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Announcements

•Homework 2 deadline was extended to tomorrow at 
noon. 
•Please see clarifications for Q4 on Piazza 
•Please join Piazza — only method for asynchronous 
communication.



Learning Outcomes

After lecture today, you will be able to: 
1. Explain the training objective (and its derivation) for 

logistic regression and the logistic conditional 
likelihood function. 

2. Generalize logistic regression to multi-class 
classification and explain the derivation of the 
cross-entropy loss function. 

3. Discuss the pros and cons of gradient vs stochastic 
gradient descent.



Outline

• Linear Regression 
•  Gradient-descent based solutions 
• Logistic Regression 
•  Maximum likelihood estimation, setup, comparisons 
• Logistic Regression: Multiclass 
•  Extending to multiclass, softmax, cross-entropy 

• Gradient Descent & SGD  
• Convergence proof for GD, introduction to SGD
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Linear Regression: Setup

•Training: Given a dataset, where 

•We will assume,                       for all  

•Find                                                    which minimizes  
Loss function

Hypothesis Class
ℓ( fθ) =

1
n

n

∑
j=1

( fθ(x( j)) − y( j))2



Linear Regression: Normal equations

•Set gradient to 0 w.r.t. the weight, ℓ( fθ) =
1
n

| |Xθ − y | |2
2



Ridge regression: 
 
 
 
 
Lasso regression: 
 
 

Regularized variants



Iterative Methods: Gradient Descent

•What if there’s no closed-form solution? 
•Use an iterative approach. Goal: get closer to solution at each 
iteration. 

•Gradient descent. 
•Suppose we’re computing  
•Start at some 

• Iteratively compute 

•Stop after some # of steps Learning rate/
step size



Gradient Descent: Illustration

•Goal: steps get closer to minimizer 

•Some notes: 
•Step size can be fixed or a function, e.g., 

. 

•Under certain conditions, will converge to 
global minimum. 
•Need convexity for this

α(t) > 0

Wikipedia
Level Sets



Gradient Descent: Linear Regression

•Back to our linear regression problem.  

•Want to find  

•What is our gradient? 

•So, plugging in , we get  



Linear Regression: Normal Equations vs GD

•Let us compare computation costs. 
•Normal Equations 
•Check dimensions 

•Cost: (i) invert matrix, Θ(d3). (ii) multiplication, Θ(d2n). 
•Total: Θ(d2n+ d3).

n x 1d x nd x d

Recall: by standard methods,  inverting a 
square m x m matrix is Θ(m3).  

Multiplying a m x p with a p x q matrix is 
Θ(mpq)   



Linear Regression: Normal Equations vs GD

•Let us compare computation costs. 
•Normal Equations 
•Total Cost: Θ(d2n+ d3). 

•Gradient Descent: t iterations 

•Cost: Θ(dn) at each step. 
•Total Cost: Θ(dnt).

If we do “few” steps t, then GD is cheaper: t<max{d, d2/n}



Linear Regression for non-linear problems

•What if the true unknown function  is non-linear? 
•Solution: Expand data points with higher order basis 
functions. 

•Example: Polynomial basis functions. 

•  

•Can now represent both linear and quadratic functions.

f

ϕ2([x1, x2]) = [1,x1, x2, x2
1 , x2

2 , x1x2]

https://playground.tensorflow.org/



Break & Quiz



Q:  Suppose you find that your linear regression model is under fitting the data. In such 
situation which of the following options would you consider?

1. A, B, C 

2. A, B, D 

3. A, B 

4. A, B, C, D

A. Add more variables 

B. Start introducing polynomial degree variables 

C. Use L1 regularization 

D. Use L2 regularization
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situation which of the following options would you consider?

1. A, B, C 

2. A, B, D 

3. A, B 

4. A, B, C, D

A. Add more variables 

B. Start introducing polynomial degree variables 

C. Use L1 regularization 

D. Use L2 regularization

In case of under fitting, you need to induce more 
variables in variable space or you can add some 
polynomial degree variables to make the model 
more complex to be able to fit the data better. No 
regularization methods should be used because 
regularization is used in case of overfitting. 



Q:  How do you choose the regularization parameter  in ridge/lasso regression? 
 
 
 
 
 
 
 
 
 
 
 

λ

 
 

Ans: tuning (validation) set, cross validation etc.
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Classification: Linear 

•We’ve been talking about regression. What about 
classification with linear models?

Class 1

Class 0

𝑤



Linear Classification: Attempt 1

•Hyperplane: solutions to 
•  note: d-1 dimensional  

•So… try to use such hyperplanes as separators?  

•Model: 

•Predict: y=1 if , y=0 otherwise? 

• I.e,  
•Train: 0/1 loss

θ⊤x > 0

Difficult to optimize!!



Linear Classification: Attempt 2

•Let us think probabilistically. Learn  instead   

•How? 
•Specify the conditional distribution .  
•Use maximum likelihood estimation (MLE) to derive a loss function. 
•Minimize loss with gradient descent (or related optimization 

algorithm).

Pθ(y |x)

Pθ(y |x)



Likelihood Function

•Captures the probability of seeing some data as a function of 
model parameters: 

• If data is i.i.d., we have 

•Often more convenient to work with the log likelihood. 
•Both mathematically and for numerical stability. 
• Log is a monotonic + strictly increasing function.



Maximum Likelihood

•For some set of data, find the parameters that maximize the 
likelihood or, equivalently, the log-likelihood 

•Example: suppose we have n samples from a Bernoulli 
distribution 

Then, 

 = # of k x = 1



Maximum Likelihood: Example

•Want to maximize likelihood w.r.t. Θ 

•Differentiate (use product rule) and set to 0. Get 

•Solve for : ML estimate is θ
k = # of x_i = 1̂θ =

k
n

θk−1(1 − θ)n−k−1(k − nθ) = 0



ML: Conditional Likelihood

•Similar idea, but now using conditional probabilities: 

• If data is iid, we have 

•Now we can apply MLE learning for linear classification: yields 
logistics regression.



Logistic Regression: Conditional Distribution 

•Notation:  

•Conditional Distribution: 

Sigmoid



Logistic Regression: Loss

•Conditional MLE:  

•Often minimize negative log likelihood:  

Plugging in sigmoid probabilities: 

1
n

n

∑
i=1

log Pθ(y(i) |x(i))



Logistic Regression: Sigmoid Properties

•Bounded:  

•Symmetric: 

•Gradient: 



Logistic regression: Summary

•Logistic regression = sigmoid conditional distribution + MLE 

•More precisely: 
•Give training data iid from some distribution D,  
•Train time:  

•Test time: output label probabilities 



Logistic Regression: Comparisons

•Recall the first attempt: 

Difficult to optimize!!



Logistic Regression: Comparisons

•What if we run least squares linear regression?

Figure: Pattern Recognition and 
Machine Learning, Bishop



Linear Regression as MLE

•Gaussian Conditional Distribution:  

•Data log likelihood:

Pθ(y |x) = ce−(y−fθ(x))2/(2σ2)

ℒ(X, y, θ) = m log c +
m

∑
i=1

−1
2σ2

(y − fθ(x))2

arg min
θ

ℒ(X, y, θ) = arg min
m

∑
i=1

(y − fθ(x))2

Constant w.r.t. θ

So least squares training gives MLE estimate!



Inductive Bias

• Recall: Inductive bias: assumptions a learner uses to predict yi for a previously 
unseen instance xi 

• Two components 
• hypothesis space bias: determines the models that can be represented 
• preference bias: specifies a preference ordering within the space of models

learner hypothesis space bias preference bias

Decision tree trees with single-feature, axis-parallel splits small trees identified by greedy 
search

k-NN Voronoi decomposition determined by 
nearest neighbors

instances in neighborhood belong to 
same class

Logistic Regression Hyper-plane decision boundaries. Lasso or ridge regression can be used 
to prefer sparse or small weights.



Break & Quiz



Q3-1:  Select the correct option.

1. Both statements are true. 

2. Both statements are false. 

3. Statement A is true, Statement B is false. 

4. Statement B is true, Statement A is false.

A. For logistic regression, sometimes gradient descent will converge to a local minimum (and fail 

to find the global minimum).  

B. The loss function for logistic regression trained with 1 or more examples is always greater 

than or equal to zero.



Q3-1:  Select the correct option.

1. Both statements are true. 

2. Both statements are false. 

3. Statement A is true, Statement B is false. 

4. Statement B is true, Statement A is false.

A. For logistic regression, sometimes gradient descent will converge to a local minimum (and fail 

to find the global minimum).  

B. The loss function for logistic regression trained with 1 or more examples is always greater 

than or equal to zero. The cost function for logistic regression is 
convex, so gradient descent will always 
converge to the global minimum.  

The cost for any example is always >= 0 
since it is the negative log of a quantity 
less than one. The cost function is a 
summation over the cost for each 
sample, so the cost function itself must 
be greater than or equal to zero.
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Logistic Regression: Beyond Binary

•We started with this conditional distribution over : 

•Now let us try to extend it to multi-class classification, 
.  

•Can no longer just use one .  
•But we can try multiple…

y ∈ {0,1}

y ∈ {1,...,k}
θ⊤x



Logistic Regression: Beyond Binary

•Let’s set, for y in 1,2,…,k 

•Note: we have several weight vectors now (1 per class). 
•To train, same as before (just more weight vectors).



Softmax

•We wrote 

•This operation is called softmax. 
•Converts a vector into a probability vector (note normalization). 
• If one component in the vector a is dominant, softmax(a) is close to 

one-hot vector.



Cross-Entropy Loss

•Let us define q(i) as the one-hot vector for the ith datapoint. 

•Gives true label probability:  

•Next, let   be the vector of predicted probabilities. 

•  be our prediction. 

•Our loss terms can be written 

•This is the “cross-entropy” 

q(i)
j = P(y = j |x(i))

p(i)

p(i)
j = Pθ(y = j |x(i)) Note: only 1 term non-zero.

Looks like the entropy, but …



Cross-Entropy Loss

•This is the “cross-entropy” 

•What are we doing when we minimize the cross-entropy? 
•Recall KL divergence, 

•Matching distributions!
Cross-entropy Entropy H(q(i)) 

    (fixed)



Quiz (do at home)



Q: Calculate the softmax of (1, 2, 3, 4, 5).

1. (0.067, 0.133, 0.2, 0.267, 0.333) 
2. (0, 0.145, 0.229, 0.290, 0.336) 
3. (0.012, 0.032, 0.086, 0.234, 0.636) 
4. (0.636, 0.234, 0.086, 0.032, 0.012)
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Gradient descent: Downside

•Why would we not use GD? 

•Let’s go back to ERM. 

•For GD, need to compute                                   for each (i) 

•Each step: n gradient computations 
• ImageNet: 106 samples… so for 100 iterations, 108 gradients



Solution: Stochastic Gradient Descent

•Simple modification to GD. 
•Let’s use some notation: ERM: 

•GD:   

Note: this is what we’re optimizing over! 
x’s are fixed samples.



Solution: Stochastic Gradient Descent

•Simple modification to GD: 

•SGD: 

•Here, a is selected uniformly from 1,…,n (“stochastic”)    
•Note: no sum! 
• In expectation, same as GD.



Gradient Descent Analysis : Convexity

•Recall the definition of a convex function. For f, with convex 
domain, for all  in this domain and all .x1, x2 λ ∈ [0,1]

Convex combination Line segment joining f(x1) and f(x2)



Gradient Descent Analysis : Convexity

•An equivalent definition if f is differentiable: 

•Function sits above its tangents



Gradient Descent Analysis : Lipschitzness

•Assume 
   If f is twice differentiable, this is equivalent to  

•Recall:  means that  is positive semidefinite  

•Recall some more:  C is positive semidefinite if for all x, 

A ≼ B B − A



Gradient Descent: Convergence Proof p. 1

•Let us start with a Taylor expansion: 

   here z is a point on the line segment between x and y. 

•Next, by our Lipschitz condition, for all x

Linear Approximation Remainder: at most a quadratic



Gradient Descent: Convergence Proof p. 2

•Let’s plug in our GD relationship 

•Start with some algebra



Gradient Descent: Convergence Proof p. 3

•Taking  

•So we now have 

We have shown that with an appropriate step size, the objective will 
always decrease!

Positive except at (local) minimum (where it’s 0)



Gradient Descent: Convergence Proof p. 4

•Have not used convexity yet: 

•Combine with 



Gradient Descent: Convergence Proof p. 5

•Now, simplify 

This part is just xt+1



Gradient Descent: Convergence Proof p. 6

•With the following bound,

Can telescope if we sum over t!



Gradient Descent: Convergence Proof p. 7

•Now we have  

•Can ignore the rightmost term (we’re just making the RHS 
same or bigger)

Gap from initial guess to minimizer Value gap for all steps



•Continue, 

•But, recall that each iterate has a smaller value, ie, 

•So,  

Gradient Descent: Convergence Proof p. 7



•We have 

•Divide by T, 

•Combine with  

Gradient Descent: Convergence Proof p. 8

Done!



Gradient Descent: Some notes on the proof

•Proof credit: Ryan Tibshirani (CMU). 
•Other assumptions that lead to varying proofs/rates: 
•Strong convexity 
•Non-convexity 
•Non-differentiability



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov, and Fred Sala 


