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Announcements

e HW3 due next Tuesday (Oct 10)

« Midterm
e Will be in-person
« Wednesday 18th October at 5:45 pm.
e 132 Noland Hal
« Alternatives only for last minute emergencies.




Learning Outcomes

At the end of today’s lecture, you will be able to:
1. Contrast discriminative and generative models.

2. Contrast maximum likelihood and maximum a
poster learning.

3. Explain the modeling assumptions for a Naive
Bayes Classifier.



Outline

«Generative and Discriminative Models
e« Comparison, MAP vs MLE

Naive Bayes
« Motivation, Training, Inference, Smoothing

Naive Bayes Examples
e Bernoulli, Multiclass, Gaussian



Outline

Generative and Discriminative Models
e« Comparison, MAP vs MLE



Supervised Learning: Review

Problem setting Y

 Set of possible instances
« Unknown target function J: X =)

« Set of models (a.k.a. hypotheses) H = {h|h - X = y}

Get
« Training set of instances for unknown target function f,

(), y M), (2@ y@), L (a), y(™)

Goal: model h that best approximates f



Discriminative Models

«ldea: hypothesis h directly predicts the label (given features)
*y = h(x) or p(y|x) = h(x)

« We saw this already in linear regression & logistic regression

e Linear regression: p

e Logistic regression:

1

Poly =1lz) = 0(072) = g



Generative Models

o(Typically) probabilistic model which states how the data was
generated.

h(x,y) = p(x,y) or h(x) = p(x) < Note: supervised or
unsupervised

«Select a hypothesis via MLE, MAP etc.
« Use Bayes’ rule to determine predictions

 In discriminative probabilistic models, we model how the
labels y were generated conditioned on the features x.
We do not usually model p(x).



Probabilistic models: Generative vs Discriminative

Generative models Discriminative models

Can be used for both supervised and Typically used only for supervised learning.
unsupervised learning.

Specifies a probabilistic model for how data Specifies a probabilistic model for how the
was generated. p(X) for unsupervised learning, |labels were generated conditioned on the
p(X, Y) for supervised learning. features for supervised learning, i.e p(Y|X).
In supervised learning, we may model In supervised learning, we always model

(i) p(X, Y) jointly, (ii) p(Y) first and then p(X]Y), |p(Y]X).
or (iii) p(X) first and then p(Y|X).

Use MLE, MAP etc to estimate model parameters.




Review: Maximum Likelihood Estimation (MLE)

« For some set of data, find the parameters that maximize the
likelihood / log-likelihood

) = arg max L(0; X)

«Example: suppose we have n samples from a Bernoulli

distribution _
P@(X—ZE)—{@ r=1
1—-60 =0
Then, if k of the n samples are 1
~ k
H P(X -t = Ovp =~



MLE Example (do at home)

« For some set of data, find the parameters that maximize the
likelihood / log-likelihood

« Example: exponential distribution

Pdf of Exponential: f(x; 1) = le ™

Data: X; ~ f(-;A)for1 <i < N.

Find MLE for data & = {xi}fil

Write down log-likelihood of sample.

Compute first derivative, set to zero, solve for A.

Compute second derivative and check that it is concave down at solution.
- Ensures you have a maximum.
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MLE Example (do at home)

« Example: exponential distribution

e First write down log-likelihood of sample.

N

l(A) = Z log f (') (1)
z]:Vl |

) log(X exp(—Az")) (2)

-~
p—

log(A) + Az (3)

|
.MZ

1

1

N
= Nlog(d) —A ) ' (4)



MLE Example (do at home)

« Example: exponential distribution

e Compute first derivative, set to zero, solve for \.

() d N
1=1
N
N .

== -> 29 =0 (2)

i=1
N
= \MIE (3)




Another Approach: Bayesian Inference

eLet us consider a different approach
*Need a little bit of terminology

P(E|H)P(H)

PHIE) = =5

e His the hypothesis
e Eis the evidence




Bayesian Inference Definitions

eTerminology:

P(E|H)P(H) «—— Prior
P(E)

P(H|E) =

Prior: estimate of the probability without evidence



Bayesian Inference Definitions

eTerminology:

Likelihood

P(H|E) =

Likelihood: probability of evidence given a
hypothesis.



Bayesian Inference Definitions

eTerminology:

E|H)P(H)
P(E)

p|E) = £
A

Posterior

«Posterior: probability of hypothesis given evidence.



Maximum a Posteriori (MAP) Estimation

« We treat the parameters of a model as random variables with
a prior probability distribution.

«Then, treat learning as Bayesian inference

« “Evidence” is the data P(X\|0)P(0
profx) = P00

« Maximum a posteriori probability (MAP) estimation

MAP _ (i)
0 arg max | [ p(«10)p(6)

1—=1



MAP vs ML

«\What is the difference between ML and MAP?

MLE _ (4)
0 arg max 71;[1 p(x*"]6)

MAP _ (3)
0 arg max | | p(«'10)p(6)

1=1

ePrior!
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Q: Are these statements true or false?

(A) Generative methods model joint probability distribution while discriminative methods
model conditional probabilities of Y given X.

(B) We always train a discriminative model by maximizing the conditional probability of the
true labels in supervised tasks.

1. True, True

2. True, False
3. False, True
4. False, False



Q: Are these statements true or false?

(A) Generative methods model joint probability distribution while discriminative methods
model conditional probabilities of Y given X.

(B) We always train a discriminative model by maximizing the conditional probability of the
true labels in supervised tasks.

1. True, True

2. True, False <

3. False, True
4. False, False



(At home practice)

Show that ridge regression gives the MAP estimate for @ under the model
y ~ N(@"x,6%) and @ ~ N/ (0,22]) when 1 = ¢°/7°.

Bonus practice: Now show that Lasso regression gives the MAP estimate under a Laplace prior for 0.



(At home practice)

Show that ridge regression gives the MAP estimate for @ under the model
y ~ N(@"x,6%) and @ ~ N/ (0,22]) when 1 = ¢°/7°.

Data: & = {(x;, y,)}1,

Write down the log-likelihood posterior: £ (<, 0) = log p(0) + Z log p(y|x;0)
i=1

arg max L(9D,0) = arg max log C + —(QTZQ) + Z —(yl 07 x)?
i=1

= ar mln— al|5+ — 97 x,)?
gmin——10]1; Z — (0= 0"x)

52
= argmm—l |10 | |2+ Z(yl 0Tx)* = argmln/ll 10| |2+ Z(y, 07 x)?
i=1 i=1



Outline

Naive Bayes
« Motivation, Training, Inference, Smoothing



eThe Economist

Application: Parody Detection

«The Onion

La paralizacion

Spain may be heading for its
third election in a year

All latest updates

Stubborn Socialists are blocking Mariano Rajoy from forming a centre-right government

N e Like 50 [l W Tweet |

3

Sep 5th 2016 | MADRID | Europe

BACK in June, after Spain’s second indecisive election in six months, the general
expectation was that Mariano Rajoy, the prime minister, would swiftly form a new
government. Although his conservative People’s Party (PP) did not win back the absolute
majority it had lost in December, it remained easily the largest party, with 137 of the 350

s oo £ g L " FAY ol il I} i i (. Ll i

* ELECTION 2016 * MORE ELECTION COVERAGE »

Tim Kaine Found Riding Conveyor
Belt During Factory Campaign Stop

NEWS IN BRIEF

% N
August 23, 2016 o "
VOL 52 ISSUE 33 e
Politics - Politicians -
Election 2016 - Tim Kaine

AIKEN, SC—Noting that he disappeared for over an hour during a campaign stop meet-

and-greet with workers at a Bridgestone tire manufacturing plant, sources confirmed
Tuesday that Democratic vice presidential candidate Tim Kaine was finally discovered
riding on one of the factory’s conveyor belts. “Shortly after we arrived, Tim managed to
get out of our sight, but after an extensive search of the facilities, one of our interns
found him moving down the assembly line between several radial tires,” said senior

campaign advisor Mike Henry, adding that Kaine could be seen smiling and laughing as

11 o33 D T | 2. 10 1 1 =N c 2
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Model 0: Not-Naive Model

Generative model:

1. Flip a weighted coin (Y)
2. If heads, sample a document (X) from the Parody distribution

3. If tails, sample a document (X) from the Not-Parody
distribution

P(X,Y) = P(X|Y)P(Y)

4. We first sample Y, then sample X given Y.



Model 0: Not-Naive Model using Bag of words representation

Flip weighted coin

If TAILS, roll

If HEADS, roll

gray die blue die
Y Xk
0 110 | 1 1
1 0O(1]0 1
1 111 |1 1
0 O[O0 |1 |..[|1
0 1101 0
1 1101 0
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Model 0: Not-Naive Model using Bag of words

representation
Generative model:

1. Flip a weighted coin (Y)

2. If heads, roll the many sided die to sample a bag of
words document vector (X) from the Parody distribution
3. If tails, roll the many sided die to sample a bag of words

document vector (X) from the Not-Parody distribution

P(X17°'°7XK7Y) :P(XlaaXKD/)P(Y)



Model 0: Main Problem

How many terms are we modeling?

«Say K is the number of words in a dictionary and the features
are binary (a word exists or not): X; € {0, 1}

P(XlavXK‘Y)

« 2k choices of feature vector, each gets its own probability...
« Exponentially big table (in feature vector size)



Naive Bayes: Core Assumption

How do we fix this problem?
« Assume: Conditional independence of features:

P<X17°'°7XK7Y) :P(XlaaXKD/)P(Y)

= (H P(XkY)) P(Y)

k=1

« What do we gain? With binary features, get 2 entries per feature
« SO, number of probabilities 2k ke
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Q2-1: Are these statements true or false?

(A) Naive Bayes assumes conditional independence of features to decompose the joint probability
Into the conditional probabilities.

(B) We can use Naive Bayes’ to reduce model complexity which helps with over-fitting

1. True, True

2. True, False
3. False, True
4. False, False



Q2-1: Are these statements true or false?

(A) Naive Bayes assumes conditional independence of features to decompose the joint probability
Into the conditional probabilities.

(B) We can use Naive Bayes’ to reduce model complexity which helps with over-fitting

1 | True, True _ (A) Just as we learnt in the lecture.

(B) True, since the fully-fledged joint model

2 True False subsumes the conditionally independent
- ’

model.
3. False, True
4. False, False



Outline

Naive Bayes Examples
e Bernoulli, Multiclass, Gaussian



Naive Bayes: Overall Model

‘ Support: Depends on the problem, P(X,|Y)

Model: Product of prior and the event model
K
P(X,Y) = P(Y) || P(Xi|Y)
k=1

Training: Find the class-conditional MLE parameters

For P(Y), we find the MLE using the data. For each P(X |

Y) we condition on the data with the corresponding
class.

Prediction: Find the class that maximizes the posterior

y = argmax p(y|x)
Yy




Naive Bayes: Predicting
« With conditional probabilities, how to predict?

A

y = argmax p(y|x) (posterior)

= argmax p(xly |()Z)?( ) (by Bayes’ rule)

= argmax p(x|y)p(y)
Y



Naive Bayes Example 1: Bernoulli

Support: Binary vectors of length K
x € {0,115

Generative Model:

Y ~ Bernoulli(¢)
Xy ~ Bernoulli(0x y) Vk € {1,..., K}

Joint probability :

pgb,e(w:y) — p¢,9($1; S 7$K7y)

y) H po,. (Tk|y)




Training Bernoulli Naive Bayes

«Recall: train (by MLE) is to find class-conditional parameters

«To find P(Y): use all the data

o For P(X.|Y=y): use the data for that class N |
_ Zz‘:l ]I(y(z) = 1)

27;21 H(y(i) =1)



Training Bernoulli Naive Bayes

«Training: empirically estimate the probabilities
« Store: conditional probability tables (CPTs)

R
0 0.33 0 0 0.1 0 0 0.2

1 0.67 0 1 0.9 0 1 0.5
1 0 0.9 1 0 0.8
1 1 0.1 1 1 0.5



Naive Bayes Example 2: Multinomial

Support: multinomial vectors of length d

Generative model: (for each data point)

K

- Generate label: y ~ Mult(¢), where Z ¢ =1
k=1

- For each feature, K.

x; ~ Mult(6;,), where E O yr =1
k=1

Joint probability:
d d

po.0(,y) = o) | [ po, ,(wily) = &y | | 012

1=1 1=1



Training & Smoothing

«Training: empirically estimate the probabilities
« We are just obtaining counts to estimate P(X.|Y)

« Suppose X. has K possible values, and our counts for Y=y are b,,...,b,
oWhat if bl - 0?

o Predictions will end up being zero. We want to prevent this (why?).

e Solution: smooth!

Siv v ‘ bi +
P(X; = j|Y =y) L

o Z I b + alX




Naive Bayes Example 3: Gaussian

K
Support: X € R

Model: Product of prior and the event model

p(way) :p<x1,---,$K,y)

Gaussian Naive Bayes assumes that p(z|y) is given by
a Normal distribution.



Learning Outcomes

At the end of today’s lecture, you will be able to:
1. Contrast discriminative and generative models.

2. Contrast maximum likelihood and maximum a
poster learning.

3. Explain the modeling assumptions for a Naive
Bayes Classifier.



Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven,
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu,
Yingyu Liang, Volodymyr Kuleshov, and Fred Sala
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