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• Make-ups will only be considered for emergencies or conflicts 
already communicated.
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Variations

• Probability estimation trees 
• Leaves: estimate the probability of each class instead of a single class.

• Regression trees 
• Either numeric values (e.g. average label) or functions (e.g., linear functions) at each leaf.

X5 > 10

X3

X2 > 2.1Y=2X4+5

Y=3X4+X6

Y=3.2

Y=1

X5 > 10

X3

P(Y=pos) = 0.5
P(Y=neg) = 0.5

P(Y=pos) = 0.1
P(Y=neg) = 0.9

P(Y=pos) = 0.8
P(Y=neg) = 0.2

D: [3+, 3-] D: [0+, 8-]

D: [3+, 0-]
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•Why?
• Suppose S is a binary split. InfoGain limited to 1 bit, no matter what.

• Now suppose S is different for each instance (i.e., student number).
• Uniquely determines Y for each point, but useless for generalization. 
• But, then HD(Y|S) = 0, so maximal information gain!

• Control this by normalizing by HD(S).
• Above: for n instances, HD(S) = log2(n)

Intuition: at most, S tells us Y is in one half of its 
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Candidate splits for regression

Last time we discussed candidate splits for numeric features for 
classification. These methods depended on discrete labels. 

Several options: 
• Candidate split at every data point. 
• Candidate splits along a grid. 
• In either case, may need to filter splits using some heuristic.
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Decision Trees: Comments

•Decision trees are a widely used approach
• Many variations

•Provides humanly comprehensible models 
• When trees not too big!

•Training is insensitive to monotone transformations of 
numeric features.

•Implementation can (and does) vary, performance may 
depend on specific choices.
•Popular variants: ID3, C4.5, CART



Decision Trees: Learning 

MakeSubtree(set of training instances D) 

 C = DetermineCandidateSplits(D) 
 if stopping criteria is met 

  make a leaf node N

  determine class label for N 
 else 

  make an internal node N 

  S = FindBestSplit(D, C) 

  for each group k of S 

   Dk = subset of training data in group k

   kth child of N = MakeSubtree(Dk) 

 return subtree rooted at N

•Learning Algorithm:



Model selection in decision trees
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Evaluation: Accuracy

•Can we just calculate the fraction of training instances that 
are correctly classified?

• Consider a problem domain in which instances are assigned labels at random 
with P(Y = 1) = 0.5  
• How accurate would it be on its training set, if you stop when all instances are 

in the same class?  
• How accurate would a learned decision tree be on previously unseen 

instances? 

• Recall: our goal is to do well on future data.
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• This is called a test set
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Overfitting

Notation: error of model h over
• training data: errorD(h)

• entire distribution of data: errorP(h)

Model h overfits training data if it has 
• a low error on the training data (low errorD(h))

• high error on the entire distribution (high errorP(h))
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Overfitting Example: Polynomial Regression

• Training set is a limited sample. Might be (combinations of) features that are 
correlated with the target concept by chance



Overfitting: Tree Size vs. Accuracy 

• Tree size vs accuracy



General Phenomenon

Figure from Deep Learning, Goodfellow, Bengio and Courville
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Decision Tree Learning: Avoiding Overfitting

Two general strategies to avoid overfitting 
1. During training: create two-way instead of multi-way splits, stop if further 

splitting not justified by a statistical test 

2. Post-pruning: grow a large tree, then prune back some nodes 
• E.g: evaluate impact on tuning-set accuracy of pruning each node 
• Greedily remove the one that most improves tuning-set accuracy
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Tuning Sets
• A tuning set (a.k.a. validation set) is

• not used for primary training process (e.g. tree growing)
• but used to select among models (e.g. trees pruned to varying 

degrees)

• Why can you not use the 
 training set to prune?

• Why can you not use the 
 test set to prune?
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1. If there is no noise, then there is no overfitting.  
2. Overfitting may improve the generalization ability of a model. 
3. Generalization error is monotone with respect to the capacity/

complexity of a model. 
4. More training data may help preventing overfitting.



Which of the following statements is TRUE?

1. If there is no noise, then there is no overfitting.  
2. Overfitting may improve the generalization ability of a model. 
3. Generalization error is monotone with respect to the capacity/

complexity of a model. 
4. More training data may help preventing overfitting.

1. We can still have false correlation that leads to overfitting. 
2. Overfitting would undermine the generalization ability. 
3. Generalization error would first decrease and then increase as the model capacity 

increases. 
4. Increasing training data size would help better approximate the true distribution.
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True or False: 
In k-NN, using large k leads to over-fitting.  

Ans: False!



Outline

• Wrapping up decision trees 
•Information gain, stopping criteria 
•Model selection in decision trees: overfitting, pruning, 
variations 

•Evaluation: Generalization 
•  Train/test split, random sampling, cross validation 

•Evaluation: Metrics 
•  Confusion matrices, ROC curves, precision/recall
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•How can we get estimate the accuracy of a learned model?
labeled data set

training set test set

accuracy estimate

learned model 

learning 
method
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Using a Test Set

•How can we estimate the accuracy of a learned model?
• When learning a model, you should pretend that you don’t have the 

test data yet
• If the test-set labels influence the learned model in any way, 

accuracy estimates will not be correct, as you may have fitted to 
your test set.

•Don’t train on the test set!
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Single Train/Test Split: Limitations 

• May not have enough data for sufficiently large training/test sets
• A larger test set gives us more reliable estimate of accuracy (i.e. a lower 

variance estimate)
• But… a larger training set will be more representative of how much data we 

actually have for learning process

• A single training set does not tell us how sensitive 
accuracy is to a particular training sample
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•Address the second issue by repeatedly randomly partitioning 
the available data into training and test sets. 
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+++- - - ++- -

random 
partitions
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training sets test sets
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Strategy II: Stratified Sampling

• When randomly selecting training or validation sets, we may want to 
ensure that class proportions are maintained in each selected set

labeled data set 
++++++++++++ - - - - - - - - 

training set 
++++++ - - - - 

test set 
++++++ - - - - 

validation 
set 

+++ - -

This can be done via stratified sampling: first 
stratify instances by class, then randomly 
select instances from each class proportionally. 
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labeled data set

s1 s2 s3 s4 s5

iteration train on test on

1 s2   s3   s4     s5 s1

2 s1   s3   s4    s5 s2

3 s1   s2    s4     s5 s3

4 s1   s2    s3    s5 s4

5 s1   s2    s3    s4 s5 

Partition data 
into n subsamples

Iteratively leave one 
subsample out for the 
test set, train on the 
rest
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Strategy III: Cross Validation Example

•Suppose we have 100 instances, and we want to estimate 
accuracy with cross validation

iteration train on test on correct
1 s2   s3   s4     s5 s1 11 / 20
2 s1   s3   s4    s5 s2 17 / 20
3 s1   s2    s4     s5 s3 16 / 20
4 s1   s2    s3    s5 s4 13 / 20
5 s1   s2    s3    s4 s5 16 / 20

accuracy = 73/100 = 73%
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Strategy II: Cross Validation Tips
• 10-fold cross validation is common, but smaller values folds are often used when 

learning takes a lot of time

• in leave-one-out cross validation, n = # instances

• in stratified cross validation, stratified sampling is used when partitioning the data

• CV makes efficient use of the available data for testing

• note that whenever we use multiple training sets, as in CV and random resampling, 
we are evaluating a learning method (with specific choices) as opposed to an 
individual learned hypothesis.

• You can use CV for tuning as well!
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Learning Curves

•Accuracy of a method as a function of the train set size? 
• Plot learning curves 

•Why are learning curves useful?

Training/test set partition 

• for each sample size s on learning curve 

• (optionally) repeat n times 

• randomly select s instances from training set 

• learn model 

• evaluate model on test set to determine 
accuracy a

• plot (s, a) or (s, avg. accuracy and error bars) 
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(A) The sample size on the learning curve is the size of test set. 
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1. True, True 
2. True, False 
3. False, True 
4. False, False



Q: Are these statements true or not? 
(A) The sample size on the learning curve is the size of test set. 
(B) A larger training set would provide a lower variance estimate of the accuracy of a 
learned model. 

1. True, True 
2. True, False 
3. False, True 
4. False, False (A) The sample size on the learning curve is for training set. 

(B) A larger test set rather than a larger training set does so.
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1. Class proportions are maintained the same in 
stratified sampling.  

2. In leave-one-out cross validation, the number of 
partition equals to the number of instances. 

3. In cross validation, we are evaluating the performance 
of an individual learned hypothesis.



Q: Which of the following is NOT true?

1. Class proportions are maintained the same in 
stratified sampling.  

2. In leave-one-out cross validation, the number of 
partition equals to the number of instances. 

3. In cross validation, we are evaluating the performance 
of an individual learned hypothesis. In cross validation, we are 

evaluating a learning method 
as opposed to a specific 
individual learned hypothesis.



Outline

• Wrapping up decision trees 
•Information gain, stopping criteria 
•Evaluation in decision trees: overfitting, pruning, variations 

•Evaluation: Generalization 
•  Train/test split, random sampling, cross validation 

•Evaluation: Metrics 
•  Confusion matrices, ROC curves, precision/recall
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Beyond Accuracy: Confusion Matrices

•How can we understand what types of mistakes a learned 
model makes?

predicted class

actual class

task: activity recognition from video
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Confusion Matrices: 2-Class Version

accuracy =     TP + TN
TP+FP+FN+TN

true positives 
(TP)

true negatives 
(TN)

false positives 
(FP)

false negatives 
(FN)

positive

negative

positive negative

predicted 
class

actual class

error =1− accuracy =     FP + FN
TP+FP+FN+TN
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Accuracy may not be useful measure in cases where 
• There is a large class skew 

• Is 98% accuracy good when 97% of the instances are negative? 

• There are differential misclassification costs – say, getting a positive wrong costs 
more than getting a negative wrong 

• Consider a medical domain in which a false positive results in an extraneous test but a false 
negative results in a failure to treat a disease
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Other Metrics

true positive rate (recall)  =   
TP

actual  pos
  =   

TP
TP + FN

true positives 
(TP)

true negatives 
(TN)

false positives 
(FP)

false negatives 
(FN)

positive

negative

positive negative

predicted 
class

actual class

false positive rate  =   
FP

actual  neg
  =   

FP
TN + FP
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If you have probabilities for binary 
classification, how do you decide on class?

I.e., classifier returns Pr(Y=1|x) instead of Y.

One solution: choose threshold c and output Y=1 if 
Pr(Y=1|x) > c else Y=0.



Other Metrics: ROC Curves

•A Receiver Operating Characteristic (ROC) curve plots the TP-
rate vs. the FP-rate as the thresholding value is varied. 

Sometimes, area under the ROC curve is used to evaluate a 
model.

1.0

1.0False positive rate
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 ra
te Alg 1

Alg 2

expected curve for 
random guessing

Different methods can 
work better in 
different parts of ROC 
space.  

ideal



ROC Curves: Algorithm
let                                           be the test-set instances sorted according to predicted confidence c(i) that 

each instance is positive 
let num_neg, num_pos be the number of negative/positive instances in the test set 
TP = 0,  FP = 0 
last_TP = 0 
for i = 1 to m 

 // find thresholds where there is a pos instance on high side, neg instance on low side 
 if  (i > 1) and ( c(i)

 ≠ c(i-1)
 ) and ( y(i) == neg ) and ( TP > last_TP ) 

   FPR = FP / num_neg,   TPR = TP / num_pos 

  output (FPR, TPR) coordinate 
  last_TP = TP 
 if y(i)

 == pos 

  ++TP 
 else 
  ++FP 
FPR = FP / num_neg,  TPR = TP / num_pos 
output (FPR, TPR) coordinate 

 

y(1),  c(1)( )... y(m),  c(m)( )( )
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instance threshold
correct 
class



ROC Curves: Plotting

1.0

1.0

Tr
ue

 p
os

iti
ve

 ra
te

False positive rate

Ex 9 .99   + 
Ex 7 .98   + 
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ROC Curves: Misclassification Cost

•The best operating point depends on relative cost of FN and 
FP misclassifications

best operating point when 
FN costs 10× FP

best operating point when 
cost of misclassifying positives and 
negatives is equal

best operating point when 
FP costs 10× FN
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Other Metrics: Precision
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TP
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TP + FN

true positives 
(TP)

true negatives 
(TN)

false positives 
(FP)

false negatives 
(FN)

positive

negative

positive negative

predicted 
class

actual class



Other Metrics: Precision

recall (TP rate)  =   
TP

actual  pos
  =   

TP
TP + FN

true positives 
(TP)

true negatives 
(TN)

false positives 
(FP)

false negatives 
(FN)

positive

negative

positive negative

predicted 
class

actual class

precision (positive predictive value)  =   TP
predicted  pos

  =   TP
TP+FP
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Other Metrics: Precision/Recall Curve

•A precision/recall curve (TP-rate): threshold on the confidence 
of an instance being positive is varied

default precision 
determined by the 
fraction of instances 
that are positive

1.0

1.0recall (TPR)
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ideal point
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Both
• Allow predictive performance to be assessed at various levels of thresholding
• Assume binary classification tasks
• Sometimes summarized by calculating area under the curve

ROC curves
• Insensitive to changes in class distribution (ROC curve does not change if the 

proportion of positive and negative instances in the test set are varied)
• Can identify optimal classification thresholds for tasks with differential 

misclassification costs

Precision/recall curves
• Show the fraction of predictions that are false positives
• Well suited for tasks with lots of negative instances

ROC vs. PR curves
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Confidence Intervals 

•Back to looking at accuracy on new data.
•Scenario: 

• For some model h, a test set S with n samples  
• We have h producing r errors out of n. 
• Our estimate of the error rate: errorS(h) = r/n 

•With C% probability, true error is in interval 

• zC depends on C. 

errorS(h)± zC
errorS(h)(1−errorS(h))

n



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov 


