

# CS 760: Machine Learning Neural Networks

Josiah Hanna

University of Wisconsin-Madison

October 5, 2023

#### Announcements

•Homework 3 due Tuesday at 9:30am

#### **Learning Outcomes**

At the end of lecture today, you will be able to:

- 1. Implement the perceptron learning algorithm.
- 2. Explain the forward pass of a basic multi-layer neural network.
- 3. Explain the conceptual implementation of the backward pass for computing gradients in a multilayer neural network.

#### Outline

#### Perceptron Algorithm

Definition, Training, Loss Equivalent, Mistake Bound

#### Neural Networks

Introduction, Setup, Components, Activations

#### Training Neural Networks

• SGD, Computing Gradients, Backpropagation

#### Outline

#### Perceptron Algorithm

- Definition, Training, Loss Equivalent, Mistake Bound
- Neural Networks
  - •Introduction, Setup, Components, Activations
- Training Neural Networks
  - SGD, Computing Gradients, Backpropagation

# Neural networks: Origins

- Artificial neural networks, connectionist models
- Inspired by interconnected neurons in biological systems
  - Simple, homogenous processing units





#### Perceptron: Simple Network



[McCulloch & Pitts, 1943; Rosenblatt, 1959; Widrow & Hoff, 1960]

#### Perceptron: Components



**Activation Function** 

#### Perceptron: Representational Power

Perceptrons can represent only linearly separable concepts

$$\hat{y}(x) = \begin{cases} 1 & w^T x \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

Decision boundary given by:





# Which Functions are Linearly Separable?

#### <u>AND</u>

|   | $x_1 x_2$ | y |
|---|-----------|---|
| а | 0 0       | 0 |
| b | 0 1       | 0 |
| С | 1 0       | 0 |
| d | 1 1       | 1 |





#### <u>OR</u>

|   | $x_1 x_2$ | y |
|---|-----------|---|
| а | 0 0       | 0 |
| b | 0 1       | 1 |
| С | 1 0       | 1 |
| d | 1 1       | 1 |





# Which Functions are Linearly Separable?

#### **XOR**



A multilayer perceptron can represent XOR!



assume  $w_0 = 0$  for all nodes

### **Perceptron**: Training

• When are we correct?

$$y^{(i)}w^Tx^{(i)} > 0$$

- I.e., signs of prediction and label match
- •In training, could ask for "margin": insist

$$y^{(i)}w^Tx^{(i)} \ge c$$

A little more than what we really need



#### Perceptron: Training

Going forward assume labels are +1 or -1.  $y^{(i)} \leftarrow 2y^{(i)} - 1$ 

#### Algorithm:

- Initialize  $w_0 = 0$ .
- At step t = 0,...
- Select index i,

#### Margin of 1

• If 
$$y^{(i)} w^T x^{(i)} < 1$$
 then do  $w_{t+1} = w_t + y^{(i)} x^{(i)}$ 

- Else,  $w_{t+1} = w_t$
- What is the update to our prediction?

$$w_{t+1}^T x^{(i)} = w_t^T x^{(i)} + y^{(i)} ||x^{(i)}||^2$$

# **Perceptron**: Training

Algorithm training example:



#### Perceptron: Training Comparison

- We've seen minimizing a loss function by taking one example at a time...
  - Stochastic Optimization (like SGD)

•Step: 
$$w_{t+1} = w_t + y^{(i)}x^{(i)}$$

#### **Perceptron**: Training Comparison

Does this look like SGD with some loss function L?

SGD 
$$w_{t+1} = w_t - \alpha \nabla L(f(x^{(i)}, y^{(i)})$$
 Perceptron 
$$w_{t+1} = w_t + y^{(i)} x^{(i)} \quad \text{(if there is an error)}$$



Hinge loss!

# Perceptron: Analysis

- Two aspects to analysis: fitting training data + generalization
- Mistake bound:
  - Hyperplane  $H_w = x : w^T x = 0$
  - Margin (for a dataset S)

$$\gamma(S, w) = \min_{1 \le i \le n} \operatorname{dist}(x^{(i)}, H_w)$$
$$|x^T w| / ||w||$$
$$\gamma(S) = \max_{\|w\|=1} \gamma(S, w)$$



### Perceptron: Mistake Bound

Need some information about our data:

•"Diameter": 
$$D(S) = \max_{x \in S} \|x\|$$



- Mistake Bound Result:
  - The total # of mistakes on a linearly separable set S is at most

$$(2 + D(S)^2)\gamma(S)^{-2}$$

#### Perceptron: Mistake Bound Interpretation

#### • Mistake Bound Result:

• The total # of mistakes on a linearly separable set S is at most

 $(2+D(S)^2)\gamma(S)^{-2}$ 

•Scaling?

Diameter: Controls our

biggest step.

Margin: Smaller

means harder to find

separator

#### •Implications?

- Run over dataset S repeatedly until # mistakes doesn't change
  - If we keep running it, eventually we get perfect separation on a copy of S





### **Break & Quiz**

#### Q1-1: Select the correct option.

- A. A perceptron is guaranteed to perfectly learn a given linearly separable dataset within a finite number of training steps.
- B. A single perceptron can compute the XOR function.

- 1. Both statements are true.
- 2. Both statements are false.
- 3. Statement A is true, Statement B is false.
- 4. Statement B is true, Statement A is false.

#### Q1-1: Select the correct option.

- A. A perceptron is guaranteed to perfectly learn a given linearly separable dataset within a finite number of training steps.
- B. A single perceptron can compute the XOR function.

- Both statements are true.
- 2. Both statements are false.



3. Statement A is true, Statement B is false.



4. Statement B is true, Statement A is false.

#### Outline

- Review & Perceptron Algorithm
  - Definition, Training, Loss Equivalent, Mistake Bound
- Neural Networks
  - Introduction, Setup, Components, Activations
- Training Neural Networks
  - SGD, Computing Gradients, Backpropagation

# Multilayer Neural Network

- Input: two features from spectral analysis of a spoken sound
- Output: vowel sound occurring in the context "h\_\_d"



# Neural Network Decision Regions



# **Neural Network Components**

An (L + 1)-layer network



# **Feature Encoding for NNs**

Nominal features usually a one hot encoding

$$A = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \qquad C = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \qquad G = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \qquad T = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

• Ordinal features: use a *thermometer* encoding

small= 
$$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$$
 medium=  $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$  large=  $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ 

 Real-valued features use individual input units (may want to scale/normalize them first though)

precipitation = [0.68]

#### **Output Layer:** Examples

- Binary classification:
  - Corresponds to using logistic regression on last hidden layer.
- Multiclass classification:
  - where outputs usually provide inputs to softmax distribution.



## Output Layer: Examples

- Regression:
  - Linear units: no nonlinearity
- Multi-dimensional regression:
  - Linear units: no nonlinearity



### **Hidden Layers**

- Neuron takes weighted linear combination of the previous representation layer.
  - Outputs a single scalar value.
  - That output is then passed into a **non-linear** activation function.



Typical activation functions: threshold, sigmoid, tanh, relu.

Can the activation function be linear? Yes but then the entire network is linear.

•Ex: 1 hidden layer, 1 output layer: depth 2 Hidden layer 3 neurons



•Ex: 1 hidden layer, 1 output layer: depth 2 Hidden layer 3 neurons



•Ex: 1 hidden layer, 1 output layer: depth 2 Hidden layer 3 neurons



•Ex: 1 hidden layer, 1 output layer: depth 2



#### Multiclass Classification Examples

- Protein classification (Kaggle challenge)
- ImageNet





# **Multiclass Classification Output**

- Create k output units
- Use softmax (just like logistic regression)





## **Break & Quiz**

#### Q2-1: Select the correct option.

- A. The more hidden-layer units a Neural Network has, the better it can predict desired outputs for new inputs that it was not trained with.
- B. A 3-layers Neural Network with 5 neurons in the input and hidden representations and 1 neuron in the output has a total of 55 connections.

- Both statements are true.
- Both statements are false.
- 3. Statement A is true, Statement B is false.
- 4. Statement B is true, Statement A is false.

#### Q2-1: Select the correct option.

- A. The more hidden-layer units a Neural Network has, the better it can predict desired outputs for new inputs that it was not trained with.
- B. A 3-layers Neural Network with 5 neurons in the input and hidden representations and 1 neuron in the output has a total of 55 connections.

- Both statements are true.
- Both statements are false.
- 3. Statement A is true, Statement B is false.
- 4. Statement B is true, Statement A is false.





#### Outline

- Review & Perceptron Algorithm
  - Definition, Training, Loss Equivalent, Mistake Bound
- Neural Networks
  - •Introduction, Setup, Components, Activations
- Training Neural Networks
  - SGD, Computing Gradients, Backpropagation

## **Training** Neural Networks

- Training the usual way. Pick a loss and optimize it.
- Example: 2 scalar weights



figure from Cho & Chow, Neurocomputing 1999

## **Training** Neural Networks

#### Algorithm:

• Get

$$D = \{(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})\}$$

- Initialize weights
- Loop until stopping criteria met,
  - For each training point  $(x^{(i)}, y^{(i)})$
  - Compute:  $f_{\mathrm{network}}(x^{(d)})$

- Compute gradient:  $\nabla L^{(i)}(w) = \left[\frac{\partial L^{(d)}}{\partial w_0}, \frac{\partial L^{(d)}}{\partial w_1}, \dots, \frac{\partial L^{(d)}}{\partial w_m}\right]^T$  —— Backward Pass
- Update weights:

$$w \leftarrow w - \alpha \nabla L^{(i)}(w)$$



• Want to compute 
$$\frac{\partial \mathcal{E}(\mathbf{x},y)}{\partial w_{11}}$$

 $w_{21}x_{2}$ 







sigmoid function 
$$z$$
  $\xrightarrow{-y \log(\hat{y})}$   $\xrightarrow{-(1-y)\log(1-\hat{y})}$   $\mathcal{E}(\mathbf{x},y)$   $\xrightarrow{\partial \hat{y}} = \sigma'(z)$   $\xrightarrow{\partial \hat{y}} = \frac{\partial \mathcal{E}(\mathbf{x},y)}{\partial \hat{y}} = \frac{1-y}{1-\hat{y}} - \frac{y}{\hat{y}}$ 

$$\frac{\partial l}{\partial w_{11}} = \frac{\partial l}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z} \mathcal{X}_1$$



$$\frac{\partial l}{\partial w_{11}} = \frac{\partial l}{\partial \hat{y}} \left| \hat{y} (1 - \hat{y}) x_1 \right|$$





$$\frac{\partial l}{\partial w_{11}} = \left(\frac{1-y}{1-\hat{y}} - \frac{y}{\hat{y}}\right)\hat{y}(1-\hat{y})x_1$$





$$\frac{\partial l}{\partial w_{11}} = (\hat{y} - y)x$$



sigmoid function 
$$\begin{array}{c} -y \log(\hat{y}) \\ -(1-y) \log(1-\hat{y}) \\ \hline \frac{\partial \hat{y}}{\partial z} = \sigma'(z) = \sigma(z)(1-\sigma(z)) \end{array}$$
  $\mathcal{E}(\mathbf{x}, y)$ 

$$\frac{\partial l}{\partial x_1} = \frac{\partial l}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z} w_{11} = (\hat{y} - y) w_{11}$$



$$\frac{\partial l}{\partial a_{11}} = (\hat{y} - y)w_{11}^{(2)}, \ \frac{\partial l}{\partial a_{12}} = (\hat{y} - y)w_{21}^{(2)}$$



$$\frac{\partial l}{\partial w_{11}} = \frac{\partial l}{\partial a_{11}} \frac{\partial a_{11}}{\partial w_{11}^{(1)}} = (\hat{y} - y) w_{11}^{(2)} \frac{\partial a_{11}}{\partial w_{11}^{(1)}}$$



• By chain rule: 
$$\frac{\partial l}{\partial w_{11}} = \frac{\partial l}{\partial a_{11}} \frac{\partial a_{11}}{\partial w_{11}^{(1)}} = (\hat{y} - y)w_{11}^{(2)}a_{11}(1 - a_{11})x_1$$



$$\frac{\partial l}{\partial x_1} = \frac{\partial l}{\partial a_{11}} \frac{\partial a_{11}}{\partial x_1} + \frac{\partial l}{\partial a_{12}} \frac{\partial a_{12}}{\partial x_1}$$

## Backpropagation

- Now we can compute derivatives for particular neurons, but we want to automate this process
- Set up a computation graph and run on the graph



## Perceptron: Mistake Bound

Need some information about our data:

•"Diameter": 
$$D(S) = \max_{x \in S} \|x\|$$



- Mistake Bound Result:
  - The total # of mistakes on a linearly separable set S is at most

$$(2 + D(S)^2)\gamma(S)^{-2}$$

- Let us prove the result.
  - Intuitive idea we exploit: norm of weight vector <-> # mistakes
- Start with changes in weight norm

$$\|w_{t+1}\|^2 = \|w_t + y^{(i_t)}x^{(i_t)}\|^2 \quad \text{If mistake}$$
 
$$\|w_{t+1}\|^2 = \|w_t\|^2 + 2(y^{(i_t)})^Tx^{(i_t)} + \|x^{(i_t)}\|^2$$
 
$$\text{Margin}$$
 
$$\|w_{t+1}\|^2 \leq \|w_t\|^2 + 2 + D(S)^2$$

•This is true for each mistake

$$||w_{t+1}||^2 \le ||w_t||^2 + 2 + D(S)^2$$

•Let  $m_t$  be # mistakes by t step. Start at  $w_0$  (norm 0). By  $w_t$ 

$$||w_t|| \le \sqrt{m_t(2 + D(S)^2)}$$

- Now we'll also lower bound norm
- •Let w be a hyperplane that separates, with unit norm.  $\|w\|=1$

$$w^T(w_{t+1} - w_t) = w^T(y^{(i_t)}x^{(i_t)}) = \frac{|w^Tx^{(i_t)}|}{\|w\|} \leftarrow \frac{\text{w classifies correctly}}{\|w\|} \text{Norm 1}$$

• But this is the margin for  $x^{(it)}$ , so:

$$\frac{|w^T x^{(i_t)}|}{\|w\|} \ge \gamma(S, w)$$

•So:

$$w^T(w_{t+1} - w_t) \ge \gamma(S, w)$$

- •Let's look at our best unit norm solution: w<sub>\*</sub>, i.e one with the maximum margin w
- From Cauchy-Schwartz  $||w_t|||w_*|| \geq w_*^T w_t$

Let's set up a telescoping sum:

$$||w_t|| \ge w_*^T w_t = \sum_{k=1}^t w_*^T (w_k - w_{k-1})$$

• Have:  $w^{T}(w_{t+1} - w_{t}) \ge \gamma(S, w)$ 

$$||w_t|| \ge w_*^T w_t = \sum_{k=1}^t w_*^T (w_k - w_{k-1})$$

•Combine:

$$\|w_t\| \geq w_*^T w_t = \sum_{k=1}^t w_*^T (w_k - w_{k-1}) \geq m_t \gamma(S)$$

$$(S) \text{ Of for no mistake,}$$
Purple for mistake

•Note:  $\gamma(S, w_*) = \gamma(S)$ 

•So, 
$$m_t \gamma(S) \leq \|w_t\|$$

$$||w_t|| \le \sqrt{m_t(2 + D(S)^2)}$$

$$m_t \gamma(S) \le \sqrt{m_t (2 + D(S)^2)}$$

Easy algebra gets us to

$$m_t \le \frac{2 + D(S)^2}{\gamma(S)^2}$$



Result holds for any t!



## **Thanks Everyone!**

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov, Sharon Li