
CS 760: Machine Learning
Regression I
Josiah Hanna


University of Wisconsin-Madison

September 26, 2023



https://www.theguardian.com/technology/2023/sep/01/mushroom-pickers-urged-to-avoid-foraging-books-
on-amazon-that-appear-to-be-written-by-ai



Announcement

• Homework: 

• HW2 due on Thursday at 9:30am.

• HW3 will be released Thursday.

•Midterm:

•October 18, 5:45 — 7:15pm in Noland Hall 132

•Thanksgiving week

•Asynchronous lecture Tuesday to permit travel.



Learning Outcomes

•At the end of lecture today, you will be able to:

•Implement various evaluation metrics and explain 
their utility.

•Formulate and solve linear regression problems.

•Formulate and solve linear classification problems.



Outline

•Evaluation: Metrics

•  Cross validation, ROC curves, precision/recall

•Linear Regression

•Setup, normal equations, GD-based solution


•Logistic Regression

•  Linear classification, maximum likelihood estimation,  
setup, comparisons
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On cross validation

•  Can cross validation be used for reporting test scores?

• Yes, but keep in mind that you are evaluating a method and not a specific 

hypothesis.

• If you want to report the test performance of a single hypothesis, do not use 

cross validation.


•Can cross validation be used for model selection (hyperparameter 
tuning)?

• Yes!



Confusion Matrices: 2-Class Version
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Accuracy: Sufficient?

Accuracy may not be useful measure in cases where

• There is a large class skew

• Is 98% accuracy good when 97% of the instances are negative?


• There are differential misclassification costs – say, getting a positive wrong costs 
more than getting a negative wrong

• Consider a medical domain in which a false positive results in an extraneous test but a false 

negative results in a failure to treat a disease



Other Metrics

true positive rate (recall)  =   
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•Want: high true positive rate, low false positive rate.


•Say our classifier has a threshold that we can tune

•Outputs a value. We classify ‘+’ if beyond threshold, c

•Example: Outputs Pr(Y=‘+’|x) and return ‘+’ if > c.


•High threshold: few false positives, but, low recall

• Low threshold: good recall, but, high false positives

• Balance?

True Positives vs. False Positives

true positive rate (recall)  =   
TP

actual  pos
  =   

TP
TP + FN

false positive rate  =   
FP

actual  neg
  =   

FP
TN + FP



Other Metrics: ROC Curves

•A Receiver Operating Characteristic (ROC) curve plots the TP-
rate vs. the FP-rate as the thresholding value is varied.
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ROC Curves: Misclassification Cost

•The best operating point depends on relative cost of FN and 
FP misclassifications

best operating point when

FN costs 10× FP

best operating point when

cost of misclassifying positives and 
negatives is equal

best operating point when

FP costs 10× FN



ROC Curves: Algorithm
let                                           be the test-set instances sorted according to predicted confidence c(i) that 

each instance is positive

let num_neg, num_pos be the number of negative/positive instances in the test set

TP = 0,  FP = 0

last_TP = 0

for i = 1 to m


	 // find thresholds where there is a pos instance on high side, neg instance on low side

	 if  (i > 1) and ( c(i)

 ≠ c(i-1)
 ) and ( y(i) == neg ) and ( TP > last_TP )


	 	 	 FPR = FP / num_neg,   TPR = TP / num_pos


	 	 output (FPR, TPR) coordinate

	 	 last_TP = TP

	 if y(i)

 == pos


	 	 ++TP

	 else

	 	 ++FP

FPR = FP / num_neg,  TPR = TP / num_pos

output (FPR, TPR) coordinate


	

y(1),  c(1)( )... y(m),  c(m)( )( )



ROC Curves: Plotting
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Other Metrics: Precision

recall (TP rate)  =   
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Other Metrics: Precision/Recall Curve

•A precision/recall curve: plots the precision and recall as the 
thresholding value is varied.
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Both

• Allow predictive performance to be assessed at various thresholds.

• Assume binary classification tasks

• Sometimes summarized by calculating area under the curve (ideally 1 for both curves)


ROC curves

• Insensitive to changes in class distribution (ROC curve does not change if the proportion of 

positive and negative instances in the test set are varied)

• Can identify optimal classification thresholds for tasks with differential misclassification costs


Precision/recall curves

• Well suited for tasks with many negative instances

• We can plot the F1 score, 

ROC vs. PR curves



Break & Quiz



Q3-2: Which two extreme points show the best performance and the worst performance 
respectively on the ROC curve (FP on the x-axis, TP on the y-axis)? 

1. (1, 1), (0, 0)

2. (0, 1), (1, 0)

3. (1, 0), (0, 1)

4. (0, 1), (1, 1)



1. (1, 1), (0, 0)

2. (0, 1), (1, 0)

3. (1, 0), (0, 1)

4. (0, 1), (1, 1)

A ROC curve plots the TP-rate vs. the FP-rate, so usually the x-axis 
is for FP-rate and y-axis is for TP-rate When TP-rate = 1 and FP-rate 
= 0, all instances are correctly classified thus achieving the best 
result. When TP-rate = 0 and FP-rate = 1, all instances are wrongly 
classified thus achieving the worst result.

Q3-2: Which two extreme points show the best performance and the worst performance 
respectively on the ROC curve (FP on the x-axis, TP on the y-axis)? 



Outline

•Evaluation: Metrics

•  Confusion matrices, ROC curves, precision/recall

•Linear Regression

•Setup, normal equations, gradient-descent-based solution


•Logistic Regression

•  Linear classification, maximum likelihood estimation,  
setup, comparisons



Linear Regression: Setup

•Training: Given a dataset, where


•We will assume,                       for all 


•Find                                                    which minimizes  

Loss function

Hypothesis Class



Linear Regression: Notation

•Matrix notation: set X to be the matrix whose  jth row is 


•And y to be the vector 


•Can re-write the loss function as 



Linear Regression: Optimizing for

•Set gradient to 0 w.r.t. the weight,



Regularizing: Ridge Regression

•Same setup, new loss:


•Conveniently, still have a closed form solution


•Goal: Prevent large weights

Regularization 
parameter



Regularizing: Lasso

•Another type of regularization:


•Goal: encourage sparse coefficients. 
 

•No closed form solutions, but efficient solutions via convex 
optimization.

Regularization 
parameter



Evaluation: Metrics

•MSE/RMSE (mean-square error + root version)

•MAE (mean average error)

•R-squared (more on this next)

•Computing on training vs validation data:

•Fixed-design LR

•Random-design LR



R-squared

•Several ways to define it, one way:


•Intuition: how much of the variance in y is predictable by x

Empirical mean of labels



Iterative Methods: Gradient Descent

•What if there’s no closed-form solution?

•Use an iterative approach. Goal: get closer to solution at each 
iteration.


•Gradient descent.

•Suppose we’re computing 

•Start at some


• Iteratively compute


•Stop after some # of steps Learning rate/
step size



Gradient Descent: Illustration

•Goal: steps get closer to minimizer


•Some notes:

•Step size can be fixed or a function, e.g., 

.


•Under certain conditions, will converge to 
global minimum.

•Need convexity for this

α(t) > 0

Wikipedia
Level Sets



Gradient Descent: Linear Regression

•Back to our linear regression problem. 


•Want to find 


•What is our gradient?


•So, plugging in , we get  



Linear Regression: Normal Equations vs GD

•Let us compare computation costs.

•Normal Equations

•Check dimensions


•Cost: (i) invert matrix, Θ(d3). (ii) multiplication, Θ(d2n).

•Total: Θ(d2n+ d3).

n x 1d x nd x d

Recall: by standard methods,  inverting a 
square m x m matrix is Θ(m3). 


Multiplying a m x p with a p x q matrix is 
Θ(mpq)   



Linear Regression: Normal Equations vs GD

•Let us compare computation costs.

•Normal Equations

•Total Cost: Θ(d2n+ d3).


•Gradient Descent: t iterations


•Cost: Θ(dn) at each step.

•Total Cost: Θ(dnt).

If we do “few” steps t, then GD is cheaper: t<max{d, d2/n}



Gradient Descent: Convergence

•Even if GD is cheaper, what does it give us?

•Let us analyze it. We’ll need some ingredients

•Convex function g

•Differentiable (need this for gradients)

• Lipschitz-continuous gradients


• If we run t steps with fixed step size, starting at x0

Minimizer Proof: next time (if time allows)!



Gradient Descent Analysis : Convexity

•Recall the definition of a convex function. For f, with convex 
domain, for all  in this domain and .x1, x2 λ ∈ [0,1]

Convex combination Line segment joining f(x1) and f(x2)



Break & Quiz



Q:  Suppose you find that your linear regression model is under fitting the data. In such 
situation which of the following options would you consider?

1. A, B, C


2. A, B, D


3. A, B


4. A, B, C, D

A. Add more variables


B. Start introducing polynomial degree variables


C. Use L1 regularization


D. Use L2 regularization



Q:  Suppose you find that your linear regression model is under fitting the data. In such 
situation which of the following options would you consider?

1. A, B, C


2. A, B, D


3. A, B


4. A, B, C, D

A. Add more variables


B. Start introducing polynomial degree variables
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In case of under fitting, you need to induce more 
variables in variable space or you can add some 
polynomial degree variables to make the model 
more complex to be able to fit the data better. No 
regularization methods should be used because 
regularization is used in case of overfitting.




Q:  How do you choose the regularization parameter  in ridge/lasso regression? 
 
 
 
 
 
 
 
 
 
 
 

λ

 
 

Ans: tuning (validation) set, cross validation etc.



Outline

•Evaluation: Metrics
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Classification: Linear 

•We’ve been talking about regression. What about 
classification with linear models?

Class 1

Class 0

𝑤



Linear Classification: Attempt 1

•Hyperplane: solutions to 

•  note: d-1 dimensional if .


•So… try to use such hyperplanes as separators? 

•Model:


•Predict: y=1 if                        , y=0 otherwise?


• Ie, 

•Train: 0/1 loss, or, 

θ⊤x = c
x ∈ ℝd

Difficult to optimize!!



Linear Classification: Attempt 2

•Let us think probabilistically. Learn  instead  


•How?

•Specify the conditional distribution . 

•Use maximum likelihood estimation (MLE) to derive a loss function.

•Minimize loss with gradient descent (or related optimization 

algorithm).

Pθ(y |x)

Pθ(y |x)
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Likelihood Function

•Captures the probability of seeing some data as a function of 
model parameters:


• If data is i.i.d., we have


•Often more convenient to work with the log likelihood.

•Both mathematically and for numerical stability.

• Log is a monotonic + strictly increasing function.



Maximum Likelihood

•For some set of data, find the parameters that maximize the 
likelihood or, equivalently, the log-likelihood


•Example: suppose we have n samples from a Bernoulli 
distribution


Then, 

 = # of k x = 1



Maximum Likelihood: Example

•Want to maximize likelihood w.r.t. Θ


•Differentiate (use product rule) and set to 0. Get


•So: ML estimate is 
k = # of x_i = 1̂θ =

k
n

θk−1(1 − θ)n−k−1(k − nθ) = 0



ML: Conditional Likelihood

•Similar idea, but now using conditional probabilities:


• If data is iid, we have


•Now we can apply this to linear classification: yields logistics 
regression.



Logistic Regression: Conditional Distribution 

•Notation: 


•Conditional Distribution: 

Sigmoid



Logistic Regression: Loss

•Conditional MLE: 


•So: 


Or, 

ℒ(θ; x(i), y(i)) = log Pθ(y(i) |x(i))



Logistic Regression: Sigmoid Properties

•Bounded: 


•Symmetric:


•Gradient: 



Logistic regression: Summary

•Logistic regression = sigmoid conditional distribution + MLE


•More precisely:

•Give training data iid from some distribution D, 

•Train time: 


•Test time: output label probabilities 



Logistic Regression: Comparisons

•Recall the first attempt:


Difficult to optimize!!



Logistic Regression: Comparisons

•What if we run least squares linear regression?

Figure: Pattern Recognition and

Machine Learning, Bishop



Linear Regression: Conditional Distribution 

•Gaussian Conditional Distribution: 


•Data log likelihood:

Pθ(y |x) = ce−(y−fθ(x))2/(2σ2)

ℒ(X, y, θ) = m log c +
m

∑
i=1

−1
2σ2

(y − fθ(x))2

arg max
θ

ℒ(X, y, θ) = arg min
θ

m

∑
i=1

(y − fθ(x))2

Constant w.r.t. θ

So least squares training gives MLE estimate!



Learning Outcomes

•At the end of lecture today, you will be able to:

•Implement various evaluation metrics and explain 
their utility.

•Formulate and solve linear regression problems.

•Formulate and solve linear classification problems.



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov, and Fred Sala 


