
CS 760: Machine Learning
Supervised Learning I

Josiah Hanna

University of Wisconsin — Madison

9/14/2023

Announcements

Announcements

• Enrollment:
• Email me today if you’re still on waitlist AND have a reason for

additional priority.
• It will be offered next semester if you don’t get in.

Announcements

• Enrollment:
• Email me today if you’re still on waitlist AND have a reason for

additional priority.
• It will be offered next semester if you don’t get in.

• Background Knowledge:
• Please look at homework 1 before add/drop deadline.

Announcements

• Enrollment:
• Email me today if you’re still on waitlist AND have a reason for

additional priority.
• It will be offered next semester if you don’t get in.

• Background Knowledge:
• Please look at homework 1 before add/drop deadline.
• Please take background survey on Piazza.

• Homework 1 is due at 9:30 AM on Tuesday, September 19.
• Sign-up for Piazza (link on webpage)

• Passcode: mlfall23

Today’s Learning Outcomes

Today’s Learning Outcomes

•After today’s lecture:

Today’s Learning Outcomes

•After today’s lecture:
•You will be able to explain how the k-nearest
neighbor’s algorithm classifies unseen instances.

Today’s Learning Outcomes

•After today’s lecture:
•You will be able to explain how the k-nearest
neighbor’s algorithm classifies unseen instances.

•You will be able to explain the concept of an
inductive bias.

Today’s Learning Outcomes

•After today’s lecture:
•You will be able to explain how the k-nearest
neighbor’s algorithm classifies unseen instances.

•You will be able to explain the concept of an
inductive bias.

•You will be able to explain how a decision tree
classifies instances.

Outline

•Review from last time

•Features, labels, hypothesis class, training, generalization

•Instance-based learning

•k-NN classification/regression, locally weighted regression,
strengths & weaknesses, inductive bias

•Decision trees

• Setup, splits, learning, information gain, strengths and
weaknesses

Outline

•Review from last time

•Features, labels, hypothesis class, training, generalization

•Instance-based learning

•k-NN classification/regression, locally weighted regression,
strengths & weaknesses, inductive bias

•Decision trees

• Setup, splits, learning, information gain, strengths and
weaknesses

Supervised Learning: Formal Setup

Problem setting

Supervised Learning: Formal Setup

Problem setting
• Set of possible instances

Supervised Learning: Formal Setup

Problem setting
• Set of possible instances

Supervised Learning: Formal Setup

Problem setting
• Set of possible instances

• Unknown target function

Supervised Learning: Formal Setup

Problem setting
• Set of possible instances

• Unknown target function

Supervised Learning: Formal Setup

Problem setting
• Set of possible instances

• Unknown target function

• Set of models (a.k.a. hypotheses):

Supervised Learning: Formal Setup

Problem setting
• Set of possible instances

• Unknown target function

• Set of models (a.k.a. hypotheses):

Supervised Learning: Formal Setup

Problem setting
• Set of possible instances

• Unknown target function

• Set of models (a.k.a. hypotheses):
Given

Supervised Learning: Formal Setup

Problem setting
• Set of possible instances

• Unknown target function

• Set of models (a.k.a. hypotheses):
Given

• Training set of instances for unknown target function,

Supervised Learning: Formal Setup

Problem setting
• Set of possible instances

• Unknown target function

• Set of models (a.k.a. hypotheses):
Given

• Training set of instances for unknown target function,
 where

Supervised Learning: Formal Setup

Problem setting
• Set of possible instances

• Unknown target function

• Set of models (a.k.a. hypotheses):
Given

• Training set of instances for unknown target function,
 where

Supervised Learning: Formal Setup

Problem setting
• Set of possible instances

• Unknown target function

• Set of models (a.k.a. hypotheses):
Given

• Training set of instances for unknown target function,
 where

Supervised Learning: Formal Setup

Problem setting
• Set of possible instances

• Unknown target function

• Set of models (a.k.a. hypotheses):
Given

• Training set of instances for unknown target function,
 where

safe

Supervised Learning: Formal Setup

Problem setting
• Set of possible instances

• Unknown target function

• Set of models (a.k.a. hypotheses):
Given

• Training set of instances for unknown target function,
 where

safe poisonous

Supervised Learning: Formal Setup

Problem setting
• Set of possible instances

• Unknown target function

• Set of models (a.k.a. hypotheses):
Given

• Training set of instances for unknown target function,
 where

safe safepoisonous

Supervised Learning: Objects

Three types of sets

Supervised Learning: Objects

Three types of sets
• Input space, output space, hypothesis class

Supervised Learning: Objects

Three types of sets
• Input space, output space, hypothesis class

Supervised Learning: Objects

Three types of sets
• Input space, output space, hypothesis class

•Examples:

Supervised Learning: Objects

Three types of sets
• Input space, output space, hypothesis class

•Examples:
• Input space: feature vectors

Supervised Learning: Objects

Three types of sets
• Input space, output space, hypothesis class

•Examples:
• Input space: feature vectors

Supervised Learning: Objects

Three types of sets
• Input space, output space, hypothesis class

•Examples:
• Input space: feature vectors

Supervised Learning: Objects

Three types of sets
• Input space, output space, hypothesis class

•Examples:
• Input space: feature vectors

• Output space:

Supervised Learning: Objects

Three types of sets
• Input space, output space, hypothesis class

•Examples:
• Input space: feature vectors

• Output space:
• Discrete/Nominal

Supervised Learning: Objects

Three types of sets
• Input space, output space, hypothesis class

•Examples:
• Input space: feature vectors

• Output space:
• Discrete/Nominal

Supervised Learning: Objects

Three types of sets
• Input space, output space, hypothesis class

•Examples:
• Input space: feature vectors

• Output space:
• Discrete/Nominal safe poisonous

Supervised Learning: Objects

Three types of sets
• Input space, output space, hypothesis class

•Examples:
• Input space: feature vectors

• Output space:
• Discrete/Nominal

• Continuous

safe poisonous

Supervised Learning: Objects

Three types of sets
• Input space, output space, hypothesis class

•Examples:
• Input space: feature vectors

• Output space:
• Discrete/Nominal

• Continuous

safe poisonous

Supervised Learning: Objects

Three types of sets
• Input space, output space, hypothesis class

•Examples:
• Input space: feature vectors

• Output space:
• Discrete/Nominal

• Continuous

safe poisonous

Output space: Classification vs. Regression

Depending on the choice of , we have special names:

Output space: Classification vs. Regression

Depending on the choice of , we have special names:
•Discrete: “classification”. The elements of are classes

Output space: Classification vs. Regression

Depending on the choice of , we have special names:
•Discrete: “classification”. The elements of are classes

Output space: Classification vs. Regression

Depending on the choice of , we have special names:
•Discrete: “classification”. The elements of are classes

•Continuous: “regression”

Output space: Classification vs. Regression

Depending on the choice of , we have special names:
•Discrete: “classification”. The elements of are classes

•Continuous: “regression”
• Example: linear regression

Output space: Classification vs. Regression

Depending on the choice of , we have special names:
•Discrete: “classification”. The elements of are classes

•Continuous: “regression”
• Example: linear regression

Output space: Classification vs. Regression

Depending on the choice of , we have special names:
•Discrete: “classification”. The elements of are classes

•Continuous: “regression”
• Example: linear regression

•There are other types…

Hypothesis class

Hypothesis class

•Pick specific class of models. Ex: linear models:

Hypothesis class

•Pick specific class of models. Ex: linear models:

Hypothesis class

•Pick specific class of models. Ex: linear models:

Hypothesis class

•Pick specific class of models. Ex: linear models:

Hypothesis class

•Pick specific class of models. Ex: linear models:

Wikipedia

Hypothesis class

•Pick specific class of models. Ex: linear models:

Wikipedia

f (0)(x) = x

Supervised Learning: Training & Generalization

Goal: model h that best approximates f

Supervised Learning: Training & Generalization

Goal: model h that best approximates f

•One way: empirical risk minimization (ERM) on training data.

Supervised Learning: Training & Generalization

Goal: model h that best approximates f

•One way: empirical risk minimization (ERM) on training data.

Supervised Learning: Training & Generalization

Goal: model h that best approximates f

•One way: empirical risk minimization (ERM) on training data.

Hypothesis Class

Supervised Learning: Training & Generalization

Goal: model h that best approximates f

•One way: empirical risk minimization (ERM) on training data.

Model prediction

Hypothesis Class

Supervised Learning: Training & Generalization

Goal: model h that best approximates f

•One way: empirical risk minimization (ERM) on training data.

Model prediction

Loss function (how far are we)?
Hypothesis Class

Supervised Learning: Training & Generalization

Goal: model h that best approximates f

•One way: empirical risk minimization (ERM) on training data.

• Recall: we want to generalize.

Model prediction

Loss function (how far are we)?
Hypothesis Class

Supervised Learning: Training & Generalization

Goal: model h that best approximates f

•One way: empirical risk minimization (ERM) on training data.

• Recall: we want to generalize.
• Do well on future (test) data points, not just on training data.

Model prediction

Loss function (how far are we)?
Hypothesis Class

Outline

•Review from last time

•Features, labels, hypothesis class, training, generalization

•Instance-based learning

•k-NN classification/regression, locally weighted regression,
strengths & weaknesses, inductive bias

•Decision trees

• Setup, splits, learning, information gain, strengths and
weaknesses

Nearest Neighbors: Idea

Nearest Neighbors: Idea

Basic idea: “nearby” feature vectors more likely have the same
label

Nearest Neighbors: Idea

Basic idea: “nearby” feature vectors more likely have the same
label

•Example: classify car/no car

• Everything is similar, except the location of car

Nearest Neighbors: Idea

Basic idea: “nearby” feature vectors more likely have the same
label

•Example: classify car/no car

• Everything is similar, except the location of car

Nearest Neighbors: Idea

Basic idea: “nearby” feature vectors more likely have the same
label

•Example: classify car/no car

• Everything is similar, except the location of car

Nearest Neighbors: Idea

Basic idea: “nearby” feature vectors more likely have the same
label

•Example: classify car/no car

• Everything is similar, except the location of car

•What does “nearby” mean?

1-Nearest Neighbors: Algorithm

1-Nearest Neighbors: Algorithm

Training/learning: given

1-Nearest Neighbors: Algorithm

Training/learning: given

1-Nearest Neighbors: Algorithm

Training/learning: given

Prediction: for , find nearest training point

1-Nearest Neighbors: Algorithm

Training/learning: given

Prediction: for , find nearest training point
Return

1-Nearest Neighbors: Algorithm

Training/learning: given

Prediction: for , find nearest training point
Return

1-Nearest Neighbors: Algorithm

1-Nearest Neighbors: Algorithm

Training/learning: given

1-Nearest Neighbors: Algorithm

Training/learning: given

1-Nearest Neighbors: Algorithm

Training/learning: given

safe

1-Nearest Neighbors: Algorithm

Training/learning: given

safe

1-Nearest Neighbors: Algorithm

Training/learning: given

Prediction: for , find nearest training point

safe

poisonous

1-Nearest Neighbors: Algorithm

Training/learning: given

Prediction: for , find nearest training point
Return

safe

poisonous

1-Nearest Neighbors: Algorithm

Training/learning: given

Prediction: for , find nearest training point
Return

safe

poisonous

1-Nearest Neighbors: Algorithm

Training/learning: given

Prediction: for , find nearest training point
Return

safe

poisonous

1-Nearest Neighbors: Algorithm

Training/learning: given

Prediction: for , find nearest training point
Return

safe

poisonous

poisonous

1NN: Decision Regions

1NN: Decision Regions

Defined by “Voronoi Diagram”

1NN: Decision Regions

Defined by “Voronoi Diagram”
•Each cell contains points closer to a particular training point

1NN: Decision Regions

Defined by “Voronoi Diagram”
•Each cell contains points closer to a particular training point

k-Nearest Neighbors: Classification

Training/learning: given

k-Nearest Neighbors: Classification

Training/learning: given

k-Nearest Neighbors: Classification

Training/learning: given

Prediction: for given , find k most similar training pointsx

k-Nearest Neighbors: Classification

Training/learning: given

Prediction: for given , find k most similar training pointsx
Return plurality class

k-Nearest Neighbors: Classification

Training/learning: given

Prediction: for given , find k most similar training pointsx
Return plurality class

k-Nearest Neighbors: Classification

Training/learning: given

Prediction: for given , find k most similar training pointsx
Return plurality class

•I.e., among the k most similar points, output most popular class.

k-Nearest Neighbors: Distances

k-Nearest Neighbors: Distances

Discrete features: Hamming distance

Ex: d([‘a’, ‘b’, ‘c’], [‘d’, ‘b’, ‘e’]) = 2

k-Nearest Neighbors: Distances

Discrete features: Hamming distance

Continuous features:

Ex: d([‘a’, ‘b’, ‘c’], [‘d’, ‘b’, ‘e’]) = 2

k-Nearest Neighbors: Distances

Discrete features: Hamming distance

Continuous features:
•Euclidean distance:

Ex: d([‘a’, ‘b’, ‘c’], [‘d’, ‘b’, ‘e’]) = 2

Ex: d([0, 0], [4, 4]) = 32

k-Nearest Neighbors: Distances

Discrete features: Hamming distance

Continuous features:
•Euclidean distance:

Ex: d([‘a’, ‘b’, ‘c’], [‘d’, ‘b’, ‘e’]) = 2

Ex: d([0, 0], [4, 4]) = 32

k-Nearest Neighbors: Distances

Discrete features: Hamming distance

Continuous features:
•Euclidean distance:

•L1 (Manhattan) dist.:

Ex: d([‘a’, ‘b’, ‘c’], [‘d’, ‘b’, ‘e’]) = 2

Ex: d([0, 0], [4, 4]) = 32

k-Nearest Neighbors: Distances

Discrete features: Hamming distance

Continuous features:
•Euclidean distance:

•L1 (Manhattan) dist.:

Ex: d([‘a’, ‘b’, ‘c’], [‘d’, ‘b’, ‘e’]) = 2

Ex: d([0, 0], [4, 4]) = 32

Ex: d([0, 0], [4, 4]) = 8

k-Nearest Neighbors: Standardization

Typical in data science applications. Recipe:

k-Nearest Neighbors: Standardization

Typical in data science applications. Recipe:
•Compute empirical mean/stddev for a feature (in train set)

k-Nearest Neighbors: Standardization

Typical in data science applications. Recipe:
•Compute empirical mean/stddev for a feature (in train set)

k-Nearest Neighbors: Standardization

Typical in data science applications. Recipe:
•Compute empirical mean/stddev for a feature (in train set)

k-Nearest Neighbors: Standardization

Typical in data science applications. Recipe:
•Compute empirical mean/stddev for a feature (in train set)

•Standardize features:

k-Nearest Neighbors: Standardization

Typical in data science applications. Recipe:
•Compute empirical mean/stddev for a feature (in train set)

•Standardize features:

k-Nearest Neighbors: Standardization

Typical in data science applications. Recipe:
•Compute empirical mean/stddev for a feature (in train set)

•Standardize features:
• Do the same for test points!

k-Nearest Neighbors: Standardization

Typical in data science applications. Recipe:
•Compute empirical mean/stddev for a feature (in train set)

•Standardize features:
• Do the same for test points!

What problem does this solve?

k-Nearest Neighbors: Standardization

Typical in data science applications. Recipe:
•Compute empirical mean/stddev for a feature (in train set)

•Standardize features:
• Do the same for test points!

What problem does this solve?

Prevents high magnitude / variance features from dominating distance calculation.

k-Nearest Neighbors: Mixed Distances

Might have both discrete and continuous features:

k-Nearest Neighbors: Mixed Distances

Might have both discrete and continuous features:
• Sum two types of distances component (or sum squared etc)

k-Nearest Neighbors: Mixed Distances

Might have both discrete and continuous features:
• Sum two types of distances component (or sum squared etc)

• Might need normalization, (e.g. normalize individual
distances to maximum value of 1)

k-Nearest Neighbors: Regression

Training/learning: given

k-Nearest Neighbors: Regression

Training/learning: given

Prediction: for , find k most similar training pointsx

k-Nearest Neighbors: Regression

Training/learning: given

Prediction: for , find k most similar training pointsx
Return

k-Nearest Neighbors: Regression

Training/learning: given

Prediction: for , find k most similar training pointsx
Return

k-Nearest Neighbors: Regression

Training/learning: given

Prediction: for , find k most similar training pointsx
Return

•I.e., among the k points, output mean label.

k-Nearest Neighbors: Locally Weighted k-NN

Could contribute to predictions via a weighted distance

k-Nearest Neighbors: Locally Weighted k-NN

Could contribute to predictions via a weighted distance
•All k no longer equally contribute

k-Nearest Neighbors: Locally Weighted k-NN

Could contribute to predictions via a weighted distance
•All k no longer equally contribute
•Classification:

k-Nearest Neighbors: Locally Weighted k-NN

Could contribute to predictions via a weighted distance
•All k no longer equally contribute
•Classification:

•Regression

Dealing with Irrelevant Features

One relevant feature x1

1-NN rule classifies each
instance correctly

Dealing with Irrelevant Features

x1

One relevant feature x1

1-NN rule classifies each
instance correctly

Dealing with Irrelevant Features

x1

One relevant feature x1

1-NN rule classifies each
instance correctly

Effect of an irrelevant feature x2

on distances and nearest
neighbors

Dealing with Irrelevant Features

x1

One relevant feature x1

1-NN rule classifies each
instance correctly

Effect of an irrelevant feature x2

on distances and nearest
neighbors

x1

x2

kNN: Strengths & Weaknesses

kNN: Strengths & Weaknesses

Strengths

kNN: Strengths & Weaknesses

Strengths
• Easy to explain predictions

kNN: Strengths & Weaknesses

Strengths
• Easy to explain predictions
• Simple to implement and conceptualize.

kNN: Strengths & Weaknesses

Strengths
• Easy to explain predictions
• Simple to implement and conceptualize.
• No training!

kNN: Strengths & Weaknesses

Strengths
• Easy to explain predictions
• Simple to implement and conceptualize.
• No training!
• Often good in practice

kNN: Strengths & Weaknesses

Strengths
• Easy to explain predictions
• Simple to implement and conceptualize.
• No training!
• Often good in practice

Weaknesses

kNN: Strengths & Weaknesses

Strengths
• Easy to explain predictions
• Simple to implement and conceptualize.
• No training!
• Often good in practice

Weaknesses
• Sensitive to irrelevant + correlated features

• Can try to solve via variations.

kNN: Strengths & Weaknesses

Strengths
• Easy to explain predictions
• Simple to implement and conceptualize.
• No training!
• Often good in practice

Weaknesses
• Sensitive to irrelevant + correlated features

• Can try to solve via variations.
• Prediction stage can be expensive

kNN: Strengths & Weaknesses

Strengths
• Easy to explain predictions
• Simple to implement and conceptualize.
• No training!
• Often good in practice

Weaknesses
• Sensitive to irrelevant + correlated features

• Can try to solve via variations.
• Prediction stage can be expensive
• No “model” to interpret

Inductive Bias

Inductive Bias

• Inductive bias: assumptions a learner uses to predict yi for a previously unseen
instance xi

Inductive Bias

• Inductive bias: assumptions a learner uses to predict yi for a previously unseen
instance xi

• Two components (mostly)

• hypothesis space bias: determines the models that can be represented

• preference bias: specifies a preference ordering within the space of models

Inductive Bias

• Inductive bias: assumptions a learner uses to predict yi for a previously unseen
instance xi

• Two components (mostly)

• hypothesis space bias: determines the models that can be represented

• preference bias: specifies a preference ordering within the space of models

learner hypothesis space bias preference bias

k-NN Decomposition of space determined
by nearest neighbors

Instances in neighborhood
belong to same class

Break & Quiz

Q2-1: Table shows all the training points in 2D space and their labels. Assume a 3-NN
classifier and Euclidean distance. What should be the labels of the points A: (1, 1)
and B(2, 1)?

1. A: +, B: -

2. A: -, B: +

3. A: -, B: -

4. A: +, B: +

x y label

0 0 +

1 0 +

2 0 +

2 2 +

0 1 -

0 2 -

1 2 -

3 1 -

Q2-1: Table shows all the training points in 2D space and their labels. Assume 3NN
classifier and Euclidean distance. What should be the labels of the points A: (1, 1)
and B(2, 1)?

1. A: +, B: -

2. A: -, B: +

3. A: -, B: -

4. A: +, B: +

x y label

0 0 +

1 0 +

2 0 +

2 2 +

0 1 -

0 2 -

1 2 -

3 1 -

3 nearest neighbors to point A are (0, 1)
[-], (1, 0) [+], (1, 2) [-]. Hence, the label
should be [-]

3 nearest neighbors to point B are (2, 0)
[+], (2, 2) [+], (3, 1) [-]. Hence, the label
should be [+]

Q2-2: In a distance-weighted nearest neighbor, which of the following weight is NOT
appropriate? Let p be the test data point and xi {i = 1: N} be training data points.

1. wi = d(p, xi)½

2. wi = d(p, xi)-2

3. wi = exp(-d(p, xi))

4. wi = 1

Q2-2: In a distance-weighted nearest neighbor, which of the following weights is NOT
appropriate? Let p be the test data point and xi {i = 1: N} be training data points.

1. wi = d(p, xi)½

2. wi = d(p, xi)-2

3. wi = exp(-d(p, xi))

4. wi = 1
The intuition behind weighted kNN, is to give more weight to the points
which are nearby and less weight to the points which are farther away.
Any function whose value decreases as the distance increases can be
used as a function for the weighted knn classifier. w = 1 is also OK as it
reduces to our traditional nearest-neighbor algorithm.

Outline

•Review from last time

•Features, labels, hypothesis class, training, generalization

•Instance-based learning

•k-NN classification/regression, locally weighted regression,
strengths & weaknesses, inductive bias

•Decision trees

• Setup, splits, learning, information gain, strengths and
weaknesses

Decision Trees: Heart Disease Example
thal

#_major_vessels > 0 present

normal fixed_defect

true false

1 2

present

reversible_defect

chest_pain_type absent

absentabsentabsent present

3 4

Decision Trees: Heart Disease Example
thal

#_major_vessels > 0 present

normal fixed_defect

true false

1 2

present

reversible_defect

chest_pain_type absent

absentabsentabsent present

3 4

Each internal node tests one feature xi

Each branch from an internal node
represents one outcome of the test

Each leaf predicts y or P(y | x)

Decision Trees: Logical Formulas

Decision Trees: Logical Formulas

• Suppose X1 … X5 are Boolean features, and Y is also
Boolean

• How would you represent the following with decision trees?

Decision Trees: Logical Formulas

• Suppose X1 … X5 are Boolean features, and Y is also
Boolean

• How would you represent the following with decision trees?

) (i.e., 5252 XXYXXY ∧==

Decision Trees: Logical Formulas

• Suppose X1 … X5 are Boolean features, and Y is also
Boolean

• How would you represent the following with decision trees?

) (i.e., 5252 XXYXXY ∧==

52 XXY ∨=

Decision Trees: Logical Formulas

• Suppose X1 … X5 are Boolean features, and Y is also
Boolean

• How would you represent the following with decision trees?

) (i.e., 5252 XXYXXY ∧==

52 XXY ∨=

1352 XXXXY ¬∨=

Decision Trees: Textual Description

thal

#_major_vessels > 0 present

normal fixed_defect

true false

present absent

Decision Trees: Textual Description

thal

#_major_vessels > 0 present

normal fixed_defect

true false

present absent

Decision Trees: Textual Description

thal

#_major_vessels > 0 present

normal fixed_defect

true false

present absent

thal = normal

[#_major_vessels > 0] = true: present

[#_major_vessels > 0] = false: absent

thal = fixed_defect: present

Decision Trees: Mushrooms Example
if odor=almond, predict edible

if odor=none ∧

 spore-print-color=white ∧

 gill-size=narrow ∧
 gill-spacing=crowded,

predict poisonous

Decision Trees: Learning

•Learning Algorithm:

Decision Trees: Learning

•Learning Algorithm:

Decision Trees: Learning

•Learning Algorithm:

Decision Trees: Learning

•Learning Algorithm:

Decision Trees: Learning

MakeSubtree(set of training instances D)

	 C = DetermineCandidateSplits(D)

	 if stopping criteria is met

	 	 make a leaf node N

	 	 determine class label for N

	 else

	 	 make an internal node N

	 	 S = FindBestSplit(D, C)

	 	 for each group k of S

	 	 	 Dk = subset of training data in group k

	 	 	 kth child of N = MakeSubtree(Dk)

	 return subtree rooted at N

•Learning Algorithm:

Decision Trees: Learning

MakeSubtree(set of training instances D)

	 C = DetermineCandidateSplits(D)

	 if stopping criteria is met

	 	 make a leaf node N

	 	 determine class label for N

	 else

	 	 make an internal node N

	 	 S = FindBestSplit(D, C)

	 	 for each group k of S

	 	 	 Dk = subset of training data in group k

	 	 	 kth child of N = MakeSubtree(Dk)

	 return subtree rooted at N

•Learning Algorithm:

1. DT Learning: Candidate Splits

First, need to determine how to split features

1. DT Learning: Candidate Splits

First, need to determine how to split features
•Splits on nominal features have one branch per value

1. DT Learning: Candidate Splits

First, need to determine how to split features
•Splits on nominal features have one branch per value

thal

normal fixed_defect reversible_defect

1. DT Learning: Candidate Splits

First, need to determine how to split features
•Splits on nominal features have one branch per value

•Splits on numeric features use a threshold/interval

thal

normal fixed_defect reversible_defect

1. DT Learning: Candidate Splits

First, need to determine how to split features
•Splits on nominal features have one branch per value

•Splits on numeric features use a threshold/interval

thal

normal fixed_defect reversible_defect

weight ≤ 35

true false

1. DT Learning: Candidate Splits

First, need to determine how to split features
•Splits on nominal features have one branch per value

•Splits on numeric features use a threshold/interval

thal

normal fixed_defect reversible_defect

weight ≤ 35

true false

ID3, C4.5

DT Learning: Numeric Feature Splits

Given a set of training instances D and a specific feature Xi

DT Learning: Numeric Feature Splits

Given a set of training instances D and a specific feature Xi

•Sort the values of Xi in D

DT Learning: Numeric Feature Splits

Given a set of training instances D and a specific feature Xi

•Sort the values of Xi in D
•Evaluate split thresholds in intervals between instances of
different classes

DT Learning: Numeric Feature Splits

Given a set of training instances D and a specific feature Xi

•Sort the values of Xi in D
•Evaluate split thresholds in intervals between instances of
different classes

weight

17 35

DT Learning: Numeric Feature Splits

Given a set of training instances D and a specific feature Xi

•Sort the values of Xi in D
•Evaluate split thresholds in intervals between instances of
different classes

weight

17 35

weight ≤ 35

true false

Numeric Feature Splits Algorithm

// Run this subroutine for each numeric feature at each node of DT induction

DetermineCandidateNumericSplits(set of training instances D, feature Xi)

	 C = {}	 // initialize set of candidate splits for feature Xi

	 let vj denote the value of Xi for the jth data point

sort the dataset using vj as the key for each data point

	 for each pair of adjacent vj, vj+1 in the sorted order

	 	 if the corresponding class labels are different

	 	 	 add candidate split Xi ≤ (vj + vj+1)/2 to C

	 return C
	 	

	

DT: Splits on Nominal Features

Instead of using k-way splits for k-valued features, could
require binary splits on all nominal features.

- CART algorithm (popular DT algorithm) does this.

DT: Splits on Nominal Features

Instead of using k-way splits for k-valued features, could
require binary splits on all nominal features.

- CART algorithm (popular DT algorithm) does this.

thal

normal reversible_defect ∨ fixed_defect

DT: Splits on Nominal Features

Instead of using k-way splits for k-valued features, could
require binary splits on all nominal features.

- CART algorithm (popular DT algorithm) does this.

thal

normal reversible_defect ∨ fixed_defect

color

red ∨blue green ∨ yellow

Decision Trees: Learning

•Learning Algorithm:

Decision Trees: Learning

•Learning Algorithm:

Decision Trees: Learning

•Learning Algorithm:

Decision Trees: Learning

•Learning Algorithm:

Decision Trees: Learning

MakeSubtree(set of training instances D)

	 C = DetermineCandidateSplits(D)

	 if stopping criteria is met

	 	 make a leaf node N

	 	 determine class label for N

	 else

	 	 make an internal node N

	 	 S = FindBestSplit(D, C)

	 	 for each group k of S

	 	 	 Dk = subset of training data in group k

	 	 	 kth child of N = MakeSubtree(Dk)

	 return subtree rooted at N

•Learning Algorithm:

Decision tree Learning: Finding the Best Splits

Decision tree Learning: Finding the Best Splits

How to we select the best feature to split on at each step?

Decision tree Learning: Finding the Best Splits

How to we select the best feature to split on at each step?
•Hypothesis: simplest tree that classifies the training
instances accurately will generalize.

Decision tree Learning: Finding the Best Splits

How to we select the best feature to split on at each step?
•Hypothesis: simplest tree that classifies the training
instances accurately will generalize.

Occam’s razor

• “when you have two competing theories that make the same

 predictions, the simpler one is the better”

Decision tree Learning: Finding the Best Splits

How to we select the best feature to split on at each step?
•Hypothesis: simplest tree that classifies the training
instances accurately will generalize.

Occam’s razor

• “when you have two competing theories that make the same

 predictions, the simpler one is the better”

DT Learning: Finding the Best Splits

How to we select the best feature to split on at each step?
•Hypothesis: simplest tree that classifies the training
instances accurately will generalize

DT Learning: Finding the Best Splits

How to we select the best feature to split on at each step?
•Hypothesis: simplest tree that classifies the training
instances accurately will generalize

Why is Occam’s razor a reasonable heuristic?

DT Learning: Finding the Best Splits

How to we select the best feature to split on at each step?
•Hypothesis: simplest tree that classifies the training
instances accurately will generalize

Why is Occam’s razor a reasonable heuristic?
• There are fewer short models (i.e. small trees) than long ones

DT Learning: Finding the Best Splits

How to we select the best feature to split on at each step?
•Hypothesis: simplest tree that classifies the training
instances accurately will generalize

Why is Occam’s razor a reasonable heuristic?
• There are fewer short models (i.e. small trees) than long ones
• A short model is unlikely to fit the training data well by chance

DT Learning: Finding the Best Splits

How to we select the best feature to split on at each step?
•Hypothesis: simplest tree that classifies the training
instances accurately will generalize

Why is Occam’s razor a reasonable heuristic?
• There are fewer short models (i.e. small trees) than long ones
• A short model is unlikely to fit the training data well by chance
• A long model is more likely to fit the training data well coincidentally

DT Learning: Finding Optimal Splits?

Can we find and return the smallest possible decision tree that
accurately classifies the training set?

DT Learning: Finding Optimal Splits?

Can we find and return the smallest possible decision tree that
accurately classifies the training set?

• NO! This is an NP-hard problem

DT Learning: Finding Optimal Splits?

Can we find and return the smallest possible decision tree that
accurately classifies the training set?

• NO! This is an NP-hard problem
	 [Hyafil & Rivest, Information Processing Letters, 1976]

DT Learning: Finding Optimal Splits?

Can we find and return the smallest possible decision tree that
accurately classifies the training set?

• NO! This is an NP-hard problem
	 [Hyafil & Rivest, Information Processing Letters, 1976]
•Instead, we’ll use an information-theoretic heuristic to
greedily choose splits

Information Theory: Super-Quick Intro

Information Theory: Super-Quick Intro

Information Theory: Super-Quick Intro

•Goal: communicate information to a receiver in bits

•Ex: as bikes go past, communicate the maker of each bike

Information Theory: Super-Quick Intro

•Goal: communicate information to a receiver in bits

•Ex: as bikes go past, communicate the maker of each bike

Information Theory: Encoding

Information Theory: Encoding

•Could send out the names of the manufacturers in binary
coded ASCII

• Suppose there are 4: Trek, Specialized, Cervelo, Serrota

Information Theory: Encoding

•Could send out the names of the manufacturers in binary
coded ASCII

• Suppose there are 4: Trek, Specialized, Cervelo, Serrota

Information Theory: Encoding

•Could send out the names of the manufacturers in binary
coded ASCII

• Suppose there are 4: Trek, Specialized, Cervelo, Serrota

Information Theory: Encoding

•Could send out the names of the manufacturers in binary
coded ASCII

• Suppose there are 4: Trek, Specialized, Cervelo, Serrota

•Inefficient… since there’s just 4, we could encode them

• # of bits: 2 per communication

Information Theory: Encoding

•Could send out the names of the manufacturers in binary
coded ASCII

• Suppose there are 4: Trek, Specialized, Cervelo, Serrota

•Inefficient… since there’s just 4, we could encode them

• # of bits: 2 per communication

11

10

01

00

Trek

Specialized

Cervelo

Serrota

type code

Information Theory: Encoding

Information Theory: Encoding

•Now, some bikes are rarer than others…

• Cervelo is a rarer specialty bike.

• We could save some bits… make more popular messages fewer bits,

rarer ones more bits

• Note: this is on average

Information Theory: Encoding

•Now, some bikes are rarer than others…

• Cervelo is a rarer specialty bike.

• We could save some bits… make more popular messages fewer bits,

rarer ones more bits

• Note: this is on average

•Expected # bits: 1.75

Information Theory: Encoding

•Now, some bikes are rarer than others…

• Cervelo is a rarer specialty bike.

• We could save some bits… make more popular messages fewer bits,

rarer ones more bits

• Note: this is on average

•Expected # bits: 1.75
1

€

P(Trek) = 0.5
P(Specialized) = 0.25
P(Cervelo) = 0.125
P(Serrota) = 0.125

2

3

3

1

01

001

000

Type/probability # bits code

Information Theory: Encoding

•Now, some bikes are rarer than others…

• Cervelo is a rarer specialty bike.

• We could save some bits… make more popular messages fewer bits,

rarer ones more bits

• Note: this is on average

•Expected # bits: 1.75
1

€

P(Trek) = 0.5
P(Specialized) = 0.25
P(Cervelo) = 0.125
P(Serrota) = 0.125

2

3

3

1

01

001

000

Type/probability # bits code

Information Theory: Entropy

Information Theory: Entropy

•Measure of uncertainty for random variables/distributions

Information Theory: Entropy

•Measure of uncertainty for random variables/distributions

•Expected number of bits required to communicate the value
of the variable

Information Theory: Entropy

•Measure of uncertainty for random variables/distributions

•Expected number of bits required to communicate the value
of the variable

Information Theory: Entropy

•Measure of uncertainty for random variables/distributions

•Expected number of bits required to communicate the value
of the variable

Information Theory: Conditional Entropy

H(Y |X) = ∑
x∈𝒳

Pr(X = x)H(Y |X = x)

Information Theory: Conditional Entropy

•Suppose we know X. CE: how much uncertainty left in Y on
average after X is known?

H(Y |X) = ∑
x∈𝒳

Pr(X = x)H(Y |X = x)

Information Theory: Conditional Entropy

•Suppose we know X. CE: how much uncertainty left in Y on
average after X is known?

•Here,

H(Y |X) = ∑
x∈𝒳

Pr(X = x)H(Y |X = x)

Information Theory: Conditional Entropy

•Suppose we know X. CE: how much uncertainty left in Y on
average after X is known?

•Here,

H(Y |X) = ∑
x∈𝒳

Pr(X = x)H(Y |X = x)

Information Theory: Conditional Entropy

•Suppose we know X. CE: how much uncertainty left in Y on
average after X is known?

•Here,

•What is it if Y=X?

H(Y |X) = ∑
x∈𝒳

Pr(X = x)H(Y |X = x)

Information Theory: Conditional Entropy

•Suppose we know X. CE: how much uncertainty left in Y on
average after X is known?

•Here,

•What is it if Y=X?
•What if Y is independent of X?

H(Y |X) = ∑
x∈𝒳

Pr(X = x)H(Y |X = x)

Information Theory: Conditional Entropy

Information Theory: Conditional Entropy

•Example. Y is still the bike maker, X is color.

Information Theory: Conditional Entropy

•Example. Y is still the bike maker, X is color.

Y=Type/X=Color Black White

Trek 0.25 0.25

Specialized 0.125 0.125

Cervelo 0.125 0

Serrota 0 0.125

Information Theory: Conditional Entropy

•Example. Y is still the bike maker, X is color.

Y=Type/X=Color Black White

Trek 0.25 0.25

Specialized 0.125 0.125

Cervelo 0.125 0

Serrota 0 0.125

Information Theory: Conditional Entropy

•Example. Y is still the bike maker, X is color.

Y=Type/X=Color Black White

Trek 0.25 0.25

Specialized 0.125 0.125

Cervelo 0.125 0

Serrota 0 0.125

H(Y|X=black) = -0.5 log(0.5) – 0.25 log(0.25) – 0.25 log(0.25) – 0 = 1.5

H(Y|X=white) = -0.5 log(0.5) – 0.25 log(0.25) –0 – 0.25 log(0.25) = 1.5

H(Y|X) = 0.5 * H(Y|X=black) + 0.5 * H(Y|X=white) = 1.5

Information Theory: Mutual Information

Information Theory: Mutual Information

•Similar comparison between R.V.s:

Information Theory: Mutual Information

•Similar comparison between R.V.s:

Information Theory: Mutual Information

•Similar comparison between R.V.s:

Interpretation:

Information Theory: Mutual Information

•Similar comparison between R.V.s:

Interpretation:
•How much uncertainty of Y that X can reduce.

Information Theory: Mutual Information

•Similar comparison between R.V.s:

Interpretation:
•How much uncertainty of Y that X can reduce.
•Or, how much information about Y can you glean by knowing X?

Information Theory: Mutual Information

•Similar comparison between R.V.s:

Interpretation:
•How much uncertainty of Y that X can reduce.
•Or, how much information about Y can you glean by knowing X?

Y=Type/X=Color Black White

Trek 0.25 0.25

Specialized 0.125 0.125

Cervelo 0.125 0

Serrota 0 0.125

Information Theory: Mutual Information

•Similar comparison between R.V.s:

Interpretation:
•How much uncertainty of Y that X can reduce.
•Or, how much information about Y can you glean by knowing X?

Y=Type/X=Color Black White

Trek 0.25 0.25

Specialized 0.125 0.125

Cervelo 0.125 0

Serrota 0 0.125

I(Y:X) = H(Y) – H(Y|X) = 1.75 – 1.5 = 0.25

DT Learning: Back to Splits

DT Learning: Back to Splits

Want to choose split S that maximizes

DT Learning: Back to Splits

Want to choose split S that maximizes

DT Learning: Back to Splits

Want to choose split S that maximizes

ie, mutual information.

DT Learning: Back to Splits

Want to choose split S that maximizes

ie, mutual information.
•Note: D denotes that this is the empirical entropy

• We don’t know the real distribution of Y, just have our dataset

DT Learning: Back to Splits

Want to choose split S that maximizes

ie, mutual information.
•Note: D denotes that this is the empirical entropy

• We don’t know the real distribution of Y, just have our dataset

•Equivalent to maximally reducing the entropy of Y conditioned
on a split S

DT Learning: InfoGain Example

Simple binary classification (play tennis?) with 4 features.

DT Learning: InfoGain Example

Simple binary classification (play tennis?) with 4 features.

DT Learning: InfoGain For One Split

• What is the information gain of splitting on Humidity?

Humidity

high normal

D: [3+, 4-]

D: [9+, 5-]

D: [6+, 1-]

DT Learning: InfoGain For One Split

• What is the information gain of splitting on Humidity?

Humidity

high normal

D: [3+, 4-]

D: [9+, 5-]

D: [6+, 1-]

940.0
14
5log

14
5

14
9log

14
9)(22 =⎟

⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛−=YHD

DT Learning: InfoGain For One Split

• What is the information gain of splitting on Humidity?

Humidity

high normal

D: [3+, 4-]

D: [9+, 5-]

D: [6+, 1-]

940.0
14
5log

14
5

14
9log

14
9)(22 =⎟

⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛−=YHD

985.0
7
4log

7
4

7
3log

7
3)high|(22

=

⎟
⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛−=YHD

DT Learning: InfoGain For One Split

• What is the information gain of splitting on Humidity?

Humidity

high normal

D: [3+, 4-]

D: [9+, 5-]

D: [6+, 1-]

940.0
14
5log

14
5

14
9log

14
9)(22 =⎟

⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛−=YHD

592.0
7
1

log
7
1

7
6

log
7
6

)normal|(22

=

⎟
⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛−=YHD

985.0
7
4log

7
4

7
3log

7
3)high|(22

=

⎟
⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛−=YHD

DT Learning: InfoGain For One Split

• What is the information gain of splitting on Humidity?

Humidity

high normal

D: [3+, 4-]

D: [9+, 5-]

D: [6+, 1-]

940.0
14
5log

14
5

14
9log

14
9)(22 =⎟

⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛−=YHD

592.0
7
1

log
7
1

7
6

log
7
6

)normal|(22

=

⎟
⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛−=YHD

985.0
7
4log

7
4

7
3log

7
3)high|(22

=

⎟
⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛−=YHD

151.0

)592.0(
14
7)985.0(

14
7940.0

)Humidity|()()Humidity,(InfoGain

=

⎥⎦

⎤
⎢⎣

⎡ +−=

−= YHYHD DD

DT Learning: Comparing Split InfoGains

• Is it better to split on Humidity or Wind?

Humidity

high normal

D: [3+, 4-]

D: [9+, 5-]

D: [6+, 1-]

Wind

weak strong

D: [6+, 2-]

D: [9+, 5-]

D: [3+, 3-]

DT Learning: Comparing Split InfoGains

• Is it better to split on Humidity or Wind?

Humidity

high normal

D: [3+, 4-]

D: [9+, 5-]

D: [6+, 1-]

 HD (Y |weak) = 0.811

Wind

weak strong

D: [6+, 2-]

D: [9+, 5-]

D: [3+, 3-]

DT Learning: Comparing Split InfoGains

• Is it better to split on Humidity or Wind?

Humidity

high normal

D: [3+, 4-]

D: [9+, 5-]

D: [6+, 1-]

 HD (Y |weak) = 0.811

Wind

weak strong

D: [6+, 2-]

D: [9+, 5-]

D: [3+, 3-]

 HD (Y |strong) = 1.0

DT Learning: Comparing Split InfoGains

• Is it better to split on Humidity or Wind?

Humidity

high normal

D: [3+, 4-]

D: [9+, 5-]

D: [6+, 1-]

 HD (Y |weak) = 0.811

Wind

weak strong

D: [6+, 2-]

D: [9+, 5-]

D: [3+, 3-]

 HD (Y |strong) = 1.0

✔

151.0

)592.0(
14
7)985.0(

14
7940.0)Humidity,(InfoGain

=

⎥⎦

⎤
⎢⎣

⎡ +−=D

048.0

)0.1(
14
6)811.0(

14
8940.0)Wind,(InfoGain

=

⎥⎦

⎤
⎢⎣

⎡ +−=D

DT Learning: InfoGain Limitations

•InfoGain is biased towards tests with many outcomes

DT Learning: InfoGain Limitations

•InfoGain is biased towards tests with many outcomes
•Splitting on it results in many branches, each of which is “pure”
(has instances of only one class)

DT Learning: InfoGain Limitations

•InfoGain is biased towards tests with many outcomes
•Splitting on it results in many branches, each of which is “pure”
(has instances of only one class)

• In the extreme: A feature that uniquely identifies each instance

DT Learning: InfoGain Limitations

•InfoGain is biased towards tests with many outcomes
•Splitting on it results in many branches, each of which is “pure”
(has instances of only one class)

• In the extreme: A feature that uniquely identifies each instance
•Maximal information gain!

DT Learning: InfoGain Limitations

•InfoGain is biased towards tests with many outcomes
•Splitting on it results in many branches, each of which is “pure”
(has instances of only one class)

• In the extreme: A feature that uniquely identifies each instance
•Maximal information gain!

•Use GainRatio: normalize information gain by entropy

DT Learning: InfoGain Limitations

•InfoGain is biased towards tests with many outcomes
•Splitting on it results in many branches, each of which is “pure”
(has instances of only one class)

• In the extreme: A feature that uniquely identifies each instance
•Maximal information gain!

•Use GainRatio: normalize information gain by entropy

Homework: What is a good stopping criteria?

•Learning Algorithm:

Homework: What is a good stopping criteria?

•Learning Algorithm:

Homework: What is a good stopping criteria?

•Learning Algorithm:

Homework: What is a good stopping criteria?

•Learning Algorithm:

Homework: What is a good stopping criteria?

MakeSubtree(set of training instances D)

	 C = DetermineCandidateSplits(D)

	 if stopping criteria is met

	 	 make a leaf node N

	 	 determine class label for N

	 else

	 	 make an internal node N

	 	 S = FindBestSplit(D, C)

	 	 for each group k of S

	 	 	 Dk = subset of training data in group k

	 	 	 kth child of N = MakeSubtree(Dk)

	 return subtree rooted at N

•Learning Algorithm:

Inductive Bias

• Recall: Inductive bias: assumptions a learner uses to predict yi for a previously
unseen instance xi

• Two components

• hypothesis space bias: determines the models that can be represented

• preference bias: specifies a preference ordering within the space of models

learner hypothesis space bias preference bias

Decision trees trees with single-feature, axis-parallel
splits

small trees identified by greedy
search

k-NN Decomposition of space determined
by nearest neighbors

Instances in neighborhood
belong to same class

Q3-1: Which of the following statements are True?

1. In a decision tree, once you split using one feature, you cannot split

again using the same feature.

2. We should split along all features to create a decision tree.

3. We should keep splitting the tree until there is only one data point

left at each leaf node.

Q3-1: Which of the following statements are True?

1. In a decision tree, once you split using one feature, you cannot split

again using the same feature.

2. We should split along all features to create a decision tree.

3. We should keep splitting the tree until there is only one data point

left at each leaf node.

They are all false!

Today’s Learning Outcomes

•After today’s lecture:

•You will be able to explain how the k-nearest
neighbor’s algorithm classifies unseen instances.

•You will be able to explain the concept of an
inductive bias.

•You will be able to explain how a decision tree
classifies instances.

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov

