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Announcements

• HW3 due next Tuesday (Oct 10) 

•  Midterm 
•  Will be in-person 
•  Wednesday 18th October at 5:45 pm. 
•  132 Noland Hall 
•  Alternatives only for last minute emergencies.
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Learning Outcomes

At the end of today’s lecture, you will be able to: 
1. Contrast discriminative and generative models. 
2. Contrast maximum likelihood and maximum a 

poster learning. 
3. Explain the modeling assumptions for a Naïve 

Bayes Classifier.
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Outline

•Generative and Discriminative Models 
•Comparison, MAP vs MLE 

•Naïve Bayes 
•Motivation, Training, Inference, Smoothing 

•Naïve Bayes Examples 
•  Bernoulli, Multiclass, Gaussian
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Supervised Learning: Review

Problem setting 
• Set of possible instances  
• Unknown target function 
• Set of models (a.k.a. hypotheses) 

Get 
• Training set of instances for unknown target function f, 

Goal: model h that best approximates f
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Discriminative Models

•Idea: hypothesis h directly predicts the label (given features) 
• y = h(x) or p(y|x) = h(x) 

•We saw this already in linear regression & logistic regression 
• Linear regression: 

• Logistic regression:  
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Generative Models

•(Typically) probabilistic model which states how the data was 
generated. 
h(x,y) = p(x,y) or h(x) = p(x) 

•Select a hypothesis via MLE, MAP etc. 
• Use Bayes’ rule to determine predictions 

•  In discriminative probabilistic models, we model how the 
labels y were generated conditioned on the features x. 
We do not usually model p(x).

Note: supervised or 
unsupervised
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Probabilistic models: Generative vs Discriminative
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Generative models Discriminative models
Can be used for both supervised and 
unsupervised learning.

Typically used only for supervised learning.

Specifies a probabilistic model for how data 
was generated. p(X) for unsupervised learning, 
p(X, Y) for supervised learning.

Specifies a probabilistic model for how the 
labels were generated conditioned on the 
features for supervised learning, i.e p(Y|X).

In supervised learning, we may model 
(i) p(X, Y) jointly, (ii) p(Y) first and then p(X|Y), 
or (iii) p(X) first and then p(Y|X). 

In supervised learning, we always model 
p(Y|X).

Use MLE, MAP etc to estimate model parameters.



Review: Maximum Likelihood Estimation (MLE)

•For some set of data, find the parameters that maximize the 
likelihood / log-likelihood 

•Example: suppose we have n samples from a Bernoulli 
distribution 

Then, if k of the n samples are 1 
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MLE Example (do at home)

•For some set of data, find the parameters that maximize the 
likelihood / log-likelihood 

•Example: exponential distribution
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Pdf of Exponential:  
Data:  for . 

Find MLE for data  
Write down log-likelihood of sample. 
Compute first derivative, set to zero, solve for . 
Compute second derivative and check that it is concave down at solution. 

- Ensures you have a maximum.

f (x; λ) = λe−xλ

Xi ∼ f ( ⋅ ; λ) 1 ≤ i ≤ N
𝒟 = {xi}N

i=1

λ



MLE Example (do at home)

•Example: exponential distribution
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MLE Example (do at home)

•Example: exponential distribution
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•Let us consider a different approach 
•Need a little bit of terminology 

• H is the hypothesis 
• E is the evidence

Another Approach: Bayesian Inference

14



Bayesian Inference Definitions

•Terminology: 

•Prior: estimate of the probability without evidence

Prior
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Bayesian Inference Definitions

•Terminology: 

•Likelihood: probability of evidence given a 
hypothesis.

Likelihood
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Bayesian Inference Definitions

•Terminology: 

•Posterior: probability of hypothesis given evidence.

Posterior
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Maximum a Posteriori (MAP) Estimation

•We treat the parameters of a model as random variables with 
a prior probability distribution. 

•Then, treat learning as Bayesian inference 
• “Evidence” is the data 

• Maximum a posteriori probability (MAP) estimation
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MAP vs ML

•What is the difference between ML and MAP? 

•Prior!
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Break & Quiz
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Q: Are these statements true or false? 

(A) Generative methods model joint probability distribution while discriminative methods 
model conditional probabilities of Y given X. 

(B) We always train a discriminative model by maximizing the conditional probability of the 
true labels in supervised tasks. 

1. True, True 
2. True, False 
3. False, True 
4. False, False
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(At home practice) 

Show that ridge regression gives the MAP estimate for  under the model 
 and  when .

θ
y ∼ 𝒩(θ⊤x, σ2) θ ∼ 𝒩(0,τ2I) λ = σ2/τ2

Bonus practice: Now show that Lasso regression gives the MAP estimate under a Laplace prior for .θ



(At home practice) 

Show that ridge regression gives the MAP estimate for  under the model 
 and  when .

θ
y ∼ 𝒩(θ⊤x, σ2) θ ∼ 𝒩(0,τ2I) λ = σ2/τ2

Data:  

Write down the log-likelihood posterior:  

 

 

𝒟 = {(xi, yy)}n
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Application: Parody Detection

•The Economist •The Onion
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Model 0: Not-Naïve Model

Generative model: 
1. Flip a weighted coin (Y) 
2. If heads, sample a document (X) from the Parody distribution 
3. If tails, sample a document (X) from the Not-Parody 

distribution 

4. We first sample Y, then sample X given Y.
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Model 0: Not-Naïve Model using Bag of words representation 
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If HEADS, roll 
gray die

Flip weighted coin

If TAILS, roll 
blue die

0 1 0 1 … 1

y x1 x2 x3 … xK

1 0 1 0 … 1

1 1 1 1 … 1

0 0 0 1 … 1

0 1 0 1 … 0

1 1 0 1 … 0

Each side of the 
die is labeled with 
a document vector 
(e.g. [1,0,1,…,1])



Generative model: 
1. Flip a weighted coin (Y) 
2. If heads, roll the gray many sided die to sample a bag of 

words document vector (X) from the Parody distribution 
3. If tails, roll the blue many sided die to sample a bag of words 

document vector (X) from the Not-Parody distribution
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Model 0: Not-Naïve Model using Bag of words 
representation 



Model 0: Main Problem

How many terms are we modeling? 
•Say K is the number of words in a dictionary and the features 
are binary (a word exists or not): 

•2k choices of feature vector, each gets its own probability… 
• Exponentially big table (in feature vector size) 
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How do we fix this problem? 
•Assume: Conditional independence of features: 

• What do we gain? With binary features, get 2 entries per feature 
• So, number of probabilities 

Naïve Bayes: Core Assumption
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Break & Quiz
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Q2-1: Are these statements true or false? 

(A) Naïve Bayes assumes conditional independence of features to decompose the joint probability 
into the conditional probabilities. 

(B) We can use Naïve Bayes’ to reduce model complexity which helps with over-fitting

1. True, True 
2. True, False 
3. False, True 
4. False, False



Q2-1: Are these statements true or false? 

(A) Naïve Bayes assumes conditional independence of features to decompose the joint probability 
into the conditional probabilities. 

(B) We can use Naïve Bayes’ to reduce model complexity which helps with over-fitting

1. True, True 
2. True, False 
3. False, True 
4. False, False

(A) Just as we learnt in the lecture. 
(B) True, since the fully-fledged joint model 

subsumes the conditionally independent 
model.



Outline

•Generative and Discriminative Models 
•Comparison, MAP vs MLE 

•Naïve Bayes 
•Motivation, Training, Inference, Smoothing 

•Naïve Bayes Examples 
•  Bernoulli, Multiclass, Gaussian

35



Naïve Bayes: Overall Model

Support: Depends on the problem, P(Xk|Y) 

Training: Find the class-conditional MLE parameters 
 
For P(Y), we find the MLE using the data. For each P(Xk|
Y) we condition on the data with the corresponding 
class. 
 Prediction: Find the class that maximizes the posterior

Model: Product of prior and the event model
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Naïve Bayes: Predicting

•With conditional probabilities, how to predict?
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Naïve Bayes Example 1: Bernoulli

Support: Binary vectors of length K

Generative Model:

Joint probability :
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Training Bernoulli Naïve Bayes

•Recall: train (by MLE) is to find class-conditional parameters 

•To find P(Y): use all the data 
• For P(Xi|Y=y): use the data for that class
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Training Bernoulli Naïve Bayes

•Training: empirically estimate the probabilities 
• Store: conditional probability tables (CPTs)

X2 Y P(X2|C)

0 0 0.2

0 1 0.5

1 0 0.8

1 1 0.5

X1 Y P(X1|Y)

0 0 0.1

0 1 0.9

1 0 0.9

1 1 0.1

Y P(Y)

0 0.33

1 0.67
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Naïve Bayes Example 2: Multinomial

Support: multinomial vectors of length d 

Generative model: (for each data point) 

- Generate label: 

- For each feature, 

Joint probability:
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Training & Smoothing

•Training: empirically estimate the probabilities 
• We are just obtaining counts to estimate P(Xi|Y) 

• Suppose Xi has K possible values, and our counts for Y=y are b1,…,bK 

• What if bi = 0? 
• Predictions will end up being zero. We want to prevent this (why?). 

• Solution: smooth!
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Naïve Bayes Example 3: Gaussian

Model: Product of prior and the event model

Support: 
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Learning Outcomes

At the end of today’s lecture, you will be able to: 
1. Contrast discriminative and generative models. 
2. Contrast maximum likelihood and maximum a 

poster learning. 
3. Explain the modeling assumptions for a Naïve 

Bayes Classifier.
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Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov, and Fred Sala 45


