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Announcements

• Enrollment:
• Email me today if you’re still on waitlist AND have a reason for 

additional priority.
• It will be offered next semester if you don’t get in. 

• Background Knowledge:
• Please look at homework 1 before add/drop deadline.
• Please take background survey on Piazza.

• Homework 1 is due at 9:30 AM on Tuesday, September 19.
• Sign-up for Piazza (link on webpage)

• Passcode: mlfall23
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•After today’s lecture:
•You will be able to explain how the k-nearest 
neighbor’s algorithm classifies unseen instances.

•You will be able to explain the concept of an 
inductive bias.

•You will be able to explain how a decision tree 
classifies instances.
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Supervised Learning: Formal Setup

Problem setting
• Set of possible instances 

• Unknown target function

• Set of models (a.k.a. hypotheses):
Given

•  Training set of instances for unknown target function, 
   where 

safe safepoisonous
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Output space: Classification vs. Regression

Depending on the choice of      , we have special names:
•Discrete: “classification”. The elements of       are classes 

•Continuous: “regression”
• Example: linear regression

•There are other types…
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Hypothesis class

•Pick specific class of models. Ex: linear models:

Wikipedia

f (0)(x) = x
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Supervised Learning: Training & Generalization

Goal: model h that best approximates f

•One way: empirical risk minimization (ERM) on training data.

•  Recall: we want to generalize.
• Do well on future (test) data points, not just on training data.

Model prediction

Loss function (how far are we)?
Hypothesis Class
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Nearest Neighbors: Idea

Basic idea: “nearby” feature vectors more likely have the same 
label

•Example: classify car/no car

• Everything is similar, except the location of car 

•What does “nearby” mean?
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k-Nearest Neighbors: Classification

Training/learning: given

Prediction: for given , find k most similar training pointsx
Return plurality class

•I.e., among the k most similar points, output most popular class.
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Discrete features: Hamming distance

Continuous features:
•Euclidean distance:
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k-Nearest Neighbors: Distances

Discrete features: Hamming distance

Continuous features:
•Euclidean distance:

•L1 (Manhattan) dist.:

Ex: d([‘a’, ‘b’, ‘c’], [‘d’, ‘b’, ‘e’]) = 2

Ex: d([0, 0], [4, 4]) = 32

Ex: d([0, 0], [4, 4]) = 8
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k-Nearest Neighbors: Standardization

Typical in data science applications. Recipe:
•Compute empirical mean/stddev for a feature (in train set)

•Standardize features: 
• Do the same for test points!

What problem does this solve?

Prevents high magnitude / variance features from dominating distance calculation.



k-Nearest Neighbors: Mixed Distances

Might have both discrete and continuous features:



k-Nearest Neighbors: Mixed Distances

Might have both discrete and continuous features:
•  Sum two types of distances component (or sum squared etc)



k-Nearest Neighbors: Mixed Distances

Might have both discrete and continuous features:
•  Sum two types of distances component (or sum squared etc)

•  Might need normalization, (e.g. normalize individual 
distances to maximum value of 1)



k-Nearest Neighbors: Regression

Training/learning: given



k-Nearest Neighbors: Regression

Training/learning: given

Prediction: for , find k most similar training pointsx



k-Nearest Neighbors: Regression

Training/learning: given

Prediction: for , find k most similar training pointsx
Return



k-Nearest Neighbors: Regression

Training/learning: given

Prediction: for , find k most similar training pointsx
Return



k-Nearest Neighbors: Regression

Training/learning: given

Prediction: for , find k most similar training pointsx
Return

•I.e., among the k points, output mean label.
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Could contribute to predictions via a weighted distance
•All k no longer equally contribute
•Classification:

•Regression
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Dealing with Irrelevant Features

x1

One relevant feature x1 


1-NN rule classifies each 
instance correctly

Effect of an irrelevant feature x2 

on distances and nearest 
neighbors

x1

x2
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kNN: Strengths & Weaknesses

Strengths
•  Easy to explain predictions
•  Simple to implement and conceptualize.
•  No training! 
•  Often good in practice

Weaknesses
•  Sensitive to irrelevant + correlated features


• Can try to solve via variations.
•  Prediction stage can be expensive
•  No “model” to interpret
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Inductive Bias

• Inductive bias: assumptions a learner uses to predict yi for a previously unseen 
instance xi

• Two components (mostly)

• hypothesis space bias: determines the models that can be represented

• preference bias: specifies a preference ordering within the space of models

learner hypothesis space bias preference bias

k-NN Decomposition of space determined 
by nearest neighbors

Instances in neighborhood 
belong to same class
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classifier and Euclidean distance. What should be the labels of the points A: (1, 1) 
and B(2, 1)?

1. A: +, B: -


2. A: -, B: +


3. A: -, B: -


4. A: +, B: +

x y label

0 0 +

1 0 +

2 0 +

2 2 +

0 1 -

0 2 -

1 2 -

3 1 -

3 nearest neighbors to point A are (0, 1) 
[-], (1, 0) [+], (1, 2) [-]. Hence, the label 
should be [-]


3 nearest neighbors to point B are (2, 0) 
[+], (2, 2) [+], (3, 1) [-]. Hence, the label 
should be [+]
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Q2-2: In a distance-weighted nearest neighbor, which of the following weights is NOT 
appropriate? Let p be the test data point and xi {i = 1: N} be training data points.

1. wi = d(p, xi)½ 


2. wi = d(p, xi)-2


3. wi = exp(-d(p, xi))


4. wi = 1
The intuition behind weighted kNN, is to give more weight to the points 
which are nearby and less weight to the points which are farther away. 
Any function whose value decreases as the distance increases  can be 
used as a function for the weighted knn classifier. w = 1 is also OK as it 
reduces to our traditional nearest-neighbor algorithm.
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•Decision trees

•  Setup, splits, learning, information gain, strengths and 
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Decision Trees: Heart Disease Example
thal

#_major_vessels > 0 present

normal fixed_defect

true false

1 2

present

reversible_defect

chest_pain_type absent

absentabsentabsent present

3 4

Each internal node tests one feature xi

Each branch from an internal node 
represents one outcome of the test


Each leaf predicts y or P(y | x)
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Decision Trees: Logical Formulas

• Suppose X1 …  X5 are Boolean features, and Y  is also 
Boolean

• How would you represent the following with decision trees?

) (i.e.,   5252 XXYXXY ∧==

52 XXY ∨=

1352 XXXXY ¬∨=
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Decision Trees: Textual Description

thal

#_major_vessels > 0 present

normal fixed_defect

true false

present absent

thal = normal

[#_major_vessels > 0] = true: present

[#_major_vessels > 0] = false: absent


thal = fixed_defect: present



Decision Trees: Mushrooms Example
if odor=almond, predict edible

if odor=none ∧ 

   spore-print-color=white ∧ 

   gill-size=narrow ∧
  gill-spacing=crowded,

predict poisonous
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	 C = DetermineCandidateSplits(D)

	 if stopping criteria is met


	 	 make a leaf node N

	 	 determine class label for N

	 else


	 	 make an internal node N


	 	 S = FindBestSplit(D, C)


	 	 for each group k of S


	 	 	 Dk = subset of training data in group k

	 	 	 kth child of N = MakeSubtree(Dk)


	 return subtree rooted at N

•Learning Algorithm:
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1. DT Learning: Candidate Splits

First, need to determine how to split features
•Splits on nominal features have one branch per value

•Splits on numeric features use a threshold/interval

thal

normal fixed_defect reversible_defect

weight ≤ 35

true false

ID3, C4.5
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Given a set of training instances D and a specific feature Xi

•Sort the values of Xi in D
•Evaluate split thresholds in intervals between instances of 
different classes

weight

17 35

weight ≤ 35

true false



Numeric Feature Splits Algorithm

// Run this subroutine for each numeric feature at each node of DT induction


DetermineCandidateNumericSplits(set of training instances D, feature Xi)


	 C = {}	 // initialize set of candidate splits for feature Xi


	 let vj denote the value of Xi for the jth data point

sort the dataset using vj as the key for each data point

	 for each pair of adjacent vj, vj+1 in the sorted order

	 	 if the corresponding class labels are different

	 	 	 add candidate split Xi ≤ (vj + vj+1)/2 to C

	 return C
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DT: Splits on Nominal Features

Instead of using k-way splits for k-valued features, could 
require binary splits on all nominal features.


- CART algorithm (popular DT algorithm) does this.

thal

normal reversible_defect ∨ fixed_defect

color

red ∨blue green ∨ yellow
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Decision Trees: Learning 

MakeSubtree(set of training instances D)


	 C = DetermineCandidateSplits(D)

	 if stopping criteria is met


	 	 make a leaf node N

	 	 determine class label for N

	 else


	 	 make an internal node N


	 	 S = FindBestSplit(D, C)


	 	 for each group k of S


	 	 	 Dk = subset of training data in group k

	 	 	 kth child of N = MakeSubtree(Dk)


	 return subtree rooted at N

•Learning Algorithm:
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DT Learning: Finding the Best Splits

How to we select the best feature to split on at each step?
•Hypothesis: simplest tree that classifies the training 
instances accurately will generalize

Why is Occam’s razor a reasonable heuristic?
• There are fewer short models (i.e. small trees) than long ones
• A short model is unlikely to fit the training data well by chance
• A long model is more likely to fit the training data well coincidentally



DT Learning: Finding Optimal Splits?

Can we find and return the smallest possible decision tree that 
accurately classifies the training set?



DT Learning: Finding Optimal Splits?

Can we find and return the smallest possible decision tree that 
accurately classifies the training set?

• NO! This is an NP-hard problem



DT Learning: Finding Optimal Splits?

Can we find and return the smallest possible decision tree that 
accurately classifies the training set?

• NO! This is an NP-hard problem
	 [Hyafil & Rivest, Information Processing Letters, 1976]



DT Learning: Finding Optimal Splits?

Can we find and return the smallest possible decision tree that 
accurately classifies the training set?

• NO! This is an NP-hard problem
	 [Hyafil & Rivest, Information Processing Letters, 1976]
•Instead, we’ll use an information-theoretic heuristic to 
greedily choose splits
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Information Theory: Encoding

•Could send out the names of the manufacturers in binary 
coded ASCII

• Suppose there are 4: Trek, Specialized, Cervelo, Serrota

•Inefficient… since there’s just 4, we could encode them

• # of bits: 2 per communication

11

10

01

00

Trek

Specialized

Cervelo

Serrota

type code
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•Now, some bikes are rarer than others…

• Cervelo is a rarer specialty bike.

• We could save some bits… make more popular messages fewer bits, 

rarer ones more bits

• Note: this is on average


•Expected # bits: 1.75
1

  

€ 

P(Trek) = 0.5
P(Specialized) = 0.25
P(Cervelo) = 0.125
P(Serrota) = 0.125

2

3

3

1

01

001

000

Type/probability # bits code
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Information Theory: Conditional Entropy

•Suppose we know X. CE: how much uncertainty left in Y on 
average after X is known?

•Here, 

•What is it if Y=X? 
•What if Y is independent of X?

H(Y |X) = ∑
x∈𝒳

Pr(X = x)H(Y |X = x)
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Information Theory: Conditional Entropy

•Example. Y is still the bike maker, X is color.

Y=Type/X=Color Black White

Trek 0.25 0.25

Specialized 0.125 0.125

Cervelo 0.125 0

Serrota 0 0.125

H(Y|X=black) = -0.5 log(0.5) – 0.25 log(0.25) – 0.25 log(0.25) – 0 = 1.5

H(Y|X=white) = -0.5 log(0.5) – 0.25 log(0.25) –0 – 0.25 log(0.25) = 1.5

H(Y|X) = 0.5 * H(Y|X=black) + 0.5 * H(Y|X=white) = 1.5
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Information Theory: Mutual Information

•Similar comparison between R.V.s:

Interpretation: 
•How much uncertainty of Y that X can reduce.
•Or, how much information about Y can you glean by knowing X?

Y=Type/X=Color Black White

Trek 0.25 0.25

Specialized 0.125 0.125

Cervelo 0.125 0

Serrota 0 0.125

I(Y:X) = H(Y) – H(Y|X) = 1.75 – 1.5 = 0.25
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DT Learning: Back to Splits

Want to choose split S that maximizes

ie, mutual information.
•Note: D denotes that this is the empirical entropy


• We don’t know the real distribution of Y, just have our dataset


•Equivalent to maximally reducing the entropy of Y conditioned 
on a split S
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DT Learning: Comparing Split InfoGains

• Is it better to split on Humidity or Wind?

Humidity

high normal

D: [3+, 4-]

D: [9+, 5-]

D: [6+, 1-]

 HD (Y |weak) = 0.811

Wind

weak strong

D: [6+, 2-]

D: [9+, 5-]

D: [3+, 3-]

 HD (Y |strong) = 1.0
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(has instances of only one class)

• In the extreme: A feature that uniquely identifies each instance
•Maximal information gain!

•Use GainRatio: normalize information gain by entropy
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Homework: What is a good stopping criteria?

MakeSubtree(set of training instances D)


	 C = DetermineCandidateSplits(D)

	 if stopping criteria is met


	 	 make a leaf node N

	 	 determine class label for N

	 else


	 	 make an internal node N


	 	 S = FindBestSplit(D, C)


	 	 for each group k of S


	 	 	 Dk = subset of training data in group k

	 	 	 kth child of N = MakeSubtree(Dk)


	 return subtree rooted at N

•Learning Algorithm:



Inductive Bias

• Recall: Inductive bias: assumptions a learner uses to predict yi for a previously 
unseen instance xi


• Two components

• hypothesis space bias: determines the models that can be represented

• preference bias: specifies a preference ordering within the space of models

learner hypothesis space bias preference bias

Decision trees trees with single-feature, axis-parallel 
splits

small trees identified by greedy 
search

k-NN Decomposition of space determined 
by nearest neighbors

Instances in neighborhood 
belong to same class
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1. In a decision tree, once you split using one feature, you cannot split 
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2. We should split along all features to create a decision tree.


3. We should keep splitting the tree until there is only one data point 

left at each leaf node.



Q3-1: Which of the following statements are True?

1. In a decision tree, once you split using one feature, you cannot split 

again using the same feature. 


2. We should split along all features to create a decision tree.


3. We should keep splitting the tree until there is only one data point 

left at each leaf node.

They are all false!



Today’s Learning Outcomes

•After today’s lecture:

•You will be able to explain how the k-nearest 
neighbor’s algorithm classifies unseen instances.


•You will be able to explain the concept of an 
inductive bias.


•You will be able to explain how a decision tree 
classifies instances.



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov 


