Training neural networks

Use existing DL libraries (PyTorch, Tensorflow etc.)
- Not worth implementing backprop from scratch

First step: build a simple pipeline
• Set up data, model training, evaluation loop

• Overfit on one batch (or even a single data point)
 • Goal: see that we can get near-zero loss, catch any bugs

• Check that training loss reduces when you train.
Tips & Tricks: Data

• Shuffle the training data
 • In training, usually don’t select random examples, but rather go through the dataset for each epoch
 • Shuffle to avoid relationships between consecutive points

• Pay attention to your data
 • Missing values, NANs, default values etc
Tips & Tricks: Initialization

Usually want to pick small random values to initialize weights
- Don’t want the same value: symmetry means every weights has same gradient, hard to break out of

- Multiple methods: various rules of thumb
 - Sample from a normal distribution
 - Note that #inputs affects the variance... grows as d^2 for d inputs. Helps to normalize, when initializing.
Tips & Tricks: Learning Rate Schedule

• Simple ways:
 • Constant
 • Divide by a factor every fixed number of epochs (annealing)
 • Look at training/validation loss and reduce on plateau

• Also simple: use an optimizer like Adam that internally tracks learning rates

• Lots of variations available
Tips & Tricks: Regularizing

• Best thing to do: get more data!
 • Not always possible or cheap, but start here.

• Augmentation
 • But make sure you understand the transformations

• Use other strategies: dropout, weight decay, early stopping
 • Check each strategy one-at-a-time
Tips & Tricks: Hyperparameter Tuning

Many solutions:

- **Grid Search**: pick candidate sets S_1, \ldots, S_k for each hyperparameter, search over every combination in $S_1 \times S_2 \times \ldots \times S_k$

- **Random Search**

- **Advanced approaches**: Bayesian Optimization, Hyperband etc.
Checkpoint your models (save weights) regularly!
• Training can crash

Log information from training process
• Keep track of train / test losses, time elapsed, current training settings. Log regularly.
• Can use this for early stopping as well.
Tips & Tricks: Monitoring & Logging

- Log information from training process
- Use software packages
- Also have built-in visualization
- Example: TensorBoard
Finally,

- You don’t always have to use the newest fanciest ML model.

- Sometimes simple models work well (esp in low data regimes)
 - E.g: Simple regression models with handcrafted features, kernel density estimation
 - Complex models may require expertise to get to work well.
 - Easier to interpret, incorporate domain expertise, and quantify uncertainty

- Incorporate domain expertise