
CS 760: Machine Learning
Reinforcement Learning III

Josiah Hanna

University of Wisconsin-Madison

December 7, 2023

Announcements
• Homework 7 due December 12 at 9:30 am.

• Final exam: December 18 from 2:45 - 4:45 pm in the Social Sciences
building.

• Course evaluations available until 12/13.

• Currently at 52% participation. > 75% to receive 2 points extra credit on
final.

Lecture Goals
At the end of today’s lecture, you will be able to:

1. Explain the key techniques necessary for using neural networks in q-
learning.

2. Explain the policy gradient objective and optimization approach.

3. Explain how to combine value-based and policy-based reinforcement
learning to obtain actor-critic methods.

Beyond Tables
So far:
• Represent everything with a table
•Value function V: table size

•Q function: table size

•Too big to store in memory for many tasks
•Backgammon: 1020 states. Go: 3361 states
•Need some other approach

Semi-gradient Q-Learning
• Instead of using a table, represent action-values as a function with learnable

parameters, .

• Semi-Gradient Q-learning:

•

• Example: parameter vector, , could be all weights and biases of a neural network.

• Use back propagation to compute gradient of for any .

• Adjust each weight in proportion to gradient of output times temporal difference error.

q(s, a, θ)

θt+1 ← θt + α(rt+1 + γ max
a′

q(st+1, a′ , θt) − q(st, at, θt))∇q(st, at, θt)

θt

q(s, a, θ) (s, a)

Temporal difference error

Deep Q-learning

Mnih et al, "Human-level control through deep reinforcement learning"

https://www.youtube.com/watch?v=TmPfTpjtdgg

Stability with Neural Networks
• Neural networks are typically trained with i.i.d. data and fixed targets.

• and we are learning some underlying function such that
.

• Using neural networks with Q-learning breaks both assumptions.

• Training may be unstable and diverge; lacks theoretical guarantees.

• Deep Q-Network (DQN) uses two key methods to stabilize training:

• Experience replay: keep around old data to update network.

• Target networks: Use an older copy of network parameters to

compute the target for updates; update this older copy at a slower
rate than main parameters used.

xi, yi ∼ D
f(xi) = yi

vk+1(s) ← ∑
a

π(a |s)∑
s′

∑
r

p(s′ , r |s, a)[r + γvk(s′)]

Experience Replay
• The basic semi-gradient Q-learning algorithm processes

transitions as they are experienced and then discards them.

• Experience replay: save the most recent transitions (in DQN, the past 1
million) and use a random subset to update the action-value function.

• Re-uses data and reduces correlation between samples.

• Learning becomes more like supervised neural network training where
we train from a static data set.

• Other choices besides random subset can improve performance [1].

(s, a, s′ , r)

[1] Prioritized Experience Replay. Schaul et al. 2015.

Target Networks
• The basic Q-learning algorithm always uses the most recent action-values

to form the training target

• DQN uses a separate target network to compute .

• The target network is infrequently updated by setting the target network
parameters to be the same as the main network’s parameters, i.e.,

.

• Makes the learning target more stable as in supervised learning.

rt+1 + γ max
a′

q(st+1, a′ , θ)

γ max
a′

q(st+1, a′ , θ̃)

θ̃ ← θ

DQN Architecture

Looking Forward

• DQN (arguably) launched a surge of
interest in deep reinforcement learning
that has led to many exciting new
applications and RL developments.

• DQN is widely used in practice though
many improvements have been made.

https://www.deepmind.com/blog/agent57-outperforming-the-human-atari-benchmark
Rainbow: Combining Improvements in Deep Reinforcement Learning. Hessel et al. 2018.

Consider the following MDP which has deterministic transitions and .
In each state, the agent can either stay in the current state or take an action
that takes it to the state given by the red arrows. We run q-learning with all
action-values initially set to 0. Write the action-value table after observing the
state sequence, B, A, G, G.

γ = 0.8

Quiz

GA

B C

r(B) = 20; r(A) = 10; r(C) = 20; r(G) = 100

Model-Free Reinforcement Learning

Value-based methods Policy Gradient methods

Actor-Critic Methods

A2C
REINFORCE

Proximal Policy
Optimization

Q-learning

DQN

Policy-based RL
• So far the policy is implicit. Q-learning learns a value function and then

acts greedily w.r.t. values.

• Policy-based methods instead explicitly learn the policy.

•

• Objective is to find policy that maximizes expected future reward:

πθ(a |s) = Pr(At = a |St = s; θ)

J(θ) := ∑
s

μθ(s)vπθ
(s)

Frequency of visitations
to s under πθ

Expected sum of discounted
future rewards from s under πθ

Why Policy-based?
• Advantages to policy-based methods?

• More easily handle continuous actions.

• Policy gradient theorem provides stronger convergence guarantees under function
approximation.

• Useful for partial observability.

• Policy may be simpler to approximate.

• Disadvantages?

• May be easier to approximate action-values.

• Policy is a simple function of the action-values.

• Policy can be any parameterized and differentiable distribution.

• Need and exists.

• For discrete action RL tasks, typically use a softmax distribution with
logits given by a neural network.

• Same model that we use for multi-class classification.

• For continuous action RL tasks, typically use a Gaussian distribution with
mean and variance each given by a neural network.

• Same model used for multiple regression.

πθ(At = a |s) ∇θπθ(At = a |s)

Policy Parameterizations

Policy Gradient Theorem
•

•

• The direction in which an infinitesimally small change to produces the
maximum increase in .

• Nice property: does not depend on any gradients of or .

• Only have to differentiate policy which is known by the learner.

J(θ) := ∑
s

μθ(s)vπθ
(s)

∇θJ(θ) ∝ ∑
s

∑
a

μθ(s)πθ(a |s)qπθ
(s, a)∇θlog πθ(a |s)

θ
J(θ)

∇θJ(θ) p μθ(s)

= E[qπθ
(s, a)∇θlog πθ(a |s) |s ∼ μθ, a ∼ πθ(⋅ |s)]

REINFORCE
• cannot be

directly computed.

• But it can be estimated using data obtained by running .

• Approximate with the sum of discounted rewards following
and , i.e., .

•

∇θJ(θ) = E[qπθ
(s, a)∇θlog πθ(a |s) |s ∼ μθ, a ∼ πθ(⋅ |s)]

πθ

qπθ
(st, at) st

at Gt

θt+1 ← θt + αGt ∇θlog π(at |st)

REINFORCE

Usually dropped in practice

Bias in Natural Actor-Critic Algorithms. Thomas. 2014.
Is the policy gradient a gradient? Nota and Thomas. 2020.

Actor-Critic Methods
• Basic REINFORCE does not use a value function.

• Learns directly from the sum of discounted rewards following an action.

• Actor-critic methods use learned value functions to drive policy changes.

• New update:

•

•

δt ← Rt+1 + γ ̂v(St+1) − ̂v(St)

θt+1 ← θt + αδt ∇θln π(At |St)

Actor-Critic Methods

Comparing REINFORCE and Basic Actor-Critic

• For comparison, assume that actor-critic only updates at end of episodes.

• REINFORCE update:

• Actor-Critic update:

• Can generalize learning signal:

θ ← θ + α
T

∑
t=0

G̃t ∇θlog πθ(at |st)

θ ← θ + α
T

∑
t=0

δt ∇θlog πθ(at |st) δt = Rt+1 + γvπθ
(St+1) − vπθ

(st)

G̃t = (
T

∑
t′ =t

γt′ Rt′ +1) − vπθ
(st)

δ(n)
t = Rt+1 + γRt+2 + . . . + γn−1Rt+n + γnvπθ

(St+n) − vπθ
(st)

If is greater than termination step then is taken to be zero.t + n T Rt+n

Advantage Actor-Critic (A2C)
• Basic multi-step actor-critic method that works well with deep networks.

• Policy and value function are represented as neural networks with
parameters and respectively.

• A2C alternates collecting steps of experience in task environment and
then updating a state-value function and a policy with the learning signal

.

• Training losses:

θ ϕ

n

δ(n)
t δ(n)

t = Rt+1 + γRt+2 + . . . + γn−1Rt+n + γnvϕ(St+n) − vϕ(st)

L(ϕ) =
n

∑
t=0

(δ(n)
t)2 L(θ) =

n

∑
t=0

δ(n)
t log πθ(at |st)

*Must stop gradient through value estimate at times greater than ; be careful to not update critic when optimizing actor. t

Summary

• Deep Q-learning: approximates Q-learning with deep neural networks.

• Policy-based methods: directly learn policy with gradient ascent.

• Actor-critic methods: learn value functions (critic) that provide a learning
signal for improving the policy (actor).

Thanks Everyone!

Slides adapted from Advanced Topics in RL and based on Chapter 13 of Reinforcement Learning: An Introduction.

