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Announcements

•Homework 3 due Tuesday at 9:30am
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Learning Outcomes

At the end of lecture today, you will be able to:

1. Implement the perceptron learning algorithm.

2. Explain the forward pass of a basic multi-layer 

neural network.

3. Explain the conceptual implementation of the 

backward pass for computing gradients in a multi-
layer neural network.
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Outline

•Perceptron Algorithm

•Definition, Training, Loss Equivalent, Mistake Bound


•Neural Networks

•Introduction, Setup, Components, Activations 


•Training Neural Networks

•  SGD, Computing Gradients, Backpropagation
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Neural networks: Origins

• Artificial neural networks, connectionist models

• Inspired by interconnected neurons in biological systems


• Simple, homogenous processing units

6



Perceptron: Simple Network

[McCulloch & Pitts, 1943; Rosenblatt, 1959; Widrow & Hoff, 1960]
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Perceptron: Components

[McCulloch & Pitts, 1943; Rosenblatt, 1959; Widrow & Hoff, 1960]


Activation Function
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Perceptron: Representational Power

•Perceptrons can represent only linearly separable concepts


•Decision boundary given by:
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Which Functions are Linearly Separable?
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Perceptron: Training

•When are we correct?


• I.e., signs of prediction and label match 


•In training, could ask for “margin”: insist 


• A little more than what we really need 
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Perceptron: Training

Going forward assume labels are +1 or -1.

•Algorithm:


• Initialize w0 = 0.

• At step t = 0,…

• Select index i,


• If                                      then do  


• Else, 


•What is the update to our prediction?
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Perceptron: Training

•Algorithm training example:

14



Perceptron: Training Comparison

•We’ve seen minimizing a loss function by taking one example 
at a time…

• Stochastic Optimization (like SGD)


•Step:
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Perceptron

Perceptron: Training Comparison

•Does this look like SGD with some loss function L?


                                                                       (if there is an error)

SGD

Hinge loss!
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Perceptron: Analysis

•Two aspects to analysis: fitting training data + generalization

•Mistake bound: 


• Hyperplane


• Margin (for a dataset S)
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Perceptron: Mistake Bound

•  Need some information about our data:


•“Diameter”: 


•  Mistake Bound Result: 

• The total # of mistakes on a linearly separable set S is at most
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Perceptron: Mistake Bound Interpretation

•Mistake Bound Result: 

• The total # of mistakes on a linearly separable set S is at most


•Scaling?


•Implications?

• Run over dataset S repeatedly until # mistakes doesn’t change


• If we keep running it, eventually we get perfect separation on a copy of S

Diameter: Controls our 
biggest step. 

Margin: Smaller 
means harder to find 
separator
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Break & Quiz
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Q1-1:  Select the correct option.

1. Both statements are true.


2. Both statements are false.


3. Statement A is true, Statement B is false.


4. Statement B is true, Statement A is false.

A. A perceptron is guaranteed to perfectly learn a given linearly separable dataset within a finite 

number of training steps. 


B. A single perceptron can compute the XOR function. 

21



Q1-1:  Select the correct option.

1. Both statements are true.


2. Both statements are false.


3. Statement A is true, Statement B is false.


4. Statement B is true, Statement A is false.

A. A perceptron is guaranteed to perfectly learn a given linearly separable dataset within a finite 

number of training steps. 


B. A single perceptron can compute the XOR function. 

22



Outline

•Review & Perceptron Algorithm

•Definition, Training, Loss Equivalent, Mistake Bound


•Neural Networks

•Introduction, Setup, Components, Activations 


•Training Neural Networks

•  SGD, Computing Gradients, Backpropagation

23



Multilayer Neural Network

•Input: two features from spectral analysis of a spoken sound

•Output: vowel sound occurring in the context “h__d”

figure from Huang  & Lippmann, NeurIPS 1988

input units

hidden units

output units
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Neural Network Decision Regions

Figure from Huang  & Lippmann, NeurIPS 1988
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Neural Network Components 

… …

…
… …

…

Hidden layer h1  Input 

First layer

 

Output layer

An -layer network (𝐿 + 1)
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Feature Encoding for NNs

•Nominal features usually a one hot encoding


•Ordinal features: use a thermometer encoding


•Real-valued features use individual input units (may want to 
scale/normalize them first though)

 precipitation = 0.68[ ]
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Output Layer: Examples

•Binary classification: 

• Corresponds to using logistic regression on last hidden layer.


•Multiclass classification: 

• where outputs usually provide inputs to softmax distribution. 

 h

𝑦

Output layer
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Output Layer: Examples

•Regression: 

• Linear units: no nonlinearity


•Multi-dimensional regression: 

• Linear units: no nonlinearity

 h

𝑦

Output layer

 h

𝑦

Output layer
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Hidden Layers

•Neuron takes weighted linear combination of the previous 
representation layer.

• Outputs a single scalar value.

• That output is then passed into a non-linear activation function.

…
…

  

30

𝑎𝑥
𝑟( ⋅ )

Typical activation functions: threshold, sigmoid, tanh, relu.
Can the activation function be linear? Yes but then the entire network is linear.



•Ex: 1 hidden layer, 1 output layer: depth 2


MLPs: Multilayer Perceptron
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•Ex: 1 hidden layer, 1 output layer: depth 2

MLPs: Multilayer Perceptron
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MLPs: Multilayer Perceptron

•Ex: 1 hidden layer, 1 output layer: depth 2

No activation function 
at output layer!
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Multiclass Classification Examples

•Protein classification (Kaggle challenge)

•ImageNet
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Multiclass Classification Output

•Create k output units

•Use softmax (just like logistic regression)
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Break & Quiz
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Q2-1:  Select the correct option.

1. Both statements are true.


2. Both statements are false.


3. Statement A is true, Statement B is false.


4. Statement B is true, Statement A is false.

A. The more hidden-layer units a Neural Network has, the better it can predict desired outputs 

for new inputs that it was not trained with.

B. A 3-layers Neural Network with 5 neurons in the input and hidden representations and 1 

neuron in the output has a total of 55 connections.
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Training Neural Networks

•Training the usual way. Pick a loss and optimize it.

•Example: 2 scalar weights

figure from Cho & Chow, Neurocomputing 1999
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Training Neural Networks

•Algorithm:

• Get

• Initialize weights

• Loop until stopping criteria met,


• For each training point


• Compute:


• Compute gradient:  


• Update weights: 


 	

Forward Pass

Backward Pass
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Computing Gradients
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Computing Gradients
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Computing Gradients
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Computing Gradients
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Computing Gradients
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Computing Gradients
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Computing Gradients
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Computing Gradients
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Computing Gradients: More Layers
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Computing Gradients: More Layers
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Computing Gradients: More Layers
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Computing Gradients: More Layers
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Backpropagation

•Now we can compute derivatives for particular neurons, but 
we want to automate this process


•Set up a computation graph and run on the graph
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Perceptron: Mistake Bound

•  Need some information about our data:


•“Diameter”: 


•  Mistake Bound Result: 

• The total # of mistakes on a linearly separable set S is at most
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Mistake Bound: Proof 1

•Let us prove the result.

• Intuitive idea we exploit: norm of weight vector <-> # mistakes


•Start with changes in weight norm

If mistake

Margin
Diameter
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Mistake Bound: Proof 2

•This is true for each mistake


•Let mt be # mistakes by t step. Start at w0 (norm 0). By wt
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Mistake Bound: Proof 3

•Now we’ll also lower bound norm

•Let w be a hyperplane that separates, with unit norm.


•But this is the margin for x(it), so: 

mistake

Norm 1

w classifies 
correctly

59



Mistake Bound: Proof 4

•So:


•Let’s look at our best unit norm solution: w*, i.e one with the 
maximum margin w


•From Cauchy-Schwartz


•Let’s set up a telescoping sum: 
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Mistake Bound: Proof 5

•Have:


•Combine:


•Note:

0 for no mistake,

Purple for mistake
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Mistake Bound: Proof 6

•So, 


•I.e., 


•Easy algebra gets us to 


•Result holds for any t!

✔
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Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, 
David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, 
Yingyu Liang, Volodymyr Kuleshov, Sharon Li 63


