CS 760: Machine Learning
Graphical Models

Kirthi Kandasamy

University of Wisconsin-Madison

March 27, 29, 2023
Announcements

• Lecture recordings for last 4 lectures out
 • (Small issue with last recording, use slides from the webpage to follow along)

• HW 5 due next Monday.
Outline

• **Probability Review**
 • Basics, joint probability, conditional probabilities, etc

• **Bayesian Networks**
 • Definition, examples, inference, learning

• **Undirected Graphical Models**
 • Definitions, MRFs, exponential families

• **Structure learning**
 • Chow-Liu Algorithm
Outline

• **Probability Review**
 • Basics, joint probability, conditional probabilities, etc

• **Bayesian Networks**
 • Definition, examples, inference, learning

• **Undirected Graphical Models**
 • Definitions, MRFs, exponential families

• **Structure learning**
 • Chow-Liu Algorithm
Basics: **Joint Distributions**

- Joint distribution of 2 random variables X and Y
 \[P(X = a, Y = b) \]
- Or more variables.
 \[P(X_1 = x_1, X_2 = x_2, \ldots, X_k = x_k) \]
Given a joint distribution

\[P(X = a, Y = b) \]

• Compute the distribution of just one variable:

\[P(X = a) = \sum_b P(X = a, Y = b) \]

• This is the “marginal” distribution.
Basics: **Marginal Probability**

\[
P(X = a) = \sum_b P(X = a, Y = b)
\]

<table>
<thead>
<tr>
<th></th>
<th>Sunny</th>
<th>Cloudy</th>
<th>Rainy</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>150/365</td>
<td>40/365</td>
<td>5/365</td>
</tr>
<tr>
<td>cold</td>
<td>50/365</td>
<td>60/365</td>
<td>60/365</td>
</tr>
</tbody>
</table>

\[
[P(\text{hot}), P(\text{cold})] = \left[\frac{195}{365}, \frac{170}{365}\right]
\]
Independence

• Independence for a set of events A_1, \ldots, A_k

$$P(A_{i_1} A_{i_2} \cdots A_{i_j}) = P(A_{i_1})P(A_{i_2}) \cdots P(A_{i_j})$$

for all the i_1, \ldots, i_j combinations

• Why useful? Dramatically reduces the complexity
• Collapses joint into product of marginals
 • Note sometimes we have only pair-wise, etc independence
Uncorrelatedness

• For random variables, uncorrelated means
 \[E[XY] = E[X]E[Y] \]

Note: weaker than independence.
 • Independence implies uncorrelated (easy to see)
 • If \(X, Y \) independent, functions are not correlated:

 \[E[f(X)f(Y)] = E[f(X)]E[f(Y)] \]
Conditional Probability

• When we know something,

\[
P(X = a | Y = b) = \frac{P(X = a, Y = b)}{P(Y = b)}
\]

• Conditional independence

\[
P(X, Y | Z) = P(X | Z)P(Y | Z)
\]
Chain Rule

• Apply repeatedly,

\[P(A_1, A_2, \ldots, A_n) = P(A_1)P(A_2|A_1)P(A_3|A_2, A_1) \ldots P(A_n|A_{n-1}, \ldots, A_1) \]

• Note: still big!
 • If some conditional independence, can factor!
 • Leads to probabilistic graphical models (this lecture)
Law of Total Probability

• Partition the sample space into disjoint $B_1, ..., B_k$
• Then,

$$P(A) = \sum_{i} P(A|B_i)P(B_i)$$
Bayesian Inference

• Bayes rule:

\[
P(H|E_1, E_2, \ldots, E_n) = \frac{P(E_1, \ldots, E_n|H)P(H)}{P(E_1, E_2, \ldots, E_n)} \]

• Under conditional independence

\[
P(H|E_1, E_2, \ldots, E_n) = \frac{P(E_1|H)P(E_2|H) \cdots P(E_n|H)P(H)}{P(E_1, E_2, \ldots, E_n)} \]
Random Vectors & Covariance

• Recall variance: \[\mathbb{E}[(X - \mathbb{E}[X])^2] \]

• For a **random vector**
 • Note: size \(d \times d \). All variables are centered

\[
\Sigma = \begin{bmatrix}
\mathbb{E}[(X_1 - \mathbb{E}[X_1])^2] & \cdots & [(X_1 - \mathbb{E}[X_1])(X_n - \mathbb{E}[X_n])] \\
\vdots & \ddots & \vdots \\
[(X_n - \mathbb{E}[X_n])(X_1 - \mathbb{E}[X_1])] & \cdots & \mathbb{E}[(X_n - \mathbb{E}[X_n])^2]
\end{bmatrix}
\]

Covariance

Diagonals: Variance
Break & Quiz
50% of emails are spam. Software has been applied to filter spam. A certain brand of software claims that it can detect 99% of spam emails, and the probability for a false positive (a non-spam email detected as spam) is 5%. Now if an email is detected as spam, then what is the probability that it is in fact a nonspam email?

A. 5/104
B. 95/100
C. 1/100
D. 1/2
50% of emails are spam. Software has been applied to filter spam. A certain brand of software claims that it can detect 99% of spam emails, and the probability for a false positive (a non-spam email detected as spam) is 5%. Now if an email is detected as spam, then what is the probability that it is in fact a nonspam email?

A. 5/104
B. 95/100
C. 1/100
D. 1/2
Outline

• **Probability Review**
 • Basics, joint probability, conditional probabilities, etc

• **Bayesian Networks**
 • Definition, examples, inference, learning

• **Undirected Graphical Models**
 • Definitions, MRFs, exponential families

• **Structure learning**
 • Chow-Liu Algorithm
Bayesian Networks Example

• Consider the following 5 binary random variables:
 \[B = \text{a burglary occurs at the house} \]
 \[E = \text{an earthquake occurs at the house} \]
 \[A = \text{the alarm goes off} \]
 \[J = \text{John calls to report the alarm} \]
 \[M = \text{Mary calls to report the alarm} \]

• Suppose the Burglary or Earthquake can trigger Alarm, and Alarm can trigger John’s call or Mary’s call

• Now we want to answer queries like what is \(P(B \mid M, J) \) ?
Bayesian Networks Example

• Set up a network that shows how random variables influence others:
Bayesian Networks Example

• Set up a network that shows how random variables influence others:

<table>
<thead>
<tr>
<th>$P(B)$</th>
<th>t</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.001</td>
<td>0.999</td>
</tr>
</tbody>
</table>
Bayesian Networks Example

• Set up a network that shows how random variables influence others:

\[P(B) \]
\begin{array}{cc}
 t & f \\
 0.001 & 0.999 \\
\end{array}

\[P(E) \]
\begin{array}{cc}
 t & f \\
 0.001 & 0.999 \\
\end{array}
Bayesian Networks Example

• Set up a network that shows how random variables influence others:

\[
P(B) = \begin{pmatrix}
 t & f \\
 0.001 & 0.999
\end{pmatrix}
\]

\[
P(E) = \begin{pmatrix}
 t & f \\
 0.001 & 0.999
\end{pmatrix}
\]

\[
P(A | B, E) = \begin{pmatrix}
 B & E & t & f \\
 t & t & 0.95 & 0.05 \\
 t & f & 0.94 & 0.06 \\
 f & t & 0.29 & 0.71 \\
 f & f & 0.001 & 0.999
\end{pmatrix}
\]
Bayesian Networks Example

• Set up a network that shows how random variables influence others:

\[
P(B) = \begin{array}{cc}
t & f \\ 0.001 & 0.999 \\
\end{array}
\]

\[
P(E) = \begin{array}{cc}
t & f \\ 0.001 & 0.999 \\
\end{array}
\]

\[
P(A | B, E) = \begin{array}{ccc}
& t & f \\
B & E & t & f \\
t & t & 0.95 & 0.05 \\
t & f & 0.94 & 0.06 \\
f & t & 0.29 & 0.71 \\
f & f & 0.001 & 0.999 \\
\end{array}
\]

\[
P(J | A) = \begin{array}{cc}
A & t & f \\
t & 0.9 & 0.1 \\
f & 0.05 & 0.95 \\
\end{array}
\]
Bayesian Networks Example

• Set up a network that shows how random variables influence others:

\[
P(B) \begin{bmatrix} t & f \\ 0.001 & 0.999 \end{bmatrix}
\]

\[
P(E) \begin{bmatrix} t & f \\ 0.001 & 0.999 \end{bmatrix}
\]

\[
P(A | B, E) \begin{bmatrix} B & E & t & f \\ t & t & 0.95 & 0.05 \\ t & f & 0.94 & 0.06 \\ f & t & 0.29 & 0.71 \\ f & f & 0.001 & 0.999 \end{bmatrix}
\]

\[
P(M | A) \begin{bmatrix} A & t & f \\ t & 0.7 & 0.3 \\ f & 0.01 & 0.99 \end{bmatrix}
\]
Bayesian Networks: Definition

• A BN consists of a **Directed Acyclic Graph (DAG)** and a set of **conditional probability distributions (CPD)**

• The DAG:
 • each node denotes a random variable
 • each edge from X to Y typically represents a causal link from X to Y
 • formally: each variable X is independent of its non-descendants given its parents

• **Each CPD: represents** $P(X \mid \text{Parents}(X))$

$$p(x_1, \ldots, x_d) = \prod_{v \in V} p(x_v \mid x_{\text{pa}(v)})$$
Bayesian Networks: Parameter Counting

- Parameter reduction: standard representation of the joint distribution for Alarm example has $2^5 - 1 = 31$ parameters
- the BN representation of this distribution has 10 parameters

$$P(B, E, A, J, M) = P(B) \times P(E) \times P(A | B, E) \times P(J | A) \times P(M | A)$$
Inference in Bayesian Networks

Given: values for some variables in the network (*evidence*), and a set of *query* variables

Do: compute the posterior distribution over the query variables

- Variables that are neither evidence variables nor query variables are *hidden* variables
- The BN representation is flexible enough that any set can be the evidence variables and any set can be the query variables
Inference by Enumeration

• Let \(a \) denote \(A = \text{true} \), and \(\neg a \) denote \(A = \text{false} \)

• Suppose we’re given the query: \(P(b \mid j, m) \)
 "probability the house is being burglarized given that John and Mary both called”

• From the graph structure we can first compute:

\[
P(b, j, m) = \sum_{e, \neg e, a, \neg a} P(b)P(E)P(A \mid b, E)P(j \mid A)P(m \mid A)
\]

sum over possible values for \(E \) and \(A \) variables \((e, \neg e, a, \neg a)\)
Inference by Enumeration

\[P(b, j, m) = \sum_{e,\neg e, a, \neg a} \sum_{e,\neg e, a, \neg a} P(b)P(E)P(A \mid b, E)P(j \mid A)P(m \mid A) \]

\[= P(b) \sum_{e,\neg e, a, \neg a} \sum_{e,\neg e, a, \neg a} P(E)P(A \mid b, E)P(j \mid A)P(m \mid A) \]

<table>
<thead>
<tr>
<th>(P(B))</th>
<th>(P(E))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(B)</th>
<th>(E)</th>
<th>(P(A))</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>0.95</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>0.94</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>0.29</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>0.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(A)</th>
<th>(P(J))</th>
<th>(A)</th>
<th>(P(M))</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>0.9</td>
<td>t</td>
<td>0.7</td>
</tr>
<tr>
<td>f</td>
<td>0.05</td>
<td>f</td>
<td>0.01</td>
</tr>
</tbody>
</table>

\[= 0.001 \times (0.001 \times 0.95 \times 0.9 \times 0.7 + e, a \\
0.001 \times 0.05 \times 0.05 \times 0.01 + e, \neg a \\
0.999 \times 0.94 \times 0.9 \times 0.7 + \neg e, a \\
0.999 \times 0.06 \times 0.05 \times 0.01) \neg e, \neg a \]
Inference by Enumeration

• Next do equivalent calculation for $P(\neg b, j, m)$ and determine $P(b \mid j, m)$

\[
P(b \mid j, m) = \frac{P(b, j, m)}{P(j, m)} = \frac{P(b, j, m)}{P(b, j, m) + P(\neg b, j, m)}
\]

So: exact method, but can be intractably hard.

• Efficient for small BNs
• Approximate inference sometimes available
Learning Bayes Nets

• **Problem 1 (parameter learning):** given a set of training instances, the graph structure of a BN

<table>
<thead>
<tr>
<th>B</th>
<th>E</th>
<th>A</th>
<th>J</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>f</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>t</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• **Goal:** infer the parameters of the CPDs
Learning Bayes Nets

• **Problem 2 (structure learning):** given a set of training instances

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>E</th>
<th>A</th>
<th>J</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>t</td>
<td></td>
</tr>
</tbody>
</table>

• **Goal:** infer the graph structure (and then possibly also the parameters of the CPDs)
Parameter Learning: MLE

• **Goal:** infer the parameters of the CPDs
• As usual, can use MLE

\[
L(\theta : D, G) = P(D | G, \theta) = \prod_{d \in D} P(x_1^{(d)}, x_2^{(d)}, ..., x_n^{(d)}) \\
= \prod_{d \in D} \prod_{i} P(x_i^{(d)} | \text{Parents}(x_i^{(d)})) \\
= \prod_{i} \left(\prod_{d \in D} P(x_i^{(d)} | \text{Parents}(x_i^{(d)})) \right)
\]

independent parameter learning problem for each CPD
Parameter Learning: MLE Example

• **Goal:** infer the parameters of the CPDs
• Consider estimating the CPD parameters for B and J in the alarm network given the following data set

<table>
<thead>
<tr>
<th>B</th>
<th>E</th>
<th>A</th>
<th>J</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>f</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
</tbody>
</table>

$p(b) = \frac{1}{8} = 0.125$

$p(\neg b) = \frac{7}{8} = 0.875$

$p(j | a) = \frac{3}{4} = 0.75$

$p(\neg j | a) = \frac{1}{4} = 0.25$

$p(j | \neg a) = \frac{2}{4} = 0.5$

$p(\neg j | \neg a) = \frac{2}{4} = 0.5$
Parameter Learning: MLE Example

• **Goal**: infer the parameters of the CPDs

• Consider estimating the CPD parameters for B and J in the alarm network given the following data set

<table>
<thead>
<tr>
<th>B</th>
<th>E</th>
<th>A</th>
<th>J</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>f</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>t</td>
<td>f</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
</tbody>
</table>

$P(b) = \frac{0}{8} = 0$

$P(\neg b) = \frac{8}{8} = 1$

do we really want to set this to 0?
Parameter Learning: Laplace Smoothing

• Instead of estimating parameters strictly from the data, we could start with some prior belief for each
• For example, we could use Laplace estimates

\[P(X = x) = \frac{n_x + 1}{\sum_{v \in \text{Values}(X)} (n_v + 1)} \]

where \(n_v \) represents the number of occurrences of value \(v \)
• Recall: we did this for Naïve Bayes
Break & Quiz
Q2-1: Consider a case with 8 binary random variables, how many parameters does a BN with the following graph structure have?

1. 12
2. 14
3. 16
4. 26
Q2-1: Consider a case with 8 binary random variables, how many parameters does a BN with the following graph structure have?

1. 12
2. 14
3. 16
4. 26

So we have 16 parameters in total.
Outline

- **Probability Review**
 - Basics, joint probability, conditional probabilities, etc

- **Bayesian Networks**
 - Definition, examples, inference, learning

- **Undirected Graphical Models**
 - Definitions, MRFs, exponential families

- **Structure learning**
 - Chow-Liu Algorithm
Undirected Graphical Models

• Still want to encode conditional independence, but not in an causal way (ie, no parents, direction)
 • Why? Allows for modeling other distributions that Bayes nets can’t, allows for other algorithms

• Graph directly encodes a type of conditional independence. If nodes i,j are not neighbors,

\[X_i \perp X_j | X_{V \setminus \{i,j\}} \]
Markov Random Fields

• A particularly popular kind of undirected model. As above, can describe in terms of:
 • 1. Conditional independence:
 \[X_i \perp X_j \mid X_{V \setminus \{i, j\}} \]
 • 2. Factorization. (Clique: maximal fully-connected subgraphs)
 • Bayes nets: factorize over CPTs with \textit{parents}; MRFs: factorize over \textit{cliques}

\[
P(X) = \frac{1}{Z} \prod_{C \in \text{cliques}(G)} \phi_C(X_C)
\]
Ising Models

- Ising models: a particular kind of MRF usually written in exponential form
 - Popular in statistical physics
 - **Idea**: pairwise interactions (biggest cliques of size 2)

\[
P(x_1, \ldots, x_d) = \frac{1}{Z} \exp\left(\sum_{(i,j) \in E} \theta_{ij} x_i x_j \right)
\]

- **Challenges**:
 - Compute partition function
 - Perform inference/marginalization

Khudier and Fawaz
Outline

• **Probability Review**
 • Basics, joint probability, conditional probabilities, etc

• **Bayesian Networks**
 • Definition, examples, inference, learning

• **Undirected Graphical Models**
 • Definitions, MRFs, exponential families

• **Structure learning**
 • Chow-Liu Algorithm
Structure Learning

• Generally a hard problem, many approaches.
 • Exponentially (or worse) many structures in # variables
 • Can either use heuristics or restrict to some tractable subset of networks. Ex: trees

• Chow-Liu Algorithm
 • Learns a BN with a tree structure that maximizes the likelihood of the training data

1. Compute weight $I(X_i, X_j)$ of each possible edge (X_i, X_j)
2. Find maximum weight spanning tree (MST)
Chow-Liu: Computing weights

- Use mutual information to calculate edge weights

\[I(X,Y) = \sum_{x \in \text{values}(X)} \sum_{y \in \text{values}(Y)} P(x,y) \log_2 \frac{P(x,y)}{P(x)P(y)} \]

- The probabilities are calculated empirically using data
Chow-Liu: Finding MST

• Many algorithms for calculating MST (e.g. Kruskal’s, Prim’s)

• Kruskal’s algorithm

\begin{verbatim}
given: graph with vertices V and edges E

E_{new} \leftarrow \{ \}

for each \((u, v)\) in \(E\) ordered by weight (from high to low)
{
 remove \((u, v)\) from \(E\)
 if adding \((u, v)\) to \(E_{new}\) does not create a cycle
 add \((u, v)\) to \(E_{new}\)
}

return \(V\) and \(E_{new}\) which represent an MST
\end{verbatim}
Chow-Liu: Example

- First, calculate empirical mutual information for each pair and calculate edge weights.
- Graph is usually fully connected (using a non-complete graph for clarity)
Chow-Liu: Example (cont’d)

i.

```
A 1/7 1/8 1/5
B 1/9 1/15 1/7 1/5
D 1/6 1/8 1/9
F 1/11
```

ii.

```
A 1/7 1/8 1/5
B 1/9 1/15 1/7 1/5
D 1/6 1/8 1/9
F 1/11
```

iii.

```
A 1/7 1/8 1/5
B 1/9 1/15 1/7 1/5
D 1/6 1/8 1/9
F 1/11
```

iv.

```
A 1/7 1/8 1/5
B 1/9 1/15 1/7 1/5
D 1/6 1/8 1/9
F 1/11
```
Chow-Liu: Example (cont’d)

v.

vi.
Chow-Liu Algorithm

1. Finding tree structures is a ‘second order’ approximation
 • First order: product of marginals
 \[P(X_1, \ldots, X_n) = \prod_{i=1}^{n} P(X_i) \]
 • Second order: allow conditioning on one variable
 \[P(X_1, \ldots, X_n) = P(X_1) \prod_{i=2}^{n} P(X_i|X_{i-1}) \]

2. To assign directions in a Bayes’ network, pick a root and making everything directed from root (may require domain expertise)
Thanks Everyone!

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, Pedro Domingos, Jerry Zhu, Yingyu Liang, Volodymyr Kuleshov, Fei-Fei Li, Justin Johnson, Serena Yeung, Pieter Abbeel, Peter Chen, Jonathan Ho, Aravind Srinivas.