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Announcements
• Homework 7 due December 12 at 9:30 am.


• Final exam: December 18 from 2:45 - 4:45 pm in the Social Sciences 
building.


• Course evaluations available until 12/13.


• Currently at 52% participation. > 75% to receive 2 points extra credit on 
final.



Lecture Goals
At the end of today’s lecture, you will be able to: 

1. Explain the key techniques necessary for using neural networks in q-
learning.


2. Explain the policy gradient objective and optimization approach.


3. Explain how to combine value-based and policy-based reinforcement 
learning to obtain actor-critic methods.



Beyond Tables
So far: 
• Represent everything with a table 
•Value function V: table size  

•Q function: table size 

•Too big to store in memory for many tasks 
•Backgammon: 1020 states. Go: 3361 states 
•Need some other approach



Semi-gradient Q-Learning
• Instead of using a table, represent action-values as a function with learnable 

parameters, .


• Semi-Gradient Q-learning:


• 


• Example: parameter vector, , could be all weights and biases of a neural network.


• Use back propagation to compute gradient of  for any .


• Adjust each weight in proportion to gradient of output times temporal difference error.

q(s, a, θ)

θt+1 ← θt + α(rt+1 + γ max
a′ 

q(st+1, a′ , θt) − q(st, at, θt))∇q(st, at, θt)

θt

q(s, a, θ) (s, a)

Temporal difference error



Deep Q-learning

Mnih et al, "Human-level control through deep reinforcement learning"

https://www.youtube.com/watch?v=TmPfTpjtdgg


Stability with Neural Networks
• Neural networks are typically trained with i.i.d. data and fixed targets.


•  and we are learning some underlying function such that 
.


• Using neural networks with Q-learning breaks both assumptions.

• Training may be unstable and diverge; lacks theoretical guarantees.


• Deep Q-Network (DQN) uses two key methods to stabilize training:

• Experience replay: keep around old data to update network.

• Target networks: Use an older copy of network parameters to 

compute the target for updates; update this older copy at a slower 
rate than main parameters used.

xi, yi ∼ D
f(xi) = yi

vk+1(s) ← ∑
a

π(a |s)∑
s′ 

∑
r

p(s′ , r |s, a)[r + γvk(s′ )]



Experience Replay
• The basic semi-gradient Q-learning algorithm processes  

transitions as they are experienced and then discards them.


• Experience replay: save the most recent transitions (in DQN, the past 1 
million) and use a random subset to update the action-value function.


• Re-uses data and reduces correlation between samples.


• Learning becomes more like supervised neural network training where 
we train from a static data set.


• Other choices besides random subset can improve performance [1].

(s, a, s′ , r)

[1] Prioritized Experience Replay. Schaul et al. 2015.



Target Networks
• The basic Q-learning algorithm always uses the most recent action-values 

to form the training target 


• DQN uses a separate target network to compute .


• The target network is infrequently updated by setting the target network 
parameters to be the same as the main network’s parameters, i.e., 

.


• Makes the learning target more stable as in supervised learning.

rt+1 + γ max
a′ 

q(st+1, a′ , θ)

γ max
a′ 

q(st+1, a′ , θ̃)

θ̃ ← θ



DQN Architecture



Looking Forward

• DQN (arguably) launched a surge of 
interest in deep reinforcement learning 
that has led to many exciting new 
applications and RL developments.


• DQN is widely used in practice though 
many improvements have been made.

https://www.deepmind.com/blog/agent57-outperforming-the-human-atari-benchmark
Rainbow: Combining Improvements in Deep Reinforcement Learning. Hessel et al. 2018.



Consider the following MDP which has deterministic transitions and . 
In each state, the agent can either stay in the current state or take an action 
that takes it to the state given by the red arrows. We run q-learning with all 
action-values initially set to 0. Write the action-value table after observing the 
state sequence, B, A, G, G.

γ = 0.8

Quiz

GA

B C

r(B) = 20; r(A) = 10; r(C) = 20; r(G) = 100



Model-Free Reinforcement Learning

Value-based methods Policy Gradient methods

Actor-Critic Methods

A2C
REINFORCE


Proximal Policy 
Optimization

Q-learning

DQN



Policy-based RL
• So far the policy is implicit. Q-learning learns a value function and then 

acts greedily w.r.t. values.


• Policy-based methods instead explicitly learn the policy.


• 


• Objective is to find policy that maximizes expected future reward:

πθ(a |s) = Pr(At = a |St = s; θ)

J(θ) := ∑
s

μθ(s)vπθ
(s)

Frequency of visitations 
to s under πθ

Expected sum of discounted 
future rewards from s under πθ



Why Policy-based?
• Advantages to policy-based methods?


• More easily handle continuous actions.


• Policy gradient theorem provides stronger convergence guarantees under function 
approximation.


• Useful for partial observability.


• Policy may be simpler to approximate.


• Disadvantages?


• May be easier to approximate action-values.


• Policy is a simple function of the action-values.



• Policy can be any parameterized and differentiable distribution.


• Need  and  exists. 


• For discrete action RL tasks, typically use a softmax distribution with 
logits given by a neural network.


• Same model that we use for multi-class classification.


• For continuous action RL tasks, typically use a Gaussian distribution with 
mean and variance each given by a neural network.


• Same model used for multiple regression.

πθ(At = a |s) ∇θπθ(At = a |s)

Policy Parameterizations



Policy Gradient Theorem
• 


• 


• The direction in which an infinitesimally small change to  produces the 
maximum increase in .


• Nice property:  does not depend on any gradients of  or .


• Only have to differentiate policy which is known by the learner.

J(θ) := ∑
s

μθ(s)vπθ
(s)

∇θJ(θ) ∝ ∑
s

∑
a

μθ(s)πθ(a |s)qπθ
(s, a)∇θlog πθ(a |s)

θ
J(θ)

∇θJ(θ) p μθ(s)

= E[qπθ
(s, a)∇θlog πθ(a |s) |s ∼ μθ, a ∼ πθ( ⋅ |s)]



REINFORCE
•  cannot be 

directly computed.


• But it can be estimated using data obtained by running .


• Approximate  with the sum of discounted rewards following  
and , i.e., .


•

∇θJ(θ) = E[qπθ
(s, a)∇θlog πθ(a |s) |s ∼ μθ, a ∼ πθ( ⋅ |s)]

πθ

qπθ
(st, at) st

at Gt

θt+1 ← θt + αGt ∇θlog π(at |st)



REINFORCE

Usually dropped in practice

Bias in Natural Actor-Critic Algorithms. Thomas. 2014.
Is the policy gradient a gradient? Nota and Thomas. 2020.



Actor-Critic Methods
• Basic REINFORCE does not use a value function.


• Learns directly from the sum of discounted rewards following an action.


• Actor-critic methods use learned value functions to drive policy changes.


• New update:


• 


•                              

δt ← Rt+1 + γ ̂v(St+1) − ̂v(St)

θt+1 ← θt + αδt ∇θln π(At |St)



Actor-Critic Methods



Comparing REINFORCE and Basic Actor-Critic

• For comparison, assume that actor-critic only updates at end of episodes.


• REINFORCE update:


• Actor-Critic update:


• Can generalize learning signal:

θ ← θ + α
T

∑
t=0

G̃t ∇θlog πθ(at |st)

θ ← θ + α
T

∑
t=0

δt ∇θlog πθ(at |st) δt = Rt+1 + γvπθ
(St+1) − vπθ

(st)

G̃t = (
T

∑
t′ =t

γt′ Rt′ +1) − vπθ
(st)

δ(n)
t = Rt+1 + γRt+2 + . . . + γn−1Rt+n + γnvπθ

(St+n) − vπθ
(st)

If  is greater than termination step  then  is taken to be zero.t + n T Rt+n



Advantage Actor-Critic (A2C)
• Basic multi-step actor-critic method that works well with deep networks.


• Policy and value function are represented as neural networks with 
parameters  and  respectively.


• A2C alternates collecting  steps of experience in task environment and 
then updating a state-value function and a policy with the learning signal 

.


• Training losses:

θ ϕ

n

δ(n)
t δ(n)

t = Rt+1 + γRt+2 + . . . + γn−1Rt+n + γnvϕ(St+n) − vϕ(st)

L(ϕ) =
n

∑
t=0

(δ(n)
t )2 L(θ) =

n

∑
t=0

δ(n)
t log πθ(at |st)

*Must stop gradient through value estimate at times greater than ; be careful to not update critic when optimizing actor. t



Summary

• Deep Q-learning: approximates Q-learning with deep neural networks.


• Policy-based methods: directly learn policy with gradient ascent.


• Actor-critic methods: learn value functions (critic) that provide a learning 
signal for improving the policy (actor).



Thanks Everyone!

Slides adapted from Advanced Topics in RL and based on Chapter 13 of Reinforcement Learning: An Introduction.


