

CS 760: Machine Learning Supervised Learning I

Josiah Hanna

University of Wisconsin — Madison

9/14/2023

- Enrollment:
 - Email me today if you're still on waitlist AND have a reason for additional priority.
 - It will be offered next semester if you don't get in.

- Enrollment:
 - Email me today if you're still on waitlist AND have a reason for additional priority.
 - It will be offered next semester if you don't get in.
- Background Knowledge:
 - Please look at homework 1 before add/drop deadline.

- Enrollment:
 - Email me today if you're still on waitlist AND have a reason for additional priority.
 - It will be offered next semester if you don't get in.
- Background Knowledge:
 - Please look at homework 1 before add/drop deadline.
 - Please take background survey on Piazza.
- Homework 1 is due at 9:30 AM on Tuesday, September 19.
- Sign-up for Piazza (link on webpage)
 - Passcode: mlfall23

After today's lecture:

After today's lecture:

•You will be able to explain how the k-nearest neighbor's algorithm classifies unseen instances.

After today's lecture:

- You will be able to explain how the k-nearest neighbor's algorithm classifies unseen instances.
- •You will be able to explain the concept of an inductive bias.

After today's lecture:

- •You will be able to explain how the k-nearest neighbor's algorithm classifies unseen instances.
- •You will be able to explain the concept of an inductive bias.
- •You will be able to explain how a decision tree classifies instances.

Outline

Review from last time

• Features, labels, hypothesis class, training, generalization

Instance-based learning

 k-NN classification/regression, locally weighted regression, strengths & weaknesses, inductive bias

Decision trees

 Setup, splits, learning, information gain, strengths and weaknesses

Outline

Review from last time

• Features, labels, hypothesis class, training, generalization

Instance-based learning

• k-NN classification/regression, locally weighted regression, strengths & weaknesses, inductive bias

Decision trees

• Setup, splits, learning, information gain, strengths and weaknesses

Problem setting

Problem setting

Set of possible instances

Problem setting

Set of possible instances

Problem setting

Set of possible instances

 \mathcal{X}

• Unknown target function

Problem setting

Set of possible instances

 \mathcal{X}

• Unknown target function

 $f: \mathcal{X} \to \mathcal{Y}$

Problem setting

Set of possible instances

 \mathcal{X}

• Unknown target function

 $f: \mathcal{X} \to \mathcal{Y}$

• Set of models (a.k.a. hypotheses):

Problem setting

Set of possible instances

 \mathcal{X}

• Unknown target function

 $f: \mathcal{X} \to \mathcal{Y}$

• Set of models (a.k.a. hypotheses):

 $\mathcal{H} = \{h|h: \mathcal{X} \to \mathcal{Y}\}$

Problem setting

Set of possible instances

 \mathcal{X}

• Unknown target function

 $f: \mathcal{X} \to \mathcal{Y}$

• Set of models (a.k.a. hypotheses):

$$\mathcal{H} = \{h|h: \mathcal{X} \to \mathcal{Y}\}$$

Given

Problem setting

Set of possible instances

 \mathcal{X}

• Unknown target function

$$f: \mathcal{X} \to \mathcal{Y}$$

• Set of *models* (a.k.a. *hypotheses*):

$$\mathcal{H} = \{h|h: \mathcal{X} \to \mathcal{Y}\}$$

Given

Training set of instances for unknown target function,

Problem setting

Set of possible instances

 \mathcal{X}

• Unknown target function

 $f: \mathcal{X} \to \mathcal{Y}$

• Set of models (a.k.a. hypotheses):

$$\mathcal{H} = \{h|h: \mathcal{X} \to \mathcal{Y}\}$$

Given

 Training set of instances for unknown target function, where

Problem setting

Set of possible instances

 \mathcal{X}

• Unknown target function

$$f: \mathcal{X} \to \mathcal{Y}$$

• Set of models (a.k.a. hypotheses):

$$\mathcal{H} = \{h|h: \mathcal{X} \to \mathcal{Y}\}$$

Given

• Training set of instances for unknown target function, where $y^{(i)} \approx f(x^{(i)})$

Problem setting

Set of possible instances

 \mathcal{X}

• Unknown target function

$$f: \mathcal{X} \to \mathcal{Y}$$

• Set of models (a.k.a. hypotheses): $\mathcal{H} = \{h|h:\mathcal{X} o \mathcal{Y}\}$

Given

- Training set of instances for unknown target function, where $y^{(i)} \approx f(x^{(i)})$

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})$$

Problem setting

Set of possible instances

Unknown target function

$$f: \mathcal{X} \to \mathcal{Y}$$

• Set of models (a.k.a. hypotheses): $\mathcal{H} = \{h|h:\mathcal{X} \to \mathcal{Y}\}$

$$\mathcal{H} = \{h|h: \mathcal{X} \to \mathcal{Y}\}$$

Given

 Training set of instances for unknown target function, where $y^{(i)} \approx f(x^{(i)})$

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})$$

safe

Problem setting

Set of possible instances

Unknown target function

$$f: \mathcal{X} \to \mathcal{Y}$$

• Set of models (a.k.a. hypotheses): $\mathcal{H} = \{h|h:\mathcal{X} \to \mathcal{Y}\}$

$$\mathcal{H} = \{h|h: \mathcal{X} \to \mathcal{Y}\}$$

Given

 Training set of instances for unknown target function, where $y^{(i)} \approx f(x^{(i)})$

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})$$

safe

poisonous

Problem setting

Set of possible instances

Unknown target function

$$f: \mathcal{X} \to \mathcal{Y}$$

• Set of models (a.k.a. hypotheses): $\mathcal{H} = \{h|h:\mathcal{X} \to \mathcal{Y}\}$

$$\mathcal{H} = \{h|h: \mathcal{X} \to \mathcal{Y}\}$$

Given

 Training set of instances for unknown target function, where $y^{(i)} \approx f(x^{(i)})$

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(n)}, y^{(n)})$$

safe

poisonous

safe

Three types of sets

Three types of sets

Three types of sets

$$\mathcal{X}, \mathcal{Y}, \mathcal{H}$$

Three types of sets

• Input space, output space, hypothesis class

$$\mathcal{X}, \mathcal{Y}, \mathcal{H}$$

• Examples:

Three types of sets

$$\mathcal{X}, \mathcal{Y}, \mathcal{H}$$

- Examples:
 - Input space: feature vectors

Three types of sets

$$\mathcal{X}, \mathcal{Y}, \mathcal{H}$$

- Examples:
 - Input space: feature vectors $\mathcal{X} \subseteq \mathbb{R}^d$

Three types of sets

$$\mathcal{X}, \mathcal{Y}, \mathcal{H}$$

- Examples:
 - Input space: feature vectors $\mathcal{X} \subseteq \mathbb{R}^d$

Three types of sets

$$\mathcal{X}, \mathcal{Y}, \mathcal{H}$$

- Examples:
 - Input space: feature vectors $\mathcal{X} \subseteq \mathbb{R}^d$
 - Output space:

Three types of sets

$$\mathcal{X}, \mathcal{Y}, \mathcal{H}$$

- Examples:
 - Input space: feature vectors $\mathcal{X} \subseteq \mathbb{R}^d$

- Output space:
 - Discrete/Nominal

Three types of sets

• Input space, output space, hypothesis class

$$\mathcal{X}, \mathcal{Y}, \mathcal{H}$$

- Examples:
 - Input space: feature vectors $\mathcal{X} \subseteq \mathbb{R}^d$

- Output space:
 - Discrete/Nominal

$$\mathcal{Y} = \{-1, +1\}$$

Three types of sets

• Input space, output space, hypothesis class

$$\mathcal{X}, \mathcal{Y}, \mathcal{H}$$

- Examples:
 - Input space: feature vectors

$$\mathcal{X} \subset \mathbb{R}^d$$

Discrete/Nominal

$$\mathcal{Y} = \{-1, +1\}$$

safe poisonous

Three types of sets

• Input space, output space, hypothesis class

$$\mathcal{X}, \mathcal{Y}, \mathcal{H}$$

- Examples:
 - Input space: feature vectors

$$\mathcal{X} \subseteq \mathbb{R}^d$$

Discrete/Nominal

$$\mathcal{Y} = \{-1, +1\}$$

safe poisonous

Continuous

Three types of sets

• Input space, output space, hypothesis class

$$\mathcal{X}, \mathcal{Y}, \mathcal{H}$$

- Examples:
 - Input space: feature vectors

$$\mathcal{X} \subset \mathbb{R}^d$$

Discrete/Nominal

$$\mathcal{Y} = \{-1, +1\}$$

$$\mathcal{Y}\subseteq\mathbb{R}$$

safe poisonous

Three types of sets

• Input space, output space, hypothesis class

$$\mathcal{X}, \mathcal{Y}, \mathcal{H}$$

- Examples:
 - Input space: feature vectors

$$\mathcal{X} \subset \mathbb{R}^d$$

Discrete/Nominal

$$\mathcal{Y} = \{-1, +1\}$$

Continuous

$$\mathcal{Y}\subseteq\mathbb{R}$$

safe poisonous

 13.23°

Depending on the choice of \mathcal{Y} , we have special names:

Depending on the choice of \mathcal{Y} , we have special names:

• Discrete: "classification". The elements of $\, \mathcal{Y} \,$ are classes

Depending on the choice of \mathcal{Y} , we have special names:

•Discrete: "classification". The elements of ${\mathcal Y}$ are classes

Depending on the choice of \mathcal{Y} , we have special names:

• Discrete: "classification". The elements of ${\mathcal Y}$ are classes

Continuous: "regression"

Depending on the choice of \mathcal{Y} , we have special names:

• Discrete: "classification". The elements of ${\mathcal Y}$ are classes

- Continuous: "regression"
 - Example: linear regression

Depending on the choice of \mathcal{Y} , we have special names:

• Discrete: "classification". The elements of $\ \mathcal{Y}$ are classes

- Continuous: "regression"
 - Example: linear regression

Depending on the choice of \mathcal{Y} , we have special names:

•Discrete: "classification". The elements of $\, \mathcal{Y} \,$ are classes

- Continuous: "regression"
 - Example: linear regression
- There are other types...

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_d x_d$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_d x_d$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_d x_d$$

• Pick specific class of models. Ex: linear models:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_d x_d$$

Wikipedia

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_d x_d$$

$$f^{(0)}(x) = x$$

$$f^{(k)}(x) = \sigma(W_k^T f^{(k-1)}(x))$$

Goal: model *h* that best approximates *f*

Goal: model *h* that best approximates *f*

Goal: model *h* that best approximates *f*

$$\hat{f} = \arg\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell(h(x^{(i)}), y^{(i)})$$

Goal: model *h* that best approximates *f*

$$\hat{f} = \arg\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell(h(x^{(i)}), y^{(i)}))$$
 Hypothesis Class

Goal: model *h* that best approximates *f*

Goal: model h that best approximates f

One way: empirical risk minimization (ERM) on training data.

Loss function (how far are we)?

Goal: model *h* that best approximates *f*

One way: empirical risk minimization (ERM) on training data.

• Recall: we want to generalize.

Goal: model *h* that best approximates *f*

- Recall: we want to generalize.
 - Do well on future (test) data points, not just on training data.

Outline

Review from last time

• Features, labels, hypothesis class, training, generalization

Instance-based learning

 k-NN classification/regression, locally weighted regression, strengths & weaknesses, inductive bias

Decision trees

 Setup, splits, learning, information gain, strengths and weaknesses

- Example: classify car/no car
 - Everything is similar, except the location of car

- Example: classify car/no car
 - Everything is similar, except the location of car

- Example: classify car/no car
 - Everything is similar, except the location of car

- Example: classify car/no car
 - Everything is similar, except the location of car
- What does "nearby" mean?

1-Nearest Neighbors: Algorithm

1-Nearest Neighbors: Algorithm

Training/learning: given

Training/learning: given

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

Training/learning: given

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

Prediction: for x , find nearest training point $x^{(j)}$

Training/learning: given

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

Prediction: for \boldsymbol{x} , find nearest training point $\;\boldsymbol{x}^{(j)}$ Return $\boldsymbol{y}^{(j)}$

Training/learning: given

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

Prediction: for \boldsymbol{x} , find nearest training point $\;\boldsymbol{x}^{(j)}$ Return $\boldsymbol{y}^{(j)}$

Training/learning: given

Training/learning: given

Training/learning: given

safe

Training/learning: given

Training/learning: given

Prediction: for \boldsymbol{x} , find nearest training point $\boldsymbol{x}^{(j)}$

Training/learning: given

Prediction: for \boldsymbol{x} , find nearest training point $\boldsymbol{x}^{(j)}$ Return $\boldsymbol{y}^{(j)}$

Training/learning: given

Prediction: for \boldsymbol{x} , find nearest training point $\,\boldsymbol{x}^{(j)}$ Return $\,y^{(j)}$

safe

Training/learning: given

 $\overline{\mathcal{I}}$

Training/learning: given

Defined by "Voronoi Diagram"

Defined by "Voronoi Diagram"

• Each cell contains points closer to a particular training point

Defined by "Voronoi Diagram"

• Each cell contains points closer to a particular training point

Training/learning: given

Training/learning: given

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

Training/learning: given

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

Prediction: for given x, find k most similar training points

Training/learning: given

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

Prediction: for given x, find k most similar training points Return plurality class

Training/learning: given

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

Prediction: for given x, find k most similar training points

Return plurality class

$$\hat{y} = rg \max_{y \in \mathcal{Y}} \sum_{i=1}^{n} \mathbb{1}(y = y^{(i)})$$

Training/learning: given

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

Prediction: for given x, find k most similar training points

Return plurality class

$$\hat{y} = rg \max_{y \in \mathcal{Y}} \sum_{i=1}^n \mathbb{1}(y = y^{(i)})$$

•I.e., among the k most similar points, output most popular class.

Discrete features: Hamming distance

Ex: d(['a', 'b', 'c'], ['d', 'b', 'e']) = 2
$$d_H(x^{(i)}, x^{(j)}) = \sum_{a=1}^n 1\{x_a^{(i)} \neq x_a^{(j)}\}$$

Discrete features: Hamming distance

Ex: d(['a', 'b', 'c'], ['d', 'b', 'e']) = 2
$$d_H(x^{(i)}, x^{(j)}) = \sum_{a=1}^n 1\{x_a^{(i)} \neq x_a^{(j)}\}$$

Continuous features:

Discrete features: Hamming distance

Ex: d(['a', 'b', 'c'], ['d', 'b', 'e']) = 2
$$d_H(x^{(i)}, x^{(j)}) = \sum_{a=1}^{n} 1\{x_a^{(i)} \neq x_a^{(j)}\}$$

Continuous features:

Euclidean distance:

Ex:
$$d([0, 0], [4, 4]) = \sqrt{32}$$

Discrete features: Hamming distance

Ex: d(['a', 'b', 'c'], ['d', 'b', 'e']) = 2
$$d_H(x^{(i)}, x^{(j)}) = \sum_{a=1}^n 1\{x_a^{(i)} \neq x_a^{(j)}\}$$

Continuous features:

Euclidean distance:

Ex:
$$d([0, 0], [4, 4]) = \sqrt{32}$$

$$d(x^{(i)}, x^{(j)}) = \left(\sum_{a=1}^{d} (x_a^{(i)} - x_a^{(j)})^2\right)^{\frac{1}{2}}$$

Discrete features: Hamming distance

Ex: d(['a', 'b', 'c'], ['d', 'b', 'e']) = 2
$$d_H(x^{(i)}, x^{(j)}) = \sum_{a=1}^{\infty} 1\{x_a^{(i)} \neq x_a^{(j)}\}$$

Continuous features:

Euclidean distance:

Ex:
$$d([0, 0], [4, 4]) = \sqrt{32}$$

$$d(x^{(i)}, x^{(j)}) = \left(\sum_{a=1}^{d} (x_a^{(i)} - x_a^{(j)})^2\right)^{\frac{1}{2}}$$

•L1 (Manhattan) dist.:

Discrete features: Hamming distance

Ex: d(['a', 'b', 'c'], ['d', 'b', 'e']) = 2
$$d_H(x^{(i)}, x^{(j)}) = \sum_{a=1}^n 1\{x_a^{(i)} \neq x_a^{(j)}\}$$

Continuous features:

• Euclidean distance:

Ex:
$$d([0, 0], [4, 4]) = \sqrt{32}$$

•L1 (Manhattan) dist.:

Ex:
$$d([0, 0], [4, 4]) = 8$$

$$d(x^{(i)}, x^{(j)}) = \left(\sum_{a=1}^{d} (x_a^{(i)} - x_a^{(j)})^2\right)^{\frac{1}{2}}$$

$$d(x^{(i)}, x^{(j)}) = \sum_{a=1}^{n} |x_a^{(i)} - x_a^{(j)}|$$

Typical in data science applications. Recipe:

Typical in data science applications. Recipe:

Compute empirical mean/stddev for a feature (in train set)

Typical in data science applications. Recipe:

Compute empirical mean/stddev for a feature (in train set)

$$\mu_a = \frac{1}{n} \sum_{i=1}^n x_a^{(i)}$$

Typical in data science applications. Recipe:

Compute empirical mean/stddev for a feature (in train set)

$$\mu_a = \frac{1}{n} \sum_{i=1}^n x_a^{(i)} \qquad \sigma_a = \left(\frac{1}{n} \sum_{i=1}^n (x_a^{(i)} - \mu_i)^2\right)^{\frac{1}{2}}$$

Typical in data science applications. Recipe:

Compute empirical mean/stddev for a feature (in train set)

$$\mu_a = \frac{1}{n} \sum_{i=1}^n x_a^{(i)}$$
 $\sigma_a = \left(\frac{1}{n} \sum_{i=1}^n (x_a^{(i)} - \mu_i)^2\right)^{\frac{1}{2}}$

Standardize features:

Typical in data science applications. Recipe:

Compute empirical mean/stddev for a feature (in train set)

$$\mu_a = \frac{1}{n} \sum_{i=1}^n x_a^{(i)}$$
 $\sigma_a = \left(\frac{1}{n} \sum_{i=1}^n (x_a^{(i)} - \mu_i)^2\right)^{\frac{1}{2}}$

Standardize features:

$$\tilde{x}_a^{(j)} = \frac{x_a^{(j)} - \mu_a}{\sigma_a}$$

Typical in data science applications. Recipe:

Compute empirical mean/stddev for a feature (in train set)

$$\mu_a = \frac{1}{n} \sum_{i=1}^n x_a^{(i)}$$
 $\sigma_a = \left(\frac{1}{n} \sum_{i=1}^n (x_a^{(i)} - \mu_i)^2\right)^{\frac{1}{2}}$

- Standardize features:
 - Do the same for test points!

$$\tilde{x}_a^{(j)} = \frac{x_a^{(j)} - \mu_a}{\sigma_a}$$

Typical in data science applications. Recipe:

Compute empirical mean/stddev for a feature (in train set)

$$\mu_a = \frac{1}{n} \sum_{i=1}^n x_a^{(i)}$$
 $\sigma_a = \left(\frac{1}{n} \sum_{i=1}^n (x_a^{(i)} - \mu_i)^2\right)^{\frac{1}{2}}$

- Standardize features:
 - Do the same for test points!

$$\tilde{x}_a^{(j)} = \frac{x_a^{(j)} - \mu_a}{\sigma_a}$$

What problem does this solve?

Typical in data science applications. Recipe:

Compute empirical mean/stddev for a feature (in train set)

$$\mu_a = \frac{1}{n} \sum_{i=1}^n x_a^{(i)} \qquad \sigma_a = \left(\frac{1}{n} \sum_{i=1}^n (x_a^{(i)} - \mu_i)^2\right)^{\frac{1}{2}}$$

- Standardize features:
 - Do the same for test points!

$$\tilde{x}_a^{(j)} = \frac{x_a^{(j)} - \mu_a}{\sigma_a}$$

What problem does this solve?

Prevents high magnitude / variance features from dominating distance calculation.

k-Nearest Neighbors: Mixed Distances

Might have both discrete and continuous features:

k-Nearest Neighbors: Mixed Distances

Might have both discrete and continuous features:

Sum two types of distances component (or sum squared etc)

k-Nearest Neighbors: Mixed Distances

Might have both discrete and continuous features:

Sum two types of distances component (or sum squared etc)

 Might need normalization, (e.g. normalize individual distances to maximum value of 1)

Training/learning: given

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

Training/learning: given

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

Prediction: for x, find k most similar training points

Training/learning: given

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

Prediction: for x, find k most similar training points

Return

Training/learning: given

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

Prediction: for x, find k most similar training points

Return

$$\hat{y} = \frac{1}{k} \sum_{i=1}^{k} y^{(i)}$$

Training/learning: given

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

Prediction: for x, find k most similar training points

Return

$$\hat{y} = \frac{1}{k} \sum_{i=1}^{k} y^{(i)}$$

•I.e., among the **k** points, output mean label.

Could contribute to predictions via a weighted distance

Could contribute to predictions via a weighted distance

• All k no longer equally contribute

Could contribute to predictions via a weighted distance

- All k no longer equally contribute
- Classification:

$$\hat{y} \leftarrow \arg\max_{v \in \mathcal{Y}} \sum_{i=1}^{k} \frac{1}{d(x, x^{(i)})^2} \delta(v, y^{(i)})$$

Could contribute to predictions via a weighted distance

- All k no longer equally contribute
- Classification:

$$\hat{y} \leftarrow \arg\max_{v \in \mathcal{Y}} \sum_{i=1}^{k} \frac{1}{d(x, x^{(i)})^2} \delta(v, y^{(i)})$$

Regression

$$\hat{y} \leftarrow \frac{\sum_{i=1}^{k} y^{(i)} / d(x, x^{(i)})^2}{\sum_{i=1}^{k} 1 / d(x, x^{(i)})^2}$$

One relevant feature x_1

1-NN rule classifies each instance correctly

One relevant feature x_1

1-NN rule classifies each instance correctly

One relevant feature x_1

1-NN rule classifies each instance correctly

Effect of an irrelevant feature x_2

on distances and nearest neighbors

One relevant feature x_1

1-NN rule classifies each instance correctly

Effect of an irrelevant feature x_2 on distances and nearest neighbors

Strengths

• Easy to explain predictions

- Easy to explain predictions
- Simple to implement and conceptualize.

- Easy to explain predictions
- Simple to implement and conceptualize.
- No training!

- Easy to explain predictions
- Simple to implement and conceptualize.
- No training!
- Often good in practice

Strengths

- Easy to explain predictions
- Simple to implement and conceptualize.
- No training!
- Often good in practice

Strengths

- Easy to explain predictions
- Simple to implement and conceptualize.
- No training!
- Often good in practice

- Sensitive to irrelevant + correlated features
 - Can try to solve via variations.

Strengths

- Easy to explain predictions
- Simple to implement and conceptualize.
- No training!
- Often good in practice

- Sensitive to irrelevant + correlated features
 - Can try to solve via variations.
- Prediction stage can be expensive

Strengths

- Easy to explain predictions
- Simple to implement and conceptualize.
- No training!
- Often good in practice

- Sensitive to irrelevant + correlated features
 - Can try to solve via variations.
- Prediction stage can be expensive
- No "model" to interpret

• Inductive bias: assumptions a learner uses to predict y_i for a previously unseen instance x_i

- Inductive bias: assumptions a learner uses to predict y_i for a previously unseen instance x_i
- Two components (mostly)
 - hypothesis space bias: determines the models that can be represented
 - preference bias: specifies a preference ordering within the space of models

- Inductive bias: assumptions a learner uses to predict y_i for a previously unseen instance x_i
- Two components (mostly)
 - hypothesis space bias: determines the models that can be represented
 - preference bias: specifies a preference ordering within the space of models

learner	hypothesis space bias	preference bias
k-NN	Decomposition of space determined by nearest neighbors	Instances in neighborhood belong to same class

Break & Quiz

Q2-1: Table shows all the training points in 2D space and their labels. Assume a 3-NN classifier and Euclidean distance. What should be the labels of the points A: (1, 1) and B(2, 1)?

1.	Λ.	+	B:	
ㅗ.	\neg .	٠,	υ.	

- 2. A: -, B: +
- 3. A: -, B: -
- 4. A: +, B: +

X	У	label
0	0	+
1	0	+
2	0	+
2	2	+
0	1	-
0	2	-
1	2	-
3	1	_

Q2-1: Table shows all the training points in 2D space and their labels. Assume 3NN classifier and Euclidean distance. What should be the labels of the points A: (1, 1) and B(2, 1)?

Ι.	A. +, D	
		4
2.	A: B: +	

- 3. A: -, B: -
- 4. A: +, B: +

3 nearest neighbors to point A are (0, 1) [-], (1, 0) [+], (1, 2) [-]. Hence, the label should be [-]

3 nearest neighbors to point B are (2, 0) [+], (2, 2) [+], (3, 1) [-]. Hence, the label should be [+]

X	У	label
0	0	+
1	0	+
2	0	+
2	2	+
0	1	-
0	2	-
1	2	-
2	1	

Q2-2: In a distance-weighted nearest neighbor, which of the following weight is **NOT** appropriate? Let p be the test data point and x_i {i = 1: N} be training data points.

1.
$$w_i = d(p, x_i)^{1/2}$$

2.
$$w_i = d(p, x_i)^{-2}$$

3.
$$w_i = \exp(-d(p, x_i))$$

4.
$$w_i = 1$$

Q2-2: In a distance-weighted nearest neighbor, which of the following weights is **NOT** appropriate? Let p be the test data point and x_i {i = 1: N} be training data points.

1.
$$w_i = d(p, x_i)^{1/2}$$

2.
$$w_i = d(p, x_i)^{-2}$$

3.
$$w_i = \exp(-d(p, x_i))$$

4.
$$w_i = 1$$

The intuition behind weighted kNN, is to give more weight to the points which are nearby and less weight to the points which are farther away. Any function whose value decreases as the distance increases can be used as a function for the weighted knn classifier. w = 1 is also **OK** as it reduces to our traditional nearest-neighbor algorithm.

Outline

Review from last time

• Features, labels, hypothesis class, training, generalization

Instance-based learning

• k-NN classification/regression, locally weighted regression, strengths & weaknesses, inductive bias

Decision trees

 Setup, splits, learning, information gain, strengths and weaknesses

Decision Trees: Heart Disease Example

Decision Trees: Heart Disease Example

- Suppose $X_1 \dots X_5$ are Boolean features, and Y is also Boolean
 - How would you represent the following with decision trees?

- Suppose $X_1 \dots X_5$ are Boolean features, and Y is also Boolean
 - How would you represent the following with decision trees?

$$Y = X_2 X_5$$
 (i.e., $Y = X_2 \wedge X_5$)

- Suppose $X_1 \dots X_5$ are Boolean features, and Y is also Boolean
 - How would you represent the following with decision trees?

$$Y = X_2 X_5$$
 (i.e., $Y = X_2 \wedge X_5$)

$$Y = X_2 \vee X_5$$

- Suppose $X_1 \dots X_5$ are Boolean features, and Y is also Boolean
 - How would you represent the following with decision trees?

$$Y = X_2 X_5$$
 (i.e., $Y = X_2 \wedge X_5$)

$$Y = X_2 \vee X_5$$

$$Y = X_2 X_5 \vee X_3 \neg X_1$$

Decision Trees: Textual Description

Decision Trees: Textual Description

Decision Trees: Textual Description


```
thal = normal
    [#_major_vessels > 0] = true: present
    [#_major_vessels > 0] = false: absent
thal = fixed_defect: present
```

Decision Trees: Mushrooms Example

```
→ if odor=almond, predict edible
odor = a: e (400.0)
odor = c: p (192.0)
odor = f: p (2160.0)
odor = 1: e (400.0)
odor = m: p (36.0)
odor = n
   spore-print-color = b: e (48.0)
   spore-print-color = h: e (48.0)
   spore-print-color = k: e (1296.0)
   spore-print-color = n: e (1344.0)
   spore-print-color = o: e (48.0)
   spore-print-color = r: p (72.0)
   spore-print-color = u: e (0.0)
                                                 if odor=none ∧
    spore-print-color = w
       qill-size = b: e (528.0)
                                                   spore-print-color=white \( \)
        gill-size = n
           qill-spacing = c: p (32.0)
                                                   gill-size=narrow ∧
           gill-spacing = d: e (0.0)
           gill-spacing = w
               population = a: e(0.0)
                                                  gill-spacing=crowded,
               population = c: p (16.0)
               population = n: e(0.0)
                                                 predict poisonous
               population = s: e(0.0)
               population = v: e (48.0)
               population = y: e (0.0)
   spore-print-color = y: e (48.0)
odor = p: p (256.0)
odor = s: p (576.0)
odor = v: p (576.0)
```


•Learning Algorithm:

•Learning Algorithm:

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

• Learning Algorithm:

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

Learning Algorithm:

$$\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),\ldots,(x^{(m)},y^{(m)})\}$$

• **Learning Algorithm**: MakeSubtree(set of training instances *D*)

C = DetermineCandidateSplits(D)

if stopping criteria is met

make a leaf node N

determine class label for N

else

make an internal node N

S = FindBestSplit(D, C)

for each group *k* of *S*

 D_k = subset of training data in group k

 k^{th} child of $N = MakeSubtree(D_k)$

return subtree rooted at N

• **Learning Algorithm**: MakeSubtree(set of training instances *D*)

C = DetermineCandidateSplits(D)

if **stopping criteria** is met

make a leaf node N

determine class label for N

else

make an internal node N

S = FindBestSplit(D, C)

for each group *k* of *S*

 D_k = subset of training data in group k

 k^{th} child of $N = MakeSubtree(D_k)$

return subtree rooted at N

First, need to determine how to **split features**

First, need to determine how to **split features**

•Splits on nominal features have one branch per value

First, need to determine how to split features

Splits on nominal features have one branch per value

First, need to determine how to split features

Splits on nominal features have one branch per value

Splits on numeric features use a threshold/interval

First, need to determine how to split features

Splits on nominal features have one branch per value

Splits on numeric features use a threshold/interval

First, need to determine how to split features

Splits on nominal features have one branch per value

Splits on numeric features use a threshold/interval

Given a set of training instances D and a specific feature X_i

• Sort the values of X_i in D

- Sort the values of X_i in D
- Evaluate split thresholds in intervals between instances of different classes

- Sort the values of X_i in D
- Evaluate split thresholds in intervals between instances of different classes

- Sort the values of X_i in D
- Evaluate split thresholds in intervals between instances of different classes

Numeric Feature Splits Algorithm

```
// Run this subroutine for each numeric feature at each node of DT induction
Determine Candidate Numeric Splits (set of training instances D, feature X_i)
   C = \{\}
               // initialize set of candidate splits for feature X_i
   let v_i denote the value of X_i for the j^{th} data point
   sort the dataset using v_i as the key for each data point
   for each pair of adjacent v_i, v_{i+1} in the sorted order
          if the corresponding class labels are different
                    add candidate split X_i \le (v_i + v_{i+1})/2 to C
   return C
```

DT: Splits on Nominal Features

Instead of using k-way splits for k-valued features, could require binary splits on all nominal features.

- CART algorithm (popular DT algorithm) does this.

DT: Splits on Nominal Features

Instead of using k-way splits for k-valued features, could require binary splits on all nominal features.

- CART algorithm (popular DT algorithm) does this.

DT: Splits on Nominal Features

Instead of using k-way splits for k-valued features, could require binary splits on all nominal features.

- CART algorithm (popular DT algorithm) does this.

•Learning Algorithm:

•Learning Algorithm:

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

• Learning Algorithm:

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

Learning Algorithm:

$$\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),\ldots,(x^{(m)},y^{(m)})\}$$

• **Learning Algorithm**: MakeSubtree(set of training instances *D*)

C = DetermineCandidateSplits(D)

if **stopping criteria** is met

make a leaf node N

determine class label for N

else

make an internal node N

S = FindBestSplit(D, C)

for each group *k* of *S*

 D_k = subset of training data in group k

 k^{th} child of $N = MakeSubtree(D_k)$

return subtree rooted at N

How to we select the best feature to split on at each step?

How to we select the best feature to split on at each step?

• **Hypothesis**: simplest tree that classifies the training instances accurately will generalize.

How to we select the best feature to split on at each step?

• **Hypothesis**: simplest tree that classifies the training instances accurately will generalize.

Occam's razor

• "when you have two competing theories that make the same predictions, the simpler one is the better"

How to we select the best feature to split on at each step?

• **Hypothesis**: simplest tree that classifies the training instances accurately will generalize.

Occam's razor

• "when you have two competing theories that make the same predictions, the simpler one is the better"

How to we select the best feature to split on at each step?

• **Hypothesis**: simplest tree that classifies the training instances accurately will generalize

How to we select the best feature to split on at each step?

• **Hypothesis**: simplest tree that classifies the training instances accurately will generalize

Why is Occam's razor a reasonable heuristic?

How to we select the best feature to split on at each step?

• **Hypothesis**: simplest tree that classifies the training instances accurately will generalize

Why is Occam's razor a reasonable heuristic?

• There are fewer short models (i.e. small trees) than long ones

How to we select the best feature to split on at each step?

• **Hypothesis**: simplest tree that classifies the training instances accurately will generalize

Why is Occam's razor a reasonable heuristic?

- There are fewer short models (i.e. small trees) than long ones
- A short model is unlikely to fit the training data well by chance

How to we select the best feature to split on at each step?

• Hypothesis: simplest tree that classifies the training instances accurately will generalize

Why is Occam's razor a reasonable heuristic?

- There are fewer short models (i.e. small trees) than long ones
- A short model is unlikely to fit the training data well by chance
- A long model is more likely to fit the training data well coincidentally

Can we find and return the smallest possible decision tree that accurately classifies the training set?

Can we find and return the smallest possible decision tree that accurately classifies the training set?

NO! This is an NP-hard problem

Can we find and return the smallest possible decision tree that accurately classifies the training set?

NO! This is an NP-hard problem

[Hyafil & Rivest, Information Processing Letters, 1976]

Can we find and return the smallest possible decision tree that accurately classifies the training set?

- NO! This is an NP-hard problem [Hyafil & Rivest, *Information Processing Letters, 1976*]
- •Instead, we'll use an information-theoretic heuristic to greedily choose splits

- •Goal: communicate information to a receiver in bits
- •Ex: as bikes go past, communicate the maker of each bike

- •Goal: communicate information to a receiver in bits
- •Ex: as bikes go past, communicate the maker of each bike

- Could send out the names of the manufacturers in binary coded ASCII
 - Suppose there are 4: Trek, Specialized, Cervelo, Serrota

- Could send out the names of the manufacturers in binary coded ASCII
 - Suppose there are 4: Trek, Specialized, Cervelo, Serrota

- Could send out the names of the manufacturers in binary coded ASCII
 - Suppose there are 4: Trek, Specialized, Cervelo, Serrota

- Could send out the names of the manufacturers in binary coded ASCII
 - Suppose there are 4: Trek, Specialized, Cervelo, Serrota
- •Inefficient... since there's just 4, we could encode them
 - # of bits: 2 per communication

- Could send out the names of the manufacturers in binary coded ASCII
 - Suppose there are 4: Trek, Specialized, Cervelo, Serrota
- •Inefficient... since there's just 4, we could encode them
 - # of bits: 2 per communication

type	code		
Trek	11		
Specialized	10		
Cervelo	01		
Serrota	00		

- Now, some bikes are rarer than others...
 - Cervelo is a rarer specialty bike.
 - We could save some bits... make more popular messages fewer bits, rarer ones more bits
 - Note: this is on average

- Now, some bikes are rarer than others...
 - Cervelo is a rarer specialty bike.
 - We could save some bits... make more popular messages fewer bits, rarer ones more bits
 - Note: this is on average

• Expected # bits: **1.75**

- Now, some bikes are rarer than others...
 - Cervelo is a rarer specialty bike.
 - We could save some bits... make more popular messages fewer bits, rarer ones more bits
 - Note: this is on average
- Expected # bits: **1.75**

Type/probability	# bits	code
P(Trek) = 0.5	1	1
P(Specialized) = 0.25	2	01
P(Cervelo) = 0.125	3	001
<i>P</i> (Serrota) = 0.125	3	000

- Now, some bikes are rarer than others...
 - Cervelo is a rarer specialty bike.
 - We could save some bits... make more popular messages fewer bits, rarer ones more bits
 - Note: this is on average
- Expected # bits: 1.75

$$-\sum_{y\in\mathcal{Y}}P(y)\log_2P(y)$$

Type/probability	# bits	code
P(Trek) = 0.5	1	1
P(Specialized) = 0.25	2	01
P(Cervelo) = 0.125	3	001
<i>P</i> (Serrota) = 0.125	3	000

Information Theory: Entropy

Information Theory: Entropy

Measure of uncertainty for random variables/distributions

Information Theory: Entropy

Measure of uncertainty for random variables/distributions

• Expected number of bits required to communicate the value of the variable

Information Theory: Entropy

Measure of uncertainty for random variables/distributions

• Expected number of bits required to communicate the value of the variable

$$H(Y) = -\sum_{y \in \mathcal{Y}} P(y) \log_2 P(y)$$

Information Theory: Entropy

Measure of uncertainty for random variables/distributions

• Expected number of bits required to communicate the value

of the variable

$$H(Y) = -\sum_{y \in \mathcal{Y}} P(y) \log_2 P(y)$$

$$H(Y|X) = \sum_{x \in \mathcal{X}} \Pr(X = x) H(Y|X = x)$$

•Suppose we know X. **CE**: how much uncertainty left in Y on average after X is known?

$$H(Y|X) = \sum_{x \in \mathcal{X}} \Pr(X = x) H(Y|X = x)$$

•Suppose we know X. **CE**: how much uncertainty left in Y on average after X is known?

$$H(Y|X) = \sum_{x \in \mathcal{X}} \Pr(X = x) H(Y|X = x)$$

Here,

•Suppose we know X. **CE**: how much uncertainty left in Y on average after X is known?

$$H(Y|X) = \sum_{x \in \mathcal{X}} \Pr(X = x) H(Y|X = x)$$

Here,

$$H(Y|X = x) = -\sum_{y \in \mathcal{Y}} P(Y = y|X = x) \log_2 P(Y = y|X = x)$$

•Suppose we know X. **CE**: how much uncertainty left in Y on average after X is known?

$$H(Y|X) = \sum_{x \in \mathcal{X}} \Pr(X = x) H(Y|X = x)$$

Here,

$$H(Y|X = x) = -\sum_{y \in \mathcal{Y}} P(Y = y|X = x) \log_2 P(Y = y|X = x)$$

What is it if Y=X?

•Suppose we know X. **CE**: how much uncertainty left in Y on average after X is known?

$$H(Y|X) = \sum_{x \in \mathcal{X}} \Pr(X = x) H(Y|X = x)$$

Here,

$$H(Y|X = x) = -\sum_{y \in \mathcal{Y}} P(Y = y|X = x) \log_2 P(Y = y|X = x)$$

- What is it if Y=X?
- What if Y is independent of X?

Y=Type/X=Color	Black	White
Trek	0.25	0.25
Specialized	0.125	0.125
Cervelo	0.125	0
Serrota	0	0.125

Y=Type/X=Color	Black	White
Trek	0.25	0.25
Specialized	0.125	0.125
Cervelo	0.125	0
Serrota	0	0.125

Y=Type/X=Color	Black	White
Trek	0.25	0.25
Specialized	0.125	0.125
Cervelo	0.125	0
Serrota	0	0.125

$$H(Y|X=black) = -0.5 \log(0.5) - 0.25 \log(0.25) - 0.25 \log(0.25) - 0 = 1.5$$

 $H(Y|X=white) = -0.5 \log(0.5) - 0.25 \log(0.25) - 0 - 0.25 \log(0.25) = 1.5$
 $H(Y|X) = 0.5 * H(Y|X=black) + 0.5 * H(Y|X=white) = 1.5$

•Similar comparison between R.V.s:

•Similar comparison between R.V.s:

$$I(Y;X) = H(Y) - H(Y|X)$$

Similar comparison between R.V.s:

$$I(Y;X) = H(Y) - H(Y|X)$$

Similar comparison between R.V.s:

$$I(Y;X) = H(Y) - H(Y|X)$$

Interpretation:

How much uncertainty of Y that X can reduce.

Similar comparison between R.V.s:

$$I(Y;X) = H(Y) - H(Y|X)$$

- How much uncertainty of Y that X can reduce.
- Or, how much information about Y can you glean by knowing X?

Similar comparison between R.V.s:

$$I(Y;X) = H(Y) - H(Y|X)$$

- How much uncertainty of Y that X can reduce.
- Or, how much information about Y can you glean by knowing X?

Y=Type/X=Color	Black	White
Trek	0.25	0.25
Specialized	0.125	0.125
Cervelo	0.125	0
Serrota	0	0.125

Similar comparison between R.V.s:

$$I(Y;X) = H(Y) - H(Y|X)$$

- How much uncertainty of Y that X can reduce.
- Or, how much information about Y can you glean by knowing X?

Y=Type/X=Color	Black	White
Trek	0.25	0.25
Specialized	0.125	0.125
Cervelo	0.125	0
Serrota	0	0.125

$$I(Y:X) = H(Y) - H(Y|X) = 1.75 - 1.5 = 0.25$$

Want to choose split S that maximizes

Want to choose split S that maximizes

InfoGain
$$(D, S) = H_D(Y) - H_D(Y|S)$$

Want to choose split S that maximizes

InfoGain
$$(D, S) = H_D(Y) - H_D(Y|S)$$

ie, mutual information.

Want to choose split S that maximizes

InfoGain
$$(D, S) = H_D(Y) - H_D(Y|S)$$

ie, mutual information.

- Note: D denotes that this is the empirical entropy
 - We don't know the real distribution of Y, just have our dataset

Want to choose split S that maximizes

InfoGain
$$(D, S) = H_D(Y) - H_D(Y|S)$$

ie, mutual information.

- Note: D denotes that this is the empirical entropy
 - We don't know the real distribution of Y, just have our dataset
- Equivalent to maximally reducing the entropy of Y conditioned on a split S

DT Learning: InfoGain Example

Simple binary classification (play tennis?) with 4 features.

DT Learning: InfoGain Example

Simple binary classification (play tennis?) with 4 features.

PlayTennis: training examples

		J			
Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

$$H_D(Y \mid \text{high}) = -\frac{3}{7} \log_2\left(\frac{3}{7}\right) - \frac{4}{7} \log_2\left(\frac{4}{7}\right)$$

= 0.985

$$H_D(Y | \text{high}) = -\frac{3}{7} \log_2 \left(\frac{3}{7}\right) - \frac{4}{7} \log_2 \left(\frac{4}{7}\right) \quad H_D(Y | \text{normal}) = -\frac{6}{7} \log_2 \left(\frac{6}{7}\right) - \frac{1}{7} \log_2 \left(\frac{1}{7}\right)$$

$$= 0.592$$

$$H_D(Y \mid \text{high}) = -\frac{3}{7} \log_2\left(\frac{3}{7}\right) - \frac{4}{7} \log_2\left(\frac{4}{7}\right) \quad H_D(Y \mid \text{normal}) = -\frac{6}{7} \log_2\left(\frac{6}{7}\right) - \frac{1}{7} \log_2\left(\frac{1}{7}\right) = 0.592$$

InfoGain(D, Humidity) =
$$H_D(Y) - H_D(Y | \text{Humidity})$$

= $0.940 - \left[\frac{7}{14} (0.985) + \frac{7}{14} (0.592) \right]$
= 0.151

DT Learning: Comparing Split InfoGains

• Is it better to split on **Humidity** or **Wind**?

DT Learning: Comparing Split InfoGains

• Is it better to split on **Humidity** or **Wind**?

DT Learning: Comparing Split InfoGains

• Is it better to split on **Humidity** or **Wind**?

DT Learning: Comparing Split InfoGains

• Is it better to split on **Humidity** or **Wind**?

InfoGain(D, Humidity) =
$$0.940 - \left[\frac{7}{14} (0.985) + \frac{7}{14} (0.592) \right]$$

= 0.151
InfoGain(D, Wind) = $0.940 - \left[\frac{8}{14} (0.811) + \frac{6}{14} (1.0) \right]$
= 0.048

InfoGain is biased towards tests with many outcomes

- InfoGain is biased towards tests with many outcomes
 - Splitting on it results in many branches, each of which is "pure" (has instances of only one class)

- InfoGain is biased towards tests with many outcomes
 - Splitting on it results in many branches, each of which is "pure" (has instances of only one class)
 - In the extreme: A feature that uniquely identifies each instance

- InfoGain is biased towards tests with many outcomes
 - Splitting on it results in many branches, each of which is "pure" (has instances of only one class)
 - In the extreme: A feature that uniquely identifies each instance
 - Maximal information gain!

- InfoGain is biased towards tests with many outcomes
 - Splitting on it results in many branches, each of which is "pure" (has instances of only one class)
 - In the extreme: A feature that uniquely identifies each instance
 - Maximal information gain!
- Use GainRatio: normalize information gain by entropy

- InfoGain is biased towards tests with many outcomes
 - Splitting on it results in many branches, each of which is "pure" (has instances of only one class)
 - In the extreme: A feature that uniquely identifies each instance
 - Maximal information gain!
- Use GainRatio: normalize information gain by entropy

GainRatio
$$(D, S) = \frac{\text{InfoGain}(D, S)}{H_D(S)} = \frac{H_D(Y) - H_D(Y|S)}{H_D(S)}$$

•Learning Algorithm:

•Learning Algorithm:

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

•Learning Algorithm:

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

• Learning Algorithm:

$$\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),\dots,(x^{(m)},y^{(m)})\}$$

• **Learning Algorithm**: MakeSubtree(set of training instances *D*)

C = DetermineCandidateSplits(D)

if stopping criteria is met

make a leaf node N

determine class label for N

else

make an internal node N

S = FindBestSplit(D, C)

for each group *k* of *S*

 D_k = subset of training data in group k

 k^{th} child of $N = MakeSubtree(D_k)$

return subtree rooted at N

Inductive Bias

- Recall: *Inductive bias*: assumptions a learner uses to predict y_i for a previously unseen instance x_i
- Two components
 - hypothesis space bias: determines the models that can be represented
 - preference bias: specifies a preference ordering within the space of models

learner	hypothesis space bias	preference bias
Decision trees	trees with single-feature, axis-parallel splits	small trees identified by greedy search
k-NN	Decomposition of space determined by nearest neighbors	Instances in neighborhood belong to same class

Q3-1: Which of the following statements are True?

- 1. In a decision tree, once you split using one feature, you cannot split again using the same feature.
- 2. We should split along all features to create a decision tree.
- 3. We should keep splitting the tree until there is only one data point left at each leaf node.

Q3-1: Which of the following statements are True?

- 1. In a decision tree, once you split using one feature, you cannot split again using the same feature.
- 2. We should split along all features to create a decision tree.
- 3. We should keep splitting the tree until there is only one data point left at each leaf node.

They are all false!

Today's Learning Outcomes

After today's lecture:

- •You will be able to explain how the k-nearest neighbor's algorithm classifies unseen instances.
- •You will be able to explain the concept of an inductive bias.
- •You will be able to explain how a decision tree classifies instances.

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov