
CS 760: Machine Learning
Supervised Learning II

Josiah Hanna

University of Wisconsin — Madison

9/19/2023

Announcements

Announcements

• Looking ahead:

•https://pages.cs.wisc.edu/~jphanna/teaching/
2023fall_cs760/schedule.html

https://pages.cs.wisc.edu/~jphanna/teaching/2023fall_cs760/schedule.html
https://pages.cs.wisc.edu/~jphanna/teaching/2023fall_cs760/schedule.html

Announcements

• Looking ahead:

•https://pages.cs.wisc.edu/~jphanna/teaching/
2023fall_cs760/schedule.html

• Homework 1 was due at 9:30 AM; Homework 2 released today.

https://pages.cs.wisc.edu/~jphanna/teaching/2023fall_cs760/schedule.html
https://pages.cs.wisc.edu/~jphanna/teaching/2023fall_cs760/schedule.html

Today’s Learning Outcomes

Today’s Learning Outcomes

•After today’s lecture:

Today’s Learning Outcomes

•After today’s lecture:
•You will be able to explain how to choose splits for
a decision tree.

Today’s Learning Outcomes

•After today’s lecture:
•You will be able to explain how to choose splits for
a decision tree.

•You will be able to determine when to stop making
splits when training a decision tree.

Today’s Learning Outcomes

•After today’s lecture:
•You will be able to explain how to choose splits for
a decision tree.

•You will be able to determine when to stop making
splits when training a decision tree.

•You will be able to evaluate the training accuracy
and generalization of a decision tree.

Outline

•Review from last time

•k-NN, variations, strengths and weaknesses, generalizations

•Decision tree review

• Setup, splits, learning algorithm

•Decision tree training and evaluation

• Information gain, stopping criteria, accuracy, overfitting

Outline

•Review from last time

•k-NN, variations, strengths and weaknesses, generalizations

•Decision tree review

• Setup, splits, learning algorithm

•Decision tree training and evaluation

• Information gain, stopping criteria, accuracy, overfitting

k-Nearest Neighbors: Classification

Training/learning: given

k-Nearest Neighbors: Classification

Training/learning: given

k-Nearest Neighbors: Classification

Training/learning: given

Prediction: for , find k most similar training points

k-Nearest Neighbors: Classification

Training/learning: given

Prediction: for , find k most similar training points
Return plurality class

k-Nearest Neighbors: Classification

Training/learning: given

Prediction: for , find k most similar training points
Return plurality class

k-Nearest Neighbors: Classification

Training/learning: given

Prediction: for , find k most similar training points
Return plurality class

•I.e., among the k points, output most popular class.

k-Nearest Neighbors: Regression

Training/learning: given

k-Nearest Neighbors: Regression

Training/learning: given

Prediction: for , find k most similar training points

k-Nearest Neighbors: Regression

Training/learning: given

Prediction: for , find k most similar training points
Return

k-Nearest Neighbors: Regression

Training/learning: given

Prediction: for , find k most similar training points
Return

k-Nearest Neighbors: Regression

Training/learning: given

Prediction: for , find k most similar training points
Return

•I.e., among the k points, output mean label.

k-Nearest Neighbors: Distances

k-Nearest Neighbors: Distances

Discrete features: Hamming distance

k-Nearest Neighbors: Distances

Discrete features: Hamming distance

k-Nearest Neighbors: Distances

Discrete features: Hamming distance

Continuous features:

k-Nearest Neighbors: Distances

Discrete features: Hamming distance

Continuous features:
•Euclidean distance:

k-Nearest Neighbors: Distances

Discrete features: Hamming distance

Continuous features:
•Euclidean distance:

k-Nearest Neighbors: Distances

Discrete features: Hamming distance

Continuous features:
•Euclidean distance:

•L1 (Manhattan) dist.:

k-Nearest Neighbors: Distances

Discrete features: Hamming distance

Continuous features:
•Euclidean distance:

•L1 (Manhattan) dist.:

kNN: Strengths & Weaknesses

kNN: Strengths & Weaknesses

Strengths

kNN: Strengths & Weaknesses

Strengths
• Easy to explain predictions

kNN: Strengths & Weaknesses

Strengths
• Easy to explain predictions
• Simple to implement and conceptualize.

kNN: Strengths & Weaknesses

Strengths
• Easy to explain predictions
• Simple to implement and conceptualize.
• No training!

kNN: Strengths & Weaknesses

Strengths
• Easy to explain predictions
• Simple to implement and conceptualize.
• No training!
• Often good in practice, especially in low dimensions

kNN: Strengths & Weaknesses

Strengths
• Easy to explain predictions
• Simple to implement and conceptualize.
• No training!
• Often good in practice, especially in low dimensions

Weaknesses

kNN: Strengths & Weaknesses

Strengths
• Easy to explain predictions
• Simple to implement and conceptualize.
• No training!
• Often good in practice, especially in low dimensions

Weaknesses
• Sensitive to irrelevant + correlated features

• Can try to solve via variations.

kNN: Strengths & Weaknesses

Strengths
• Easy to explain predictions
• Simple to implement and conceptualize.
• No training!
• Often good in practice, especially in low dimensions

Weaknesses
• Sensitive to irrelevant + correlated features

• Can try to solve via variations.
• Prediction stage can be expensive

kNN: Strengths & Weaknesses

Strengths
• Easy to explain predictions
• Simple to implement and conceptualize.
• No training!
• Often good in practice, especially in low dimensions

Weaknesses
• Sensitive to irrelevant + correlated features

• Can try to solve via variations.
• Prediction stage can be expensive
• No “model” to interpret

Inductive Bias

Inductive Bias

• Inductive bias: assumptions a learner uses to predict yi for a previously unseen
instance xi

Inductive Bias

• Inductive bias: assumptions a learner uses to predict yi for a previously unseen
instance xi

• Two components (mostly)

• hypothesis space bias: determines the models that can be represented

• preference bias: specifies a preference ordering within the space of models

Inductive Bias

• Inductive bias: assumptions a learner uses to predict yi for a previously unseen
instance xi

• Two components (mostly)

• hypothesis space bias: determines the models that can be represented

• preference bias: specifies a preference ordering within the space of models

learner hypothesis space bias preference bias

k-NN Decomposition of space determined
by nearest neighbors

instances in neighborhood
belong to same class

Break & Quiz

Q1-1: Select the correct option.

A. kNN is sensitive to the range of feature values.

B. Training for kNN is very efficient.

C. Occam’s razor is an example of hypothesis space bias.

1. Statement A is true. Statement B, C are false.

2. Statement A, B are true. Statement C is false.

3. Statement B, C are true. Statement A is false.

4. All Statements are true.

Q1-1: Select the correct option.

A. kNN is sensitive to the range of feature values.

B. Training for kNN is very efficient.

C. Occam’s razor is an example of hypothesis space bias.

1. Statement A is true. Statement B, C are false.

2. Statement A, B are true. Statement C is false.

3. Statement B, C are true. Statement A is false.

4. All Statements are true.

Occam’s razor is an example of
preference bias, i.e – Prefer
one hypothesis over another
even though they have similar
training accuracy.

Outline

•Review from last time

•k-NN, variations, strengths and weaknesses, generalizations

•Decision tree review

• Setup, splits, learning algorithm

•Decision tree training and evaluation

• Information gain, stopping criteria, accuracy, overfitting

Decision Trees: Heart Disease Example
thal

#_major_vessels > 0 present

normal fixed_defect

true false

1 2

present

reversible_defect

chest_pain_type absent

absentabsentabsent present

3 4

Each internal node tests one feature xi

Each branch from an internal node
represents one outcome of the test

Each leaf predicts y or P(y | x)

Decision Trees: Learning

•Learning Algorithm:

Decision Trees: Learning

•Learning Algorithm:

Decision Trees: Learning

•Learning Algorithm:

Decision Trees: Learning

•Learning Algorithm:

Decision Trees: Learning

MakeSubtree(set of training instances D)

	 C = DetermineCandidateSplits(D)

	 if stopping criteria met

	 	 make a leaf node N

	 	 determine class label/probabilities for N

	 else

	 	 make an internal node N

	 	 S = FindBestSplit(D, C)

	 	 for each outcome k of S

	 	 	 Dk = subset of instances that have outcome k

	 	 	 kth child of N = MakeSubtree(Dk)

	 return subtree rooted at N

•Learning Algorithm:

Decision Trees: Learning

MakeSubtree(set of training instances D)

	 C = DetermineCandidateSplits(D)

	 if stopping criteria is met

	 	 make a leaf node N

	 	 determine class label for N

	 else

	 	 make an internal node N

	 	 S = FindBestSplit(D, C)

	 	 for each group k of S

	 	 	 Dk = subset of training data in group k

	 	 	 kth child of N = MakeSubtree(Dk)

	 return subtree rooted at N

•Learning Algorithm:

DT Learning: Candidate Splits

First, need to determine how to split features

DT Learning: Candidate Splits

First, need to determine how to split features
•Splits on nominal features could have one branch per value

DT Learning: Candidate Splits

First, need to determine how to split features
•Splits on nominal features could have one branch per value

thal

normal fixed_defect reversible_defect

DT Learning: Candidate Splits

First, need to determine how to split features
•Splits on nominal features could have one branch per value

•Splits on numeric features could use a threshold/interval

thal

normal fixed_defect reversible_defect

DT Learning: Candidate Splits

First, need to determine how to split features
•Splits on nominal features could have one branch per value

•Splits on numeric features could use a threshold/interval

thal

normal fixed_defect reversible_defect

weight ≤ 35

true false

DT Learning: Numeric Feature Splits

Given a set of training instances D and a specific feature Xi

DT Learning: Numeric Feature Splits

Given a set of training instances D and a specific feature Xi

•Sort the values of Xi in D

DT Learning: Numeric Feature Splits

Given a set of training instances D and a specific feature Xi

•Sort the values of Xi in D
•Evaluate split thresholds in intervals between instances of different
classes

DT Learning: Numeric Feature Splits

Given a set of training instances D and a specific feature Xi

•Sort the values of Xi in D
•Evaluate split thresholds in intervals between instances of different
classes

weight

17 35

DT Learning: Numeric Feature Splits

Given a set of training instances D and a specific feature Xi

•Sort the values of Xi in D
•Evaluate split thresholds in intervals between instances of different
classes

weight

17 35

weight ≤ 35

true false

DT Learning: Numeric Feature Splits

Given a set of training instances D and a specific feature Xi

•Sort the values of Xi in D
•Evaluate split thresholds in intervals between instances of different
classes

• Do this for every numeric feature and add it to the candidate splits

weight

17 35

weight ≤ 35

true false

Numeric Feature Splits Algorithm

// Run this subroutine for each numeric feature at each node of DT induction

DetermineCandidateNumericSplits(set of training instances D, feature Xi)

	 C = {}	 // initialize set of candidate splits for feature Xi

	 let vj denote the value of Xi for the jth data point

sort the dataset using vj as the key for each data point

	 for each pair of adjacent vj, vj+1 in the sorted order

	 	 if the corresponding class labels are different

	 	 	 add candidate split Xi ≤ (vj + vj+1)/2 to C

	 return C
	 	

	

DT: Splits on Nominal Features

Instead of using k-way splits for k-valued features, could
require binary splits on all nominal features (CART does this)

DT: Splits on Nominal Features

Instead of using k-way splits for k-valued features, could
require binary splits on all nominal features (CART does this)

thal

normal reversible_defect ∨ fixed_defect

DT: Splits on Nominal Features

Instead of using k-way splits for k-valued features, could
require binary splits on all nominal features (CART does this)

thal

normal reversible_defect ∨ fixed_defect

color

red ∨blue green ∨ yellow

Outline

•Review from last time

•k-NN, variations, strengths and weaknesses, generalizations

•Decision tree review

• Setup, splits, learning algorithm

•Decision tree training and evaluation

• Information gain, stopping criteria, accuracy, overfitting

Decision Trees: Learning

•Learning Algorithm:

Decision Trees: Learning

•Learning Algorithm:

Decision Trees: Learning

•Learning Algorithm:

Decision Trees: Learning

•Learning Algorithm:

Decision Trees: Learning

MakeSubtree(set of training instances D)

	 C = DetermineCandidateSplits(D)

	 if stopping criteria is met

	 	 make a leaf node N

	 	 determine class label for N

	 else

	 	 make an internal node N

	 	 S = FindBestSplit(D, C)

	 	 for each group k of S

	 	 	 Dk = subset of training data in group k

	 	 	 kth child of N = MakeSubtree(Dk)

	 return subtree rooted at N

•Learning Algorithm:

DT Learning: Finding the Best Splits

DT Learning: Finding the Best Splits

How do we select the best feature to split on at each step?

DT Learning: Finding the Best Splits

How do we select the best feature to split on at each step?
•Hypothesis: simplest tree that classifies the training
instances accurately will generalize

DT Learning: Finding the Best Splits

How do we select the best feature to split on at each step?
•Hypothesis: simplest tree that classifies the training
instances accurately will generalize

Occam’s razor

• “when you have two competing theories that make the same

 predictions, the simpler one is the better”

DT Learning: Finding the Best Splits

How do we select the best feature to split on at each step?
•Hypothesis: simplest tree that classifies the training
instances accurately will generalize

Occam’s razor

• “when you have two competing theories that make the same

 predictions, the simpler one is the better”

DT Learning: Finding the Best Splits

How do we select the best feature to split on at each step?
•Hypothesis: simplest tree that classifies the training
instances accurately will generalize

DT Learning: Finding the Best Splits

How do we select the best feature to split on at each step?
•Hypothesis: simplest tree that classifies the training
instances accurately will generalize

Why is Occam’s razor a reasonable heuristic?

DT Learning: Finding the Best Splits

How do we select the best feature to split on at each step?
•Hypothesis: simplest tree that classifies the training
instances accurately will generalize

Why is Occam’s razor a reasonable heuristic?
• There are fewer small models (i.e. small trees) than large ones

DT Learning: Finding the Best Splits

How do we select the best feature to split on at each step?
•Hypothesis: simplest tree that classifies the training
instances accurately will generalize

Why is Occam’s razor a reasonable heuristic?
• There are fewer small models (i.e. small trees) than large ones
• A ‘small’ model is unlikely to fit the training data well by chance

DT Learning: Finding the Best Splits

How do we select the best feature to split on at each step?
•Hypothesis: simplest tree that classifies the training
instances accurately will generalize

Why is Occam’s razor a reasonable heuristic?
• There are fewer small models (i.e. small trees) than large ones
• A ‘small’ model is unlikely to fit the training data well by chance
• A ‘large’ model is more likely to fit the training data well coincidentally

DT Learning: Finding Optimal Splits?

Can we find and return the smallest possible decision tree that
accurately classifies the training set?

DT Learning: Finding Optimal Splits?

Can we find and return the smallest possible decision tree that
accurately classifies the training set?

• NO! This is an NP-hard problem

DT Learning: Finding Optimal Splits?

Can we find and return the smallest possible decision tree that
accurately classifies the training set?

• NO! This is an NP-hard problem
	 [Hyafil & Rivest, Information Processing Letters, 1976]

DT Learning: Finding Optimal Splits?

Can we find and return the smallest possible decision tree that
accurately classifies the training set?

• NO! This is an NP-hard problem
	 [Hyafil & Rivest, Information Processing Letters, 1976]
•Instead, we’ll use an information-theoretic heuristic to
greedily choose splits

Information Theory: Super-Quick Intro

Information Theory: Super-Quick Intro

Information Theory: Super-Quick Intro

•Goal: communicate information to a receiver in bits

•Ex: as bikes go past, communicate the maker of each bike

Information Theory: Super-Quick Intro

•Goal: communicate information to a receiver in bits

•Ex: as bikes go past, communicate the maker of each bike

Information Theory: Encoding

Information Theory: Encoding

•Could send out the names of the manufacturers in binary
coded ASCII

• Suppose there are 4: Trek, Specialized, Cervelo, Serrota

Information Theory: Encoding

•Could send out the names of the manufacturers in binary
coded ASCII

• Suppose there are 4: Trek, Specialized, Cervelo, Serrota

Information Theory: Encoding

•Could send out the names of the manufacturers in binary
coded ASCII

• Suppose there are 4: Trek, Specialized, Cervelo, Serrota

Information Theory: Encoding

•Could send out the names of the manufacturers in binary
coded ASCII

• Suppose there are 4: Trek, Specialized, Cervelo, Serrota

•Inefficient… since there’s just 4, we could encode them

• # of bits: 2 per communication

Information Theory: Encoding

•Could send out the names of the manufacturers in binary
coded ASCII

• Suppose there are 4: Trek, Specialized, Cervelo, Serrota

•Inefficient… since there’s just 4, we could encode them

• # of bits: 2 per communication

11

10

01

00

Trek

Specialized

Cervelo

Serrota

type code

Information Theory: Encoding

Information Theory: Encoding

•Now, some bikes are rarer than others…

• Cervelo is a rarer specialty bike.

• We could save some bits… make more popular messages fewer bits,

rarer ones more bits

• Note: this is on average

Information Theory: Encoding

•Now, some bikes are rarer than others…

• Cervelo is a rarer specialty bike.

• We could save some bits… make more popular messages fewer bits,

rarer ones more bits

• Note: this is on average

•Expected # bits: 1.75

Information Theory: Encoding

•Now, some bikes are rarer than others…

• Cervelo is a rarer specialty bike.

• We could save some bits… make more popular messages fewer bits,

rarer ones more bits

• Note: this is on average

•Expected # bits: 1.75
1

€

P(Trek) = 0.5
P(Specialized) = 0.25
P(Cervelo) = 0.125
P(Serrota) = 0.125

2

3

3

1

01

001

000

Type/probability # bits code

Information Theory: Encoding

•Now, some bikes are rarer than others…

• Cervelo is a rarer specialty bike.

• We could save some bits… make more popular messages fewer bits,

rarer ones more bits

• Note: this is on average

•Expected # bits: 1.75
1

€

P(Trek) = 0.5
P(Specialized) = 0.25
P(Cervelo) = 0.125
P(Serrota) = 0.125

2

3

3

1

01

001

000

Type/probability # bits code

Information Theory: Entropy

Information Theory: Entropy

•Measure of uncertainty for random variables/distributions

Information Theory: Entropy

•Measure of uncertainty for random variables/distributions

•Expected number of bits required to communicate the value
of the variable

Information Theory: Entropy

•Measure of uncertainty for random variables/distributions

•Expected number of bits required to communicate the value
of the variable

Information Theory: Entropy

•Measure of uncertainty for random variables/distributions

•Expected number of bits required to communicate the value
of the variable

Information Theory: Conditional Entropy

H(Y |X) = ∑
x∈𝒳

Pr(X = x)H(Y |X = x)

Information Theory: Conditional Entropy

•Suppose we know X. CE: how much uncertainty left in Y on
average after X is known?

H(Y |X) = ∑
x∈𝒳

Pr(X = x)H(Y |X = x)

Information Theory: Conditional Entropy

•Suppose we know X. CE: how much uncertainty left in Y on
average after X is known?

•Here,

H(Y |X) = ∑
x∈𝒳

Pr(X = x)H(Y |X = x)

Information Theory: Conditional Entropy

•Suppose we know X. CE: how much uncertainty left in Y on
average after X is known?

•Here,

H(Y |X) = ∑
x∈𝒳

Pr(X = x)H(Y |X = x)

Information Theory: Conditional Entropy

•Suppose we know X. CE: how much uncertainty left in Y on
average after X is known?

•Here,

•What is it if Y=X?

H(Y |X) = ∑
x∈𝒳

Pr(X = x)H(Y |X = x)

Information Theory: Conditional Entropy

•Suppose we know X. CE: how much uncertainty left in Y on
average after X is known?

•Here,

•What is it if Y=X?
•What if Y is independent of X?

H(Y |X) = ∑
x∈𝒳

Pr(X = x)H(Y |X = x)

Information Theory: Conditional Entropy

Information Theory: Conditional Entropy

•Example. Y is still the bike maker, X is color.

Information Theory: Conditional Entropy

•Example. Y is still the bike maker, X is color.

Y=Type/X=Color Black White

Trek 0.25 0.25

Specialized 0.125 0.125

Cervelo 0.125 0

Serrota 0 0.125

Information Theory: Conditional Entropy

•Example. Y is still the bike maker, X is color.

Y=Type/X=Color Black White

Trek 0.25 0.25

Specialized 0.125 0.125

Cervelo 0.125 0

Serrota 0 0.125

Information Theory: Conditional Entropy

•Example. Y is still the bike maker, X is color.

Y=Type/X=Color Black White

Trek 0.25 0.25

Specialized 0.125 0.125

Cervelo 0.125 0

Serrota 0 0.125

H(Y|X=black) = -0.5 log(0.5) – 0.25 log(0.25) – 0.25 log(0.25) – 0 = 1.5

H(Y|X=white) = -0.5 log(0.5) – 0.25 log(0.25) –0 – 0.25 log(0.25) = 1.5

H(Y|X) = 0.5 * H(Y|X=black) + 0.5 * H(Y|X=white) = 1.5

Information Theory: Mutual Information

Information Theory: Mutual Information

•Similar comparison between R.V.s:

Information Theory: Mutual Information

•Similar comparison between R.V.s:

Information Theory: Mutual Information

•Similar comparison between R.V.s:

Interpretation:

Information Theory: Mutual Information

•Similar comparison between R.V.s:

Interpretation:
•How much uncertainty of Y that X can reduce.

Information Theory: Mutual Information

•Similar comparison between R.V.s:

Interpretation:
•How much uncertainty of Y that X can reduce.
•Or, how much information about Y can you glean by knowing X?

Information Theory: Mutual Information

•Similar comparison between R.V.s:

Interpretation:
•How much uncertainty of Y that X can reduce.
•Or, how much information about Y can you glean by knowing X?

Y=Type/X=Color Black White

Trek 0.25 0.25

Specialized 0.125 0.125

Cervelo 0.125 0

Serrota 0 0.125

Information Theory: Mutual Information

•Similar comparison between R.V.s:

Interpretation:
•How much uncertainty of Y that X can reduce.
•Or, how much information about Y can you glean by knowing X?

Y=Type/X=Color Black White

Trek 0.25 0.25

Specialized 0.125 0.125

Cervelo 0.125 0

Serrota 0 0.125

I(Y:X) = H(Y) – H(Y|X) = 1.75 – 1.5 = 0.25

DT Learning: Back to Splits

DT Learning: Back to Splits

Want to choose split S that maximizes

DT Learning: Back to Splits

Want to choose split S that maximizes

DT Learning: Back to Splits

Want to choose split S that maximizes

ie, mutual information.

DT Learning: Back to Splits

Want to choose split S that maximizes

ie, mutual information.
•Note: D denotes that this is the empirical entropy

• We don’t know the real distribution of Y, just have our dataset.

• Empirical entropy is entropy of the empirical distribution of Y.

DT Learning: Back to Splits

Want to choose split S that maximizes

ie, mutual information.
•Note: D denotes that this is the empirical entropy

• We don’t know the real distribution of Y, just have our dataset.

• Empirical entropy is entropy of the empirical distribution of Y.

•Equivalent to maximally reducing the entropy of Y conditioned on a
split S

DT Learning: InfoGain Example

Simple binary classification (play tennis?) with 4 features.

DT Learning: InfoGain Example

Simple binary classification (play tennis?) with 4 features.

DT Learning: InfoGain For One Split

• What’s the information gain of splitting on Humidity?

Humidity

high normal

D: [3+, 4-]

D: [9+, 5-]

D: [6+, 1-]

DT Learning: InfoGain For One Split

• What’s the information gain of splitting on Humidity?

Humidity

high normal

D: [3+, 4-]

D: [9+, 5-]

D: [6+, 1-]

DT Learning: InfoGain For One Split

• What’s the information gain of splitting on Humidity?

Humidity

high normal

D: [3+, 4-]

D: [9+, 5-]

D: [6+, 1-]

940.0
14
5log

14
5

14
9log

14
9)(22 =⎟

⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛−=YHD

DT Learning: InfoGain For One Split

• What’s the information gain of splitting on Humidity?

Humidity

high normal

D: [3+, 4-]

D: [9+, 5-]

D: [6+, 1-]

940.0
14
5log

14
5

14
9log

14
9)(22 =⎟

⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛−=YHD

985.0
7
4log

7
4

7
3log

7
3)high|(22

=

⎟
⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛−=YHD

DT Learning: InfoGain For One Split

• What’s the information gain of splitting on Humidity?

Humidity

high normal

D: [3+, 4-]

D: [9+, 5-]

D: [6+, 1-]

940.0
14
5log

14
5

14
9log

14
9)(22 =⎟

⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛−=YHD

592.0
7
1

log
7
1

7
6

log
7
6

)normal|(22

=

⎟
⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛−=YHD

985.0
7
4log

7
4

7
3log

7
3)high|(22

=

⎟
⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛−=YHD

DT Learning: InfoGain For One Split

• What’s the information gain of splitting on Humidity?

Humidity

high normal

D: [3+, 4-]

D: [9+, 5-]

D: [6+, 1-]

940.0
14
5log

14
5

14
9log

14
9)(22 =⎟

⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛−=YHD

592.0
7
1

log
7
1

7
6

log
7
6

)normal|(22

=

⎟
⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛−=YHD

985.0
7
4log

7
4

7
3log

7
3)high|(22

=

⎟
⎠

⎞
⎜
⎝

⎛−⎟
⎠

⎞
⎜
⎝

⎛−=YHD

151.0

)592.0(
14
7)985.0(

14
7940.0

)Humidity|()()Humidity,(InfoGain

=

⎥⎦

⎤
⎢⎣

⎡ +−=

−= YHYHD DD

DT Learning: Comparing Split InfoGains

• Is it better to split on Humidity or Wind?

Humidity

high normal

D: [3+, 4-]

D: [9+, 5-]

D: [6+, 1-]

Wind

weak strong

D: [6+, 2-]

D: [9+, 5-]

D: [3+, 3-]

DT Learning: Comparing Split InfoGains

• Is it better to split on Humidity or Wind?

Humidity

high normal

D: [3+, 4-]

D: [9+, 5-]

D: [6+, 1-]

 HD (Y |weak) = 0.811

Wind

weak strong

D: [6+, 2-]

D: [9+, 5-]

D: [3+, 3-]

DT Learning: Comparing Split InfoGains

• Is it better to split on Humidity or Wind?

Humidity

high normal

D: [3+, 4-]

D: [9+, 5-]

D: [6+, 1-]

 HD (Y |weak) = 0.811

Wind

weak strong

D: [6+, 2-]

D: [9+, 5-]

D: [3+, 3-]

 HD (Y |strong) = 1.0

DT Learning: Comparing Split InfoGains

• Is it better to split on Humidity or Wind?

Humidity

high normal

D: [3+, 4-]

D: [9+, 5-]

D: [6+, 1-]

 HD (Y |weak) = 0.811

Wind

weak strong

D: [6+, 2-]

D: [9+, 5-]

D: [3+, 3-]

 HD (Y |strong) = 1.0

✔

151.0

)592.0(
14
7)985.0(

14
7940.0)Humidity,(InfoGain

=

⎥⎦

⎤
⎢⎣

⎡ +−=D

048.0

)0.1(
14
6)811.0(

14
8940.0)Wind,(InfoGain

=

⎥⎦

⎤
⎢⎣

⎡ +−=D

DT Learning: InfoGain Limitations

•InfoGain is biased towards tests with many outcomes

DT Learning: InfoGain Limitations

•InfoGain is biased towards tests with many outcomes
•Splitting on it results in many branches, each of which is “pure”
(has instances of only one class)

DT Learning: InfoGain Limitations

•InfoGain is biased towards tests with many outcomes
•Splitting on it results in many branches, each of which is “pure”
(has instances of only one class)

• In the extreme: a feature that uniquely identifies each instance

DT Learning: InfoGain Limitations

•InfoGain is biased towards tests with many outcomes
•Splitting on it results in many branches, each of which is “pure”
(has instances of only one class)

• In the extreme: a feature that uniquely identifies each instance
•Maximal information gain!

DT Learning: InfoGain Limitations

•InfoGain is biased towards tests with many outcomes
•Splitting on it results in many branches, each of which is “pure”
(has instances of only one class)

• In the extreme: a feature that uniquely identifies each instance
•Maximal information gain!

•Use GainRatio: normalize information gain by entropy

DT Learning: InfoGain Limitations

•InfoGain is biased towards tests with many outcomes
•Splitting on it results in many branches, each of which is “pure”
(has instances of only one class)

• In the extreme: a feature that uniquely identifies each instance
•Maximal information gain!

•Use GainRatio: normalize information gain by entropy

Decision Trees: Learning

•Learning Algorithm:

Decision Trees: Learning

•Learning Algorithm:

Decision Trees: Learning

•Learning Algorithm:

Decision Trees: Learning

•Learning Algorithm:

Decision Trees: Learning

MakeSubtree(set of training instances D)

	 C = DetermineCandidateSplits(D)

	 if stopping criteria is met

	 	 make a leaf node N

	 	 determine class label for N

	 else

	 	 make an internal node N

	 	 S = FindBestSplit(D, C)

	 	 for each group k of S

	 	 	 Dk = subset of training data in group k

	 	 	 kth child of N = MakeSubtree(Dk)

	 return subtree rooted at N

•Learning Algorithm:

Decision tree learning: Stopping Criteria

Some ideas

Decision tree learning: Stopping Criteria

Some ideas
• Stop when you reach a single data point?

Decision tree learning: Stopping Criteria

Some ideas
• Stop when you reach a single data point?
• Stop when the subset of instances are all in the same class?

Decision tree learning: Stopping Criteria

Some ideas
• Stop when you reach a single data point?
• Stop when the subset of instances are all in the same class?
• Stop when we a large fraction of the instances are all in the same

class?

Decision tree learning: Stopping Criteria

Some ideas
• Stop when you reach a single data point?
• Stop when the subset of instances are all in the same class?
• Stop when we a large fraction of the instances are all in the same

class?
• We have exhausted all of the candidate splits

Decision tree learning: Stopping Criteria

Some ideas
• Stop when you reach a single data point?
• Stop when the subset of instances are all in the same class?
• Stop when we a large fraction of the instances are all in the same

class?
• We have exhausted all of the candidate splits

What about regression?

Inductive Bias

• Recall: Inductive bias: assumptions a learner uses to predict yi for a previously
unseen instance xi

• Two components

• hypothesis space bias: determines the models that can be represented

• preference bias: specifies a preference ordering within the space of models

learner hypothesis space bias preference bias

Decision tree trees with single-feature, axis-parallel
splits

small trees identified by greedy
search

k-NN Voronoi decomposition determined by
nearest neighbors

instances in neighborhood
belong to same class

Decision Boundaries

Decision Tree KNNLogistic Regression

Break & Quiz

Which of the following statements are True?

1. In a decision tree, once you split using one feature, you cannot split

again using the same feature.

2. We should split along all features to create a decision tree.

3. We should keep splitting the tree until there is only one data point

left at each leaf node.

Which of the following statements are True?

1. In a decision tree, once you split using one feature, you cannot split

again using the same feature.

2. We should split along all features to create a decision tree.

3. We should keep splitting the tree until there is only one data point

left at each leaf node.

They are all false!

Evaluating models

Evaluation: Accuracy

Evaluation: Accuracy

•Can we just calculate the fraction of training instances that
are correctly classified?

Evaluation: Accuracy

•Can we just calculate the fraction of training instances that
are correctly classified?

• Consider a problem domain in which instances are assigned labels at random
with P(Y = 1) = 0.5	

• How accurate would it be on its training set, if you stop when all instances are

in the same class?

• How accurate would a learned decision tree be on previously unseen

instances?

Evaluation: Accuracy

•Can we just calculate the fraction of training instances that
are correctly classified?

• Consider a problem domain in which instances are assigned labels at random
with P(Y = 1) = 0.5	

• How accurate would it be on its training set, if you stop when all instances are

in the same class?

• How accurate would a learned decision tree be on previously unseen

instances?

• Recall: our goal is to do well on future data.

Evaluation: Accuracy

Evaluation: Accuracy

To get unbiased estimate of model accuracy, we must use a set
of instances that are held-aside during learning

• This is called a test set

Evaluation: Accuracy

To get unbiased estimate of model accuracy, we must use a set
of instances that are held-aside during learning

• This is called a test set

all instances

test

train

Overfitting

Notation: error of model h over

Overfitting

Notation: error of model h over
• training data: errorD(h)

Overfitting

Notation: error of model h over
• training data: errorD(h)

• entire distribution of data: errorp(h)

Overfitting

Notation: error of model h over
• training data: errorD(h)

• entire distribution of data: errorp(h)

Model h overfits training data if it has

Overfitting

Notation: error of model h over
• training data: errorD(h)

• entire distribution of data: errorp(h)

Model h overfits training data if it has
• a low error on the training data (low errorD(h))

Overfitting

Notation: error of model h over
• training data: errorD(h)

• entire distribution of data: errorp(h)

Model h overfits training data if it has
• a low error on the training data (low errorD(h))

• high error on the entire distribution (high errorp(h))

Wikipedia

Overfitting

Notation: error of model h over
• training data: errorD(h)

• entire distribution of data: errorp(h)

Model h overfits training data if it has
• a low error on the training data (low errorD(h))

• high error on the entire distribution (high errorp(h))

Overfitting Example: Noisy Data

Target function is

Overfitting Example: Noisy Data

Target function is

• There is noise in some feature values

Overfitting Example: Noisy Data

Target function is

• There is noise in some feature values
• Training set

Overfitting Example: Noisy Data

Target function is

• There is noise in some feature values
• Training set

X1 X2 X3 X4 X5 … Y

t t t t t … t

t t f f t … t

t f t t f … t

t f f t f … f

t f t f f … f

f t t f t … f

Overfitting Example: Noisy Data

Target function is

• There is noise in some feature values
• Training set

X1 X2 X3 X4 X5 … Y

t t t t t … t

t t f f t … t

t f t t f … t

t f f t f … f

t f t f f … f

f t t f t … f

noisy value

Overfitting Example: Noisy Data

Correct tree

Overfitting Example: Noisy Data

X1

X2

T F

t f

f

Correct tree

Overfitting Example: Noisy Data

X1

X2

T F

t f

f

Correct tree Tree that fits noisy training data

Overfitting Example: Noisy Data

X1

X2

T F

X3t

f

f

f

X4

t

X1

X2

T F

t f

f

Correct tree Tree that fits noisy training data

Overfitting Example: Noise-Free Data

Target function is

Overfitting Example: Noise-Free Data

Target function is

• What about irrelevant features?

Overfitting Example: Noise-Free Data

Target function is

• What about irrelevant features?
• Training set:

Overfitting Example: Noise-Free Data

Target function is

• What about irrelevant features?
• Training set:

X1 X2 X3 X4 X5 … Y

t t t t t … t

t t t f t … t

t t t t f … t

t f f t f … f

f t f f t … f

Overfitting Example: Noise-Free Data

Overfitting Example: Noise-Free Data

• Training set is a limited sample. Might be (combinations of) features that are
correlated with the target concept by chance

Overfitting Example: Noise-Free Data

• Training set is a limited sample. Might be (combinations of) features that are
correlated with the target concept by chance

• Assume, P(X3 = t) = 0.5 for both classes and P(Y = t) = 0.67

Overfitting Example: Noise-Free Data

• Training set is a limited sample. Might be (combinations of) features that are
correlated with the target concept by chance

• Assume, P(X3 = t) = 0.5 for both classes and P(Y = t) = 0.67

X3

T F

t f

Overfitting Example: Noise-Free Data

• Training set is a limited sample. Might be (combinations of) features that are
correlated with the target concept by chance

• Assume, P(X3 = t) = 0.5 for both classes and P(Y = t) = 0.67

X3

T F

t f

Training set

accuracy

Test set

accuracy

100% 50%

Overfitting Example: Noise-Free Data

• Training set is a limited sample. Might be (combinations of) features that are
correlated with the target concept by chance

• Assume, P(X3 = t) = 0.5 for both classes and P(Y = t) = 0.67

X3

T F

t f

t

Training set

accuracy

Test set

accuracy

100% 50%

Overfitting Example: Noise-Free Data

• Training set is a limited sample. Might be (combinations of) features that are
correlated with the target concept by chance

• Assume, P(X3 = t) = 0.5 for both classes and P(Y = t) = 0.67

X3

T F

t f

t 66% 66%

Training set

accuracy

Test set

accuracy

100% 50%

Overfitting Example: Noise-Free Data

• Training set is a limited sample. Might be (combinations of) features that are
correlated with the target concept by chance

• Assume, P(X3 = t) = 0.5 for both classes and P(Y = t) = 0.67

X3

T F

t f

t 66% 66%

Training set

accuracy

Test set

accuracy

100% 50%

X1 X2 X3 X4 X5 … Y

t t t t t … t

t t t f t … t

t t t t f … t

t f f t f … f

f t f f t … f

Overfitting Example: Polynomial Regression

• Training set is a limited sample. Might be (combinations of) features that are
correlated with the target concept by chance

Overfitting Example: Polynomial Regression

• Training set is a limited sample. Might be (combinations of) features that are
correlated with the target concept by chance

Overfitting Example: Polynomial Regression

• Training set is a limited sample. Might be (combinations of) features that are
correlated with the target concept by chance

Overfitting Example: Polynomial Regression

• Training set is a limited sample. Might be (combinations of) features that are
correlated with the target concept by chance

Overfitting Example: Polynomial Regression

• Training set is a limited sample. Might be (combinations of) features that are
correlated with the target concept by chance

Overfitting Example: Polynomial Regression

• Training set is a limited sample. Might be (combinations of) features that are
correlated with the target concept by chance

Overfitting: Tree Size vs. Accuracy

• Tree size vs accuracy

General Phenomenon

Figure from Deep Learning, Goodfellow, Bengio and Courville

Q2-2: Which of the following statements is TRUE?

1. If there is no noise, then there is no overfitting.

2. Overfitting may improve the generalization ability of a model.

3. Generalization error is monotone with respect to the capacity/

complexity of a model.

4. More training data may help preventing overfitting.

Q2-2: Which of the following statements is TRUE?

1. If there is no noise, then there is no overfitting.

2. Overfitting may improve the generalization ability of a model.

3. Generalization error is monotone with respect to the capacity/

complexity of a model.

4. More training data may help preventing overfitting.

1. The model may still learn false patterns that can lead to overfitting.

2. Overfitting would undermine the generalization ability.

3. Generalization error would first decrease and then increase as the model capacity

increases.

4. Increasing training data size would help better approximate the true distribution.

Today’s Learning Outcomes

Today’s Learning Outcomes

•After today’s lecture:

Today’s Learning Outcomes

•After today’s lecture:
•You will be able to explain how to choose splits for
a decision tree.

Today’s Learning Outcomes

•After today’s lecture:
•You will be able to explain how to choose splits for
a decision tree.

•You will be able to determine when to stop making
splits when training a decision tree.

Today’s Learning Outcomes

•After today’s lecture:
•You will be able to explain how to choose splits for
a decision tree.

•You will be able to determine when to stop making
splits when training a decision tree.

•You will be able to evaluate the training accuracy
and generalization of a decision tree.

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, and Fred Sala

