

CS 760: Machine Learning Neural Networks

Josiah Hanna

University of Wisconsin-Madison
October 5, 2023

Announcements

-Homework 3 due Tuesday at 9:30am

Learning Outcomes

At the end of lecture today, you will be able to:

1. Implement the perceptron learning algorithm.
2. Explain the forward pass of a basic multi-layer neural network.
3. Explain the conceptual implementation of the backward pass for computing gradients in a multilayer neural network.

Outline

-Perceptron Algorithm

- Definition, Training, Loss Equivalent, Mistake Bound
-Neural Networks
- Introduction, Setup, Components, Activations
-Training Neural Networks
- SGD, Computing Gradients, Backpropagation

Outline

-Perceptron Algorithm
-Definition, Training, Loss Equivalent, Mistake Bound

- Neural Networks
- Introduction, Setup, Components, Activations -Training Neural Networks - SGD, Computing Gradients, Backpropagation

Neural networks: Origins

- Artificial neural networks, connectionist models
- Inspired by interconnected neurons in biological systems
- Simple, homogenous processing units

Perceptron: Simple Network

[McCulloch \& Pitts, 1943; Rosenblatt, 1959; Widrow \& Hoff, 1960]

Perceptron: Components

Activation Function

Perceptron: Representational Power

-Perceptrons can represent only linearly separable concepts

$$
\hat{y}(x)= \begin{cases}1 & w^{T} x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

- Decision boundary given by:

Which Functions are Linearly Separable?

	x_{1}	x_{2}		y
a	0	0		0
b	0	1		0
c	1	0		0
d	1	1		1

			OR	
	x_{1}	x_{2}		y
a	0	0		0
b	0	1		1
c	1	0		1
d	1	1		1

Which Functions are Linearly Separable?

Perceptron: Training

-When are we correct?

$$
y^{(i)} w^{T} x^{(i)}>0
$$

- I.e., signs of prediction and label match
- In training, could ask for "margin": insist

$$
y^{(i)} w^{T} x^{(i)} \geq c
$$

- A little more than what we really need

Perceptron: Training

Going forward assume labels are +1 or -1. $\quad y^{(i)} \leftarrow 2 y^{(i)}-1$ -Algorithm:

- Initialize $\mathrm{w}_{0}=0$.
- At step $t=0, \ldots$
- Select index i,

Margin of 1

- If $y^{(i)} w^{T} x^{(i)}<1$ then do $w_{t+1}=w_{t}+y^{(i)} x^{(i)}$
- Else, $w_{t+1}=w_{t}$
-What is the update to our prediction?

$$
w_{t+1}^{T} x^{(i)}=w_{t}^{T} x^{(i)}+y^{(i)}\left\|x^{(i)}\right\|^{2}
$$

Perceptron: Training

- Algorithm training example:

Perceptron: Training Comparison

-We've seen minimizing a loss function by taking one example at a time...

- Stochastic Optimization (like SGD)
-Step: $w_{t+1}=w_{t}+y^{(i)} x^{(i)}$

Perceptron: Training Comparison

-Does this look like SGD with some loss function L?
SGD

$$
w_{t+1}=w_{t}-\alpha \nabla L\left(f\left(x^{(i)}, y^{(i)}\right)\right.
$$

Perceptron $\quad w_{t+1}=w_{t}+y^{(i)} x^{(i)} \quad$ (if there is an error)

Hinge loss!

Perceptron: Analysis

-Two aspects to analysis: fitting training data + generalization - Mistake bound:

- Hyperplane $\quad H_{w}=x: w^{T} x=0$
- Margin (for a dataset S)

$$
\begin{gathered}
\gamma(S, w)=\min _{1 \leq i \leq n} \operatorname{dist}\left(x^{(i)}, H_{w}\right) \\
\left|x^{T} w\right| /\|w\| \\
\gamma(S)=\max _{\|w\|=1} \gamma(S, w)
\end{gathered}
$$

Perceptron: Mistake Bound

- Need some information about our data:
-"Diameter": $D(S)=\max _{x \in S}\|x\|$
- Mistake Bound Result:
- The total \# of mistakes on a linearly separable set S is at most

$$
\left(2+D(S)^{2}\right) \gamma(S)^{-2}
$$

Perceptron: Mistake Bound Interpretation

- Mistake Bound Result:
- The total \# of mistakes on a linearly separable set S is at most
-Scaling?

$$
\begin{array}{ll}
\left(2+D(S)^{2}\right) \gamma(S)^{-2} & \begin{array}{l}
\text { Margin: Smaller } \\
\text { means harder to find } \\
\text { separator }
\end{array} \\
\text { Diameter: Controls our } & \text { siggest step. }
\end{array}
$$

-Implications?

- Run over dataset S repeatedly until \# mistakes doesn't change
- If we keep running it, eventually we get perfect separation on a copy of S

Break \& Quiz

Q1-1: Select the correct option.

A. A perceptron is guaranteed to perfectly learn a given linearly separable dataset within a finite number of training steps.
B. A single perceptron can compute the XOR function.

1. Both statements are true.
2. Both statements are false.
3. Statement A is true, Statement B is false.
4. Statement B is true, Statement A is false.

Q1-1: Select the correct option.

A. A perceptron is guaranteed to perfectly learn a given linearly separable dataset within a finite number of training steps.
B. A single perceptron can compute the XOR function.

1. Both statements are true.
2. Both statements are false.
3. Statement A is true, Statement B is false.
4. Statement B is true, Statement A is false.

Outline

- Review \& Perceptron Algorithm
- Definition, Training, Ioss Fquivalent, Mistake Bound
-Neural Networks
- Introduction, Setup, Components, Activations
-Training Neural Networks
- SGD, Computing Gradients, Backpropagation

Multilayer Neural Network

- Input: two features from spectral analysis of a spoken sound
-Output: vowel sound occurring in the context "h__d"

figure from Huang \& Lippmann, NeurIPS 1988

Neural Network Decision Regions

Figure from Huang \& Lippmann, NeurIPS 1988

Neural Network Components

An ($L+1$)-layer network

First layer

Output layer

Input
Hidden layer h^{1}

Feature Encoding for NNs

- Nominal features usually a one hot encoding

$$
A=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \quad C=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] \quad G=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] \quad T=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

- Ordinal features: use a thermometer encoding

$$
\text { small }=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \text { medium }=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \quad \text { large }=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Real-valued features use individual input units (may want to scale/normalize them first though)

Output Layer: Examples

- Binary classification:
- Corresponds to using logistic regression on last hidden layer.
- Multiclass classification:
- where outputs usually provide inputs to softmax distribution.

Output layer

h

Output layer

Output Layer: Examples

-Regression:

- Linear units: no nonlinearity
- Multi-dimensional regression:
- Linear units: no nonlinearity

Hidden Layers

- Neuron takes weighted linear combination of the previous representation layer.
- Outputs a single scalar value.
-That output is then passed into a non-linear activation function.

Typical activation functions: threshold, sigmoid, tanh, relu.
Can the activation function be linear? Yes but then the entire network is linear.

MLPs: Multilayer Perceptron

-Ex: 1 hidden layer, 1 output layer: depth 2
Hidden layer
3 neurons

MLPs: Multilayer Perceptron

-Ex: 1 hidden layer, 1 output layer: depth 2
Hidden layer 3 neurons
Input

$$
h_{2}=\sigma\left(\sum_{i=1}^{d} x_{i} w_{2 i}^{(1)}+b_{2}\right)
$$

MLPs: Multilayer Perceptron

-Ex: 1 hidden layer, 1 output layer: depth 2
Hidden layer
Input 3 neurons

MLPs: Multilayer Perceptron

-Ex: 1 hidden layer, 1 output layer: depth 2

Hidden layer

Multiclass Classification Examples

- Protein classification (Kaggle challenge)
- ImageNet

Multiclass Classification Output

- Create k output units
-Use softmax (just like logistic regression)

Break \& Quiz

Q2-1: Select the correct option.

A. The more hidden-layer units a Neural Network has, the better it can predict desired outputs for new inputs that it was not trained with.
B. A 3-layers Neural Network with 5 neurons in the input and hidden representations and 1 neuron in the output has a total of 55 connections.

1. Both statements are true.
2. Both statements are false.
3. Statement A is true, Statement B is false.
4. Statement B is true, Statement A is false.

Q2-1: Select the correct option.

A. The more hidden-layer units a Neural Network has, the better it can predict desired outputs for new inputs that it was not trained with.
B. A 3-layers Neural Network with 5 neurons in the input and hidden representations and 1 neuron in the output has a total of 55 connections.

1. Both statements are true.
2. Both statements are false.
3. Statement A is true, Statement B is false.
4. Statement B is true, Statement A is false.

Outline

-Review \& Perceptron Algorithm
-Definition, Training, Loss Equivalent, Mistake Bound - Neural Netwinrks - Introduction, Setup, Components, Activations
-Training Neural Networks

- SGD, Computing Gradients, Backpropagation

Training Neural Networks

-Training the usual way. Pick a loss and optimize it.
-Example: 2 scalar weights

figure from Cho \& Chow, Neurocomputing 1999

Training Neural Networks

-Algorithm:

- Get

$$
D=\left\{\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(n)}, y^{(n)}\right)\right\}
$$

- Initialize weights
- Loop until stopping criteria met,
- For each training point $\left(x^{(i)}, y^{(i)}\right)$
- Compute: $f_{\text {network }}\left(x^{(d)}\right)$
\longleftarrow Forward Pass
- Compute gradient: $\quad \nabla L^{(i)}(w)=\left[\frac{\partial L^{(d)}}{\partial w_{0}}, \frac{\partial L^{(d)}}{\partial w_{1}}, \ldots, \frac{\partial L^{(d)}}{\partial w_{m}}\right]^{T} \longleftarrow$ Backward Pass
- Update weights:

$$
w \leftarrow w-\alpha \nabla L^{(i)}(w)
$$

Computing Gradients

- Want to compute $\frac{\partial \ell(\mathbf{x}, y)}{\partial w_{11}}$

Computing Gradients

Computing Gradients

Computing Gradients

- By chain rule: $\quad \frac{\partial l}{\partial w_{11}}=\frac{\partial l}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z} X_{1}$

Computing Gradients

- By chain rule: $\frac{\partial l}{\partial w_{11}}=\frac{\partial l}{\partial \hat{y}} \hat{y}(1-\hat{y}) x_{1}$

Computing Gradients

- By chain rule: $\frac{\partial l}{\partial w_{11}}=\left(\frac{1-y}{1-\hat{y}}-\frac{y}{\hat{y}}\right) \hat{y}(1-\hat{y}) x_{1}$

Computing Gradients

- By chain rule: $\frac{\partial l}{\partial w_{11}}=(\hat{y}-y) x_{1}$

Computing Gradients

$$
\begin{gathered}
w_{11} x_{1} \\
w_{21} x_{2}
\end{gathered} \begin{aligned}
& \text { sigmoid function } \\
& \frac{\partial \hat{y}}{\partial z}=\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))
\end{aligned} \xrightarrow{\substack{-y \log (\hat{y}) \\
-(1-y) \log (1-\hat{y})}} \ell(\mathbf{x}, y)
$$

- By chain rule: $\quad \frac{\partial l}{\partial x_{1}}=\frac{\partial l}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z} w_{11}=(\hat{y}-y) w_{11}$

Computing Gradients: More Layers

- By chain rule: $\frac{\partial l}{\partial a_{11}}=(\hat{y}-y) w_{11}^{(2)}, \frac{\partial l}{\partial a_{12}}=(\hat{y}-y) w_{21}^{(2)}$

Computing Gradients: More Layers

$w_{21}^{(1)} x_{2}$

- By chain rule: $\frac{\partial l}{\partial w_{11}}=\frac{\partial l}{\partial a_{11}} \frac{\partial a_{11}}{\partial w_{11}^{(1)}}=(\hat{y}-y) w_{11}^{(2)} \frac{\partial a_{11}}{\partial w_{11}^{(1)}}$

Computing Gradients: More Layers

- By chain rule: $\frac{\partial l}{\partial w_{11}}=\frac{\partial l}{\partial a_{11}} \frac{\partial a_{11}}{\partial w_{11}^{(1)}}=(\hat{y}-y) w_{11}^{(2)} a_{11}\left(1-a_{11}\right) x_{1}$

Computing Gradients: More Layers

Backpropagation

- Now we can compute derivatives for particular neurons, but we want to automate this process
- Set up a computation graph and run on the graph

Perceptron: Mistake Bound

- Need some information about our data:
-"Diameter": $D(S)=\max _{x \in S}\|x\|$
- Mistake Bound Result:
- The total \# of mistakes on a linearly separable set S is at most

$$
\left(2+D(S)^{2}\right) \gamma(S)^{-2}
$$

Mistake Bound: Proof 1

- Let us prove the result.
- Intuitive idea we exploit: norm of weight vector <-> \# mistakes
- Start with changes in weight norm

$$
\begin{aligned}
& \left\|w_{t+1}\right\|^{2}=\left\|w_{t}+y^{\left(i_{t}\right)} x^{\left(i_{t}\right)}\right\|^{2} \quad \text { If mistake } \\
& \left\|w_{t+1}\right\|^{2}=\left\|w_{t}\right\|^{2}+2\left(y^{\left(i_{t}\right)}\right)^{T} x^{\left(i_{t}\right)}+\left\|x^{\left(i_{t}\right)}\right\|^{2} \\
& \left\|w_{t+1}\right\|^{2} \leq\left\|w_{t}\right\|^{2}+2+D(S)^{2}
\end{aligned}
$$

Mistake Bound: Proof 2

-This is true for each mistake

$$
\left\|w_{t+1}\right\|^{2} \leq\left\|w_{t}\right\|^{2}+2+D(S)^{2}
$$

- Let m_{t} be \# mistakes by t step. Start at w_{0} (norm 0). By w_{t}

$$
\left\|w_{t}\right\| \leq \sqrt{m_{t}\left(2+D(S)^{2}\right.}
$$

Mistake Bound: Proof 3

- Now we'll also lower bound norm
-Let w be a hyperplane that separates, with unit norm. $\|w\|=1$
$w^{T}\left(w_{t+1}-w_{t}\right)=w^{T}(\underbrace{y^{\left(i_{t}\right)} x^{\left(i_{t}\right)}}_{\text {mistake }})=\frac{\left|w^{T} x^{\left(i_{t}\right)}\right| \longleftarrow \overbrace{\text { w classifies }}^{\text {correly }}}{\|w\| \longleftarrow \text { Norm } 1}$
-But this is the margin for $x\left({ }^{(t)}\right)$, so: $\quad \frac{\left|w^{T} x^{\left(i_{t}\right)}\right|}{\|w\|} \geq \gamma(S, w)$

Mistake Bound: Proof 4

-So:

$$
w^{T}\left(w_{t+1}-w_{t}\right) \geq \gamma(S, w)
$$

-Let's look at our best unit norm solution: w_{*}, i.e one with the maximum margin w

- From Cauchy-Schwartz $\left\|w_{t}\right\|\left\|w_{*}\right\| \geq w_{*}^{T} w_{t}$
- Let's set up a telescoping sum:

$$
\left\|w_{t}\right\| \geq w_{*}^{T} w_{t}=\sum_{k=1}^{t} w_{*}^{T}\left(w_{k}-w_{k-1}\right)
$$

Mistake Bound: Proof 5

- Have: $\quad w^{T}\left(w_{t+1}-w_{t}\right) \geq \gamma(S, w)$

$$
\left\|w_{t}\right\| \geq w_{*}^{T} w_{t}=\sum_{k=1}^{t} w_{*}^{T}\left(w_{k}-w_{k-1}\right)
$$

-Combine:

$$
\left\|w_{t}\right\| \geq w_{*}^{T} w_{t}=\sum_{k=1}^{t} w_{*}^{T}\left(w_{k}-w_{k-1}\right) \geq m_{t} \gamma(S)
$$

- Note: $\gamma\left(S, w_{*}\right)=\gamma(S)$

Mistake Bound: Proof 6

-So, $\quad m_{t} \gamma(S) \leq\left\|w_{t}\right\| \quad\left\|w_{t}\right\| \leq \sqrt{m_{t}\left(2+D(S)^{2}\right.}$
-I.e.,

$$
m_{t} \gamma(S) \leq \sqrt{m_{t}\left(2+D(S)^{2}\right)}
$$

- Easy algebra gets us to

$$
m_{t} \leq \frac{2+D(S)^{2}}{\gamma(S)^{2}}
$$

-Result holds for any t!

Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov, Sharon Li

