) = 0)
w— w4+ aVoVo(S,w)
0+ 0+a’I5VIinm(AlS,0)

g
S« 5

Comparing REINFORCE and Basic Actor-Critic

 For comparison, assume that actor-critic only updates at end of episodes.

« REINFORCE update:

T
0 —0+a Z G Vologmya,ls) — G,=(1"Ruyp) = v, (s)
t'=t

_o
e Actor-Critic update: t

0—0+a Z 0, Vplog y(a,|s,) 0, =Ry +yvi (Si1) — v (5)
t=0
* (Can generalize learning signal:

5t(n) =Ry T YR+t Vn_lRt+n T ynvﬂg(SHn) — V. (8)

If £ + n is greater than termination step 1 then R, is taken to be zero.

Advantage Actor-Critic (A2C)

* Basic multi-step actor-critic method that works well with deep networks.

* Policy and value function are represented as neural networks with
parameters @ and ¢ respectively.

o A2C alternates collecting n steps of experience in task environment and
then updating a state-value function and a policy with the learning signal
5™,

f 5 =Rpi + YR+ oo Y T Ry + YV (Si) — ()

* Training losses:

Lig)=) (5"?* L©O) =) 5" logmals)
=0 =0

*Must stop gradient through value estimate at times greater than 7; be careful to not update critic when optimizing actor.

Summary

* Deep Q-learning: approximates Q-learning with deep neural networks.
* Policy-based methods: directly learn policy with gradient ascent.

* Actor-critic methods: learn value functions (critic) that provide a learning
signal for improving the policy (actor).

-
™ -~

‘.‘.. .A__‘ . » ‘ = —
J el T

A A R S
o R P N v - ,_': : - N ~" Sl e N . '51 " ~
S L S e e R R T S i St a) mlﬂ
‘,Q’fz‘:'];.‘-",...- ..*f‘“{‘c.. o = o
<k e AN = B N RO . v o = : _ b S
e : , v --n. = 3 -

. -i:ﬁ

Thanks Everyone!

Slides adapted from Advanced Topics in RL and based on Chapter 13 of Reinforcement Learning: An Introduction.

