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• Looking ahead:

•https://pages.cs.wisc.edu/~jphanna/teaching/
2023fall_cs760/schedule.html

• Homework 1 was due at 9:30 AM; Homework 2 released today.

https://pages.cs.wisc.edu/~jphanna/teaching/2023fall_cs760/schedule.html
https://pages.cs.wisc.edu/~jphanna/teaching/2023fall_cs760/schedule.html
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•After today’s lecture:
•You will be able to explain how to choose splits for 
a decision tree.

•You will be able to determine when to stop making 
splits when training a decision tree.

•You will be able to evaluate the training accuracy 
and generalization of a decision tree.
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k-Nearest Neighbors: Classification

Training/learning: given

Prediction: for     , find k most similar training points
Return plurality class

•I.e., among the k points, output most popular class.
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k-Nearest Neighbors: Regression

Training/learning: given

Prediction: for     , find k most similar training points
Return

•I.e., among the k points, output mean label.
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Continuous features:
•Euclidean distance:

•L1 (Manhattan) dist.:
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kNN: Strengths & Weaknesses

Strengths
•  Easy to explain predictions
•  Simple to implement and conceptualize.
•  No training! 
•  Often good in practice, especially in low dimensions

Weaknesses
•  Sensitive to irrelevant + correlated features


• Can try to solve via variations.
•  Prediction stage can be expensive
•  No “model” to interpret
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Inductive Bias

• Inductive bias: assumptions a learner uses to predict yi for a previously unseen 
instance xi

• Two components (mostly)

• hypothesis space bias: determines the models that can be represented

• preference bias: specifies a preference ordering within the space of models

learner hypothesis space bias preference bias

k-NN Decomposition of space determined 
by nearest neighbors

instances in neighborhood 
belong to same class
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Q1-1: Select the correct option.

A. kNN is sensitive to the range of feature values.


B. Training for kNN is very efficient. 


C. Occam’s razor is an example of hypothesis space bias.

1. Statement A is true. Statement B, C are false.


2. Statement A, B are true. Statement C is false.


3. Statement B, C are true. Statement A is false.


4. All Statements are true.

Occam’s razor is an example of 
preference bias, i.e – Prefer 
one hypothesis over another 
even though they have similar 
training accuracy.
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Decision Trees: Heart Disease Example
thal

#_major_vessels > 0 present

normal fixed_defect

true false

1 2

present

reversible_defect

chest_pain_type absent

absentabsentabsent present

3 4

Each internal node tests one feature xi

Each branch from an internal node 
represents one outcome of the test


Each leaf predicts y or P(y | x)
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Decision Trees: Learning 

MakeSubtree(set of training instances D)


	 C = DetermineCandidateSplits(D)

	 if stopping criteria met


	 	 make a leaf node N

	 	 determine class label/probabilities for N

	 else


	 	 make an internal node N


	 	 S = FindBestSplit(D, C)


	 	 for each outcome k of S


	 	 	 Dk = subset of instances that have outcome k

	 	 	 kth child of N = MakeSubtree(Dk)


	 return subtree rooted at N

•Learning Algorithm:



Decision Trees: Learning 

MakeSubtree(set of training instances D)


	 C = DetermineCandidateSplits(D)

	 if stopping criteria is met


	 	 make a leaf node N

	 	 determine class label for N

	 else


	 	 make an internal node N


	 	 S = FindBestSplit(D, C)


	 	 for each group k of S


	 	 	 Dk = subset of training data in group k

	 	 	 kth child of N = MakeSubtree(Dk)


	 return subtree rooted at N

•Learning Algorithm:
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DT Learning: Candidate Splits

First, need to determine how to split features
•Splits on nominal features could have one branch per value

•Splits on numeric features could use a threshold/interval

thal

normal fixed_defect reversible_defect

weight ≤ 35

true false
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DT Learning: Numeric Feature Splits

Given a set of training instances D and a specific feature Xi

•Sort the values of Xi in D
•Evaluate split thresholds in intervals between instances of different 
classes

•  Do this for every numeric feature and add it to the candidate splits

weight

17 35

weight ≤ 35

true false



Numeric Feature Splits Algorithm

// Run this subroutine for each numeric feature at each node of DT induction


DetermineCandidateNumericSplits(set of training instances D, feature Xi)


	 C = {}	 // initialize set of candidate splits for feature Xi


	 let vj denote the value of Xi for the jth data point

sort the dataset using vj as the key for each data point

	 for each pair of adjacent vj, vj+1 in the sorted order

	 	 if the corresponding class labels are different

	 	 	 add candidate split Xi ≤ (vj + vj+1)/2 to C

	 return C
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DT: Splits on Nominal Features

Instead of using k-way splits for k-valued features, could 
require binary splits on all nominal features (CART does this)

thal

normal reversible_defect ∨ fixed_defect

color

red ∨blue green ∨ yellow
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Decision Trees: Learning 

MakeSubtree(set of training instances D)


	 C = DetermineCandidateSplits(D)

	 if stopping criteria is met


	 	 make a leaf node N

	 	 determine class label for N

	 else


	 	 make an internal node N


	 	 S = FindBestSplit(D, C)


	 	 for each group k of S


	 	 	 Dk = subset of training data in group k

	 	 	 kth child of N = MakeSubtree(Dk)


	 return subtree rooted at N

•Learning Algorithm:
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DT Learning: Finding the Best Splits

How do we select the best feature to split on at each step?
•Hypothesis: simplest tree that classifies the training 
instances accurately will generalize

Why is Occam’s razor a reasonable heuristic?
• There are fewer small models (i.e. small trees) than large ones
• A ‘small’ model is unlikely to fit the training data well by chance
• A ‘large’ model is more likely to fit the training data well coincidentally
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DT Learning: Finding Optimal Splits?

Can we find and return the smallest possible decision tree that 
accurately classifies the training set?

• NO! This is an NP-hard problem
	 [Hyafil & Rivest, Information Processing Letters, 1976]
•Instead, we’ll use an information-theoretic heuristic to 
greedily choose splits
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Information Theory: Encoding

•Could send out the names of the manufacturers in binary 
coded ASCII

• Suppose there are 4: Trek, Specialized, Cervelo, Serrota

•Inefficient… since there’s just 4, we could encode them

• # of bits: 2 per communication

11

10

01

00

Trek

Specialized

Cervelo

Serrota

type code
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• Note: this is on average


•Expected # bits: 1.75
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P(Serrota) = 0.125
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3
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Information Theory: Encoding

•Now, some bikes are rarer than others…

• Cervelo is a rarer specialty bike.

• We could save some bits… make more popular messages fewer bits, 

rarer ones more bits

• Note: this is on average


•Expected # bits: 1.75
1

  

€ 

P(Trek) = 0.5
P(Specialized) = 0.25
P(Cervelo) = 0.125
P(Serrota) = 0.125

2

3

3

1

01

001

000

Type/probability # bits code
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Information Theory: Conditional Entropy

•Suppose we know X. CE: how much uncertainty left in Y on 
average after X is known?

•Here, 

•What is it if Y=X? 
•What if Y is independent of X?

H(Y |X) = ∑
x∈𝒳

Pr(X = x)H(Y |X = x)
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Information Theory: Conditional Entropy

•Example. Y is still the bike maker, X is color.

Y=Type/X=Color Black White

Trek 0.25 0.25

Specialized 0.125 0.125

Cervelo 0.125 0

Serrota 0 0.125

H(Y|X=black) = -0.5 log(0.5) – 0.25 log(0.25) – 0.25 log(0.25) – 0 = 1.5

H(Y|X=white) = -0.5 log(0.5) – 0.25 log(0.25) –0 – 0.25 log(0.25) = 1.5

H(Y|X) = 0.5 * H(Y|X=black) + 0.5 * H(Y|X=white) = 1.5
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Information Theory: Mutual Information

•Similar comparison between R.V.s:

Interpretation: 
•How much uncertainty of Y that X can reduce.
•Or, how much information about Y can you glean by knowing X?

Y=Type/X=Color Black White

Trek 0.25 0.25

Specialized 0.125 0.125

Cervelo 0.125 0

Serrota 0 0.125

I(Y:X) = H(Y) – H(Y|X) = 1.75 – 1.5 = 0.25
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DT Learning: Back to Splits

Want to choose split S that maximizes

ie, mutual information.
•Note: D denotes that this is the empirical entropy


• We don’t know the real distribution of Y, just have our dataset.

• Empirical entropy is entropy of the empirical distribution of Y.


•Equivalent to maximally reducing the entropy of Y conditioned on a 
split S
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DT Learning: Comparing Split InfoGains

• Is it better to split on Humidity or Wind?
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DT Learning: Comparing Split InfoGains

• Is it better to split on Humidity or Wind?

Humidity

high normal

D: [3+, 4-]

D: [9+, 5-]

D: [6+, 1-]

 HD (Y |weak) = 0.811

Wind

weak strong
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Decision Trees: Learning 

MakeSubtree(set of training instances D)


	 C = DetermineCandidateSplits(D)

	 if stopping criteria is met


	 	 make a leaf node N

	 	 determine class label for N

	 else


	 	 make an internal node N


	 	 S = FindBestSplit(D, C)


	 	 for each group k of S


	 	 	 Dk = subset of training data in group k

	 	 	 kth child of N = MakeSubtree(Dk)


	 return subtree rooted at N

•Learning Algorithm:
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Decision tree learning: Stopping Criteria

Some ideas
• Stop when you reach a single data point?
• Stop when the subset of instances are all in the same class?
• Stop when we a large fraction of the instances are all in the same 

class?
• We have exhausted all of the candidate splits

What about regression?



Inductive Bias

• Recall: Inductive bias: assumptions a learner uses to predict yi for a previously 
unseen instance xi


• Two components

• hypothesis space bias: determines the models that can be represented

• preference bias: specifies a preference ordering within the space of models

learner hypothesis space bias preference bias

Decision tree trees with single-feature, axis-parallel 
splits

small trees identified by greedy 
search

k-NN Voronoi decomposition determined by 
nearest neighbors

instances in neighborhood 
belong to same class



Decision Boundaries

Decision Tree KNNLogistic Regression



Break & Quiz



Which of the following statements are True?

1. In a decision tree, once you split using one feature, you cannot split 

again using the same feature. 


2. We should split along all features to create a decision tree.


3. We should keep splitting the tree until there is only one data point 

left at each leaf node.



Which of the following statements are True?

1. In a decision tree, once you split using one feature, you cannot split 

again using the same feature. 


2. We should split along all features to create a decision tree.


3. We should keep splitting the tree until there is only one data point 

left at each leaf node.

They are all false!
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Evaluation: Accuracy

•Can we just calculate the fraction of training instances that 
are correctly classified?

• Consider a problem domain in which instances are assigned labels at random 
with P(Y = 1) = 0.5	 

• How accurate would it be on its training set, if you stop when all instances are 

in the same class? 

• How accurate would a learned decision tree be on previously unseen 

instances?


• Recall: our goal is to do well on future data.
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Evaluation: Accuracy

To get unbiased estimate of model accuracy, we must use a set 
of instances that are held-aside during learning

• This is called a test set

all instances

test

train
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Wikipedia

Overfitting

Notation: error of model h over
• training data: errorD(h)

• entire distribution of data: errorp(h)

Model h overfits training data if it has 
• a low error on the training data (low errorD(h))

• high error on the entire distribution (high errorp(h))
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Overfitting Example: Noisy Data

Target function is 

• There is noise in some feature values
• Training set 

X1 X2 X3 X4 X5 … Y

t t t t t … t

t t f f t … t

t f t t f … t

t f f t f … f

t f t f f … f

f t t f t … f

noisy value
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X4
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X1

X2
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Correct tree Tree that fits noisy training data
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Overfitting Example: Noise-Free Data

• Training set is a limited sample. Might be (combinations of) features that are 
correlated with the target concept by chance

• Assume, P(X3 = t) = 0.5 for both classes and P(Y = t) = 0.67
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Overfitting Example: Polynomial Regression

• Training set is a limited sample. Might be (combinations of) features that are 
correlated with the target concept by chance



Overfitting: Tree Size vs. Accuracy 

• Tree size vs accuracy



General Phenomenon

Figure from Deep Learning, Goodfellow, Bengio and Courville



Q2-2: Which of the following statements is TRUE?

1. If there is no noise, then there is no overfitting. 

2. Overfitting may improve the generalization ability of a model.

3. Generalization error is monotone with respect to the capacity/

complexity of a model.

4. More training data may help preventing overfitting.



Q2-2: Which of the following statements is TRUE?

1. If there is no noise, then there is no overfitting. 

2. Overfitting may improve the generalization ability of a model.

3. Generalization error is monotone with respect to the capacity/

complexity of a model.

4. More training data may help preventing overfitting.

1. The model may still learn false patterns that can lead to overfitting.

2. Overfitting would undermine the generalization ability.

3. Generalization error would first decrease and then increase as the model capacity 

increases.

4. Increasing training data size would help better approximate the true distribution.
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Today’s Learning Outcomes

•After today’s lecture:
•You will be able to explain how to choose splits for 
a decision tree.

•You will be able to determine when to stop making 
splits when training a decision tree.

•You will be able to evaluate the training accuracy 
and generalization of a decision tree.



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov, and Fred Sala 


