

CS 540 Introduction to Artificial Intelligence **Logic**

University of Wisconsin-Madison

Spring 2023

Announcements

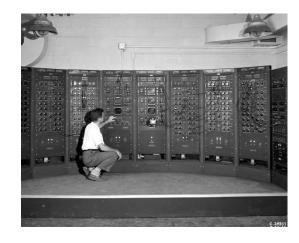
- Homeworks:
 - Good luck on HW2!
- Class roadmap:

Thursday, Jan 26	Probability	\neg \neg
Tuesday, Jan. 31	Linear Algebra and PCA	undan
Thursday, Feb. 2	PCA, Statistics and Math Review	undamentals
Tuesday, Feb. 6	Stats Review, Introduction to Logic	.
Thursday, Feb. 8	Natural Language Processing	

Logic & Al

Why are we studying logic?

- Traditional approach to AI ('50s-'80s)
 - "Symbolic Al"
 - The Logic Theorist 1956
 - Proved a bunch of theorems!
- Logic also the language of:
 - Knowledge rep., databases, etc.



Symbolic Techniques in Al

Lots of systems based on symbolic approach:

- Ex: expert systems, planning, more
- Playing great chess

Less popular recently!

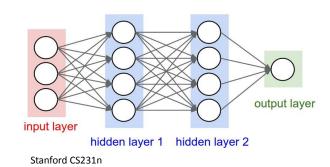
J. Gardner

Symbolic vs Connectionist

Rival approach: connectionist

- Probabilistic models
- Neural networks
- Extremely popular last 20

years



Symbolic Apple

Origin structure kind

apple-tree body support stem fruit

shape size color taste

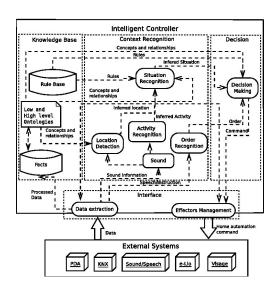
round hand red green apple

M. Minsky

Symbolic vs Connectionist

Analogy: Logic versus probability

- Which is better?
- Future: combination;
 best-of-both-worlds.
 - "Neurosymbolic AI"
 - Example: Markov Logic Networks



Outline

- Introduction to logic
 - Arguments, validity, soundness
- Propositional logic
 - Sentences, semantics, inference
- First order logic (FOL)
 - Predicates, objects, formulas, quantifiers

Basic Logic

- Arguments, premises, conclusions
 - Argument: a set of sentences (premises) + a sentence (a conclusion).
 - Validity: argument is valid iff it's necessary that if all premises are true, the conclusion is true.
 - Soundness: argument is sound iff valid & premises true.
 - Entailment: when argument is valid, premises entail conclusion.

Propositional Logic Basics

Logic Vocabulary:

- Sentences, symbols, connectives, parentheses
 - Symbols: P, Q, R, ... (atomic sentences)
 - Connectives:

```
∧ and [conjunction]
∨ or [disjunction]
⇒ implies [implication]
⇔ is equivalent [biconditional]
¬ not [negation]
```

Literal: P or negation ¬P

Propositional Logic Basics

Examples:

- (P **V** Q) ⇒ S
 - "If it is cold or it is raining, then I need a jacket"
- $Q \Rightarrow P$
 - "If it is raining, then it is cold"
- ¬R
 - "It is not hot"

Propositional Logic Basics

Several rules in place

- Precedence: \neg , \land , \lor , \Rightarrow , \Leftrightarrow
- Use parentheses when needed
- Sentences: **well-formed** or not well-formed:
 - P ⇒ Q ⇒ S not well-formed (not associative!)

```
including Header Files

#include<stdio.h>
#include<conio.h>
void main() ← main() Function Must Be There

{

clrscr();
printf("Welcome to DataFlair");
Single Line
Comment getch(); ← Semicolon After Each Statement

};

Program Enclosed Within Curly Braces
```

Sentences & Semantics

- Think of symbols as defined by user
- Sentences: built up from symbols with connectives
 - Interpretation: assigning True / False to symbols
 - **Semantics**: interpretations for which sentence evaluates to True
 - **Model**: (of a set of sentences) interpretation for which all sentences are True

Evaluating a Sentence

• Example:

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Note:

- If P is false, P ⇒ Q is true regardless of Q ("5 is even implies 6 is odd" is True!)
- Causality unneeded: "5 is odd implies the Sun is a star" is True!)

Evaluating a Sentence: Truth Table

• Ex:

Р	Q	R	¬ P	Q∧R	¬P V Q∧R	¬P V Q∧R⇒Q
0	0	0	1	0	1	0
0	0	1	1	0	1	0
0	1	0	1	0	1	1
0	1	1	1	1	1	1
1	0	0	0	0	0	1
1	0	1	0	0	0	1
1	1	0	0	0	0	1
1	1	1	0	1	1	1

Satisfiable

 There exists some interpretation where the sentence is true.

Q 1.1: Suppose P is false, Q is true, and R is true. Does this assignment satisfy

- (i) $\neg(\neg p \rightarrow \neg q) \land r$
- (ii) $(\neg p \lor \neg q) \rightarrow (p \lor \neg r)$
 - A. Both
 - B. Neither
 - C. Just (i)
 - D. Just (ii)

Q 1.1: Suppose P is false, Q is true, and R is true. Does this assignment satisfy

- (i) $\neg(\neg p \rightarrow \neg q) \land r$
- (ii) $(\neg p \lor \neg q) \rightarrow (p \lor \neg r)$
 - A. Both
 - B. Neither
 - C. Just (i)
 - D. Just (ii)

Q 1.1: Suppose P is false, Q is true, and R is true. Does this assignment satisfy

(i)
$$\neg(\neg p \rightarrow \neg q) \land r$$

(ii)
$$(\neg p \lor \neg q) \rightarrow (p \lor \neg r)$$

- A. Both
- B. Neither
- C. Just (i)
- D. Just (ii)

Plug interpretation into each sentence.

For (i): $(\neg p \rightarrow \neg q)$ will be false so \neg $(\neg p \rightarrow \neg q)$ will be true and r is true by assignment.

For (ii): $(\neg p \lor \neg q)$ is true and $(p \lor \neg r)$ is false which makes the implication

Q 1.2: Let A = "Aldo is Italian" and B = "Bob is English". Formalize "Aldo is Italian or if Aldo isn't Italian then Bob is English".

- a. A \vee ($\neg A \rightarrow B$)
- b. A \(\begin{array}{c} B \end{array} \)
- c. A \vee (A \rightarrow B)
- d. $A \rightarrow B$

Q 1.2: Let A = "Aldo is Italian" and B = "Bob is English". Formalize "Aldo is Italian or if Aldo isn't Italian then Bob is English".

- a. A \vee ($\neg A \rightarrow B$)
- b. A V B (equivalent!)
- c. A \vee (A \rightarrow B)
- d. $A \rightarrow B$

Q 1.2: Let A = "Aldo is Italian" and B = "Bob is English". Formalize "Aldo is Italian or if Aldo isn't Italian then Bob is English".

- a. A \vee ($\neg A \rightarrow B$)
- b. A V B (equivalent!)
- c. A \vee (A \rightarrow B)
- d. $A \rightarrow B$

Answer a. is the exact translation of the English sentence into a logic sentence. You can see that answer b. is also correct by writing out the truth table for all answers and seeing that a and b have the same truth tables.

Or you can use the fact that $\neg A \rightarrow B = A$ $\lor B$ and that $A \lor A \lor B = A \lor B$ to prove equivalence.

Q 1.3: How many different assignments can there be to $(x_1 \wedge y_1) \vee (x_2 \wedge y_2) \vee ... \vee (x_n \wedge y_n)$

- A. 2
- B. 2ⁿ
- C. 2^{2n}
- D. 2n

Q 1.3: How many different assignments can there be to $(x_1 \wedge y_1) \vee (x_2 \wedge y_2) \vee ... \vee (x_n \wedge y_n)$

- A. 2
- B. 2ⁿ
- C. 2^{2n}
- D. 2n

Q 1.3: How many different assignments can there be to $(x_1 \wedge y_1) \vee (x_2 \wedge y_2) \vee ... \vee (x_n \wedge y_n)$

- A. 2
- B. 2ⁿ
- C. 2^{2n}
- D. 2n

 2^k assignments for k variables. We have n variables of the form x_i , y_i so k = 2n.

Knowledge Bases

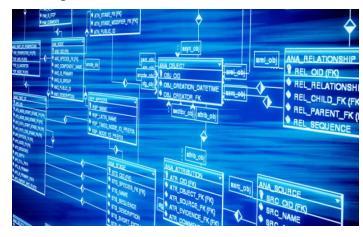
Knowledge Base (KB): A set of sentences

$${A_1, A_2, ... A_n}.$$

- Like a long sentence, connect with conjunction:
- KB is $A_1 \wedge A_2 \wedge \cdots \wedge A_n$.

Model of a KB: interpretations where all sentences are True

Goal: inference to discover new sentences



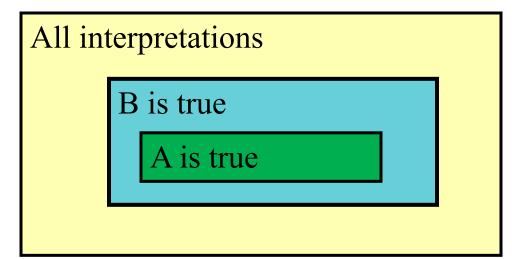
Entailment

Entailment: a sentence logically follows from others

• Like from a KB. Write A ⊨ B

A ⊨ B iff in every interpretation where A is true, B is

also true

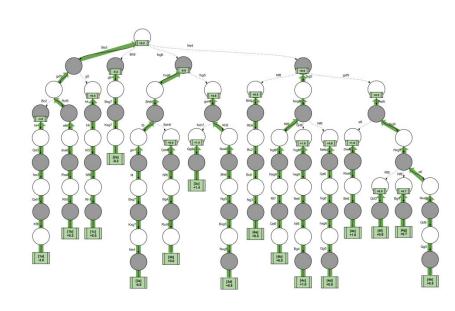


Inference

- Given a set of sentences (a KB), logical inference creates new sentences
 - Compare to prob. inference!

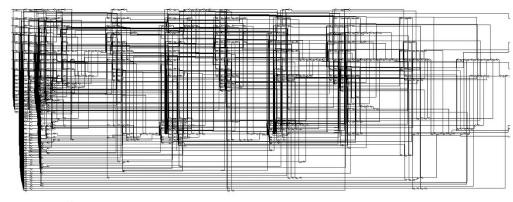
Challenges:

- Soundness
- Completeness
- Efficiency



Methods of Inference: 1. Enumeration

- Enumerate all interpretations; look at the truth table
 - "Model checking"
- Downside: 2ⁿ interpretations for n symbols



S. Leadley

Methods of Inference: 2. Using Rules

- Modus Ponens: (A ⇒ B, A) ⊨ B
- And-elimination
- Many other rules
 - Commutativity, associativity, de Morgan's laws, distribution for conjunction/disjunction

Logical equivalences

You can use these equivalences to modify sentences.

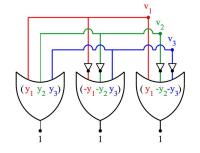
Methods of Inference: 3. Resolution

- Convert to special form and use a single rule
- Conjunctive Normal Form (CNF)

$$(\neg A \lor B \lor C) \land (\neg B \lor A) \land (\neg C \lor A)$$
a clause

Conjunction of clauses; each clause disjunction of literals

Simple rules for converting to CNF



Conjunctive Normal Form (CNF)

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$$

- Replace all
 using biconditional elimination
- Replace all → using implication elimination
- Move all negations inward using -double-negation elimination -de Morgan's rule
- Apply distributivity of ∨ over ∧

Convert example sentence into CNF

$$\begin{array}{l} \mathsf{B}_{1,1} \Leftrightarrow (\mathsf{P}_{1,2} \vee \mathsf{P}_{2,1}) & \text{starting sentence} \\ (\mathsf{B}_{1,1} \Rightarrow (\mathsf{P}_{1,2} \vee \mathsf{P}_{2,1})) \wedge ((\mathsf{P}_{1,2} \vee \mathsf{P}_{2,1}) \Rightarrow \mathsf{B}_{1,1}) \\ & \text{biconditional elimination} \\ (\neg \mathsf{B}_{1,1} \vee \mathsf{P}_{1,2} \vee \mathsf{P}_{2,1}) \wedge (\neg (\mathsf{P}_{1,2} \vee \mathsf{P}_{2,1}) \vee \mathsf{B}_{1,1}) \\ & \text{implication elimination} \\ (\neg \mathsf{B}_{1,1} \vee \mathsf{P}_{1,2} \vee \mathsf{P}_{2,1}) \wedge ((\neg \mathsf{P}_{1,2} \wedge \neg \mathsf{P}_{2,1}) \vee \mathsf{B}_{1,1}) \\ & \text{move negations inward} \\ (\neg \mathsf{B}_{1,1} \vee \mathsf{P}_{1,2} \vee \mathsf{P}_{2,1}) \wedge (\neg \mathsf{P}_{1,2} \vee \mathsf{B}_{1,1}) \wedge (\neg \mathsf{P}_{2,1} \vee \mathsf{B}_{1,1}) \\ & \text{distribute} \vee \text{over} \wedge \end{array}$$

Resolution Steps

- Given KB and β (query)
- Add $\neg \beta$ to KB, show the set of satisfying interpretations is empty (implies $\neg \beta$ is False. Proof by contradiction)
- Everything needs to be in CNF
- Example KB:
 - $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$
 - $\neg B_{1,1}$
- Example query: ¬P_{1,2}

Resolution Preprocessing

• Add $\neg \beta$ to KB, convert to CNF:

a1:
$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1})$$

a2: $(\neg P_{1,2} \lor B_{1,1})$
a3: $(\neg P_{2,1} \lor B_{1,1})$
b: $\neg B_{1,1}$
c: $P_{1,2} \longleftrightarrow Query$

Want to reach goal: empty

Resolution

 Take any two clauses where one contains some symbol, and the other contains its complement (negative)

$$P \lor Q \lor R \qquad \neg Q \lor S \lor T$$

 Merge (resolve) them, throw away the symbol and its complement

- If two clauses resolve and there's no symbol left, you have reached *empty* (False). KB $|=\beta|$
- If no new clauses can be added, KB does not entail $\boldsymbol{\beta}$

Resolution Example

a1:
$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1})$$

a2: $(\neg P_{1,2} \lor B_{1,1})$
a3: $(\neg P_{2,1} \lor B_{1,1})$
b: $\neg B_{1,1}$
c: $P_{1,2}$

Resolution Example a1: $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1})$

Step 1: resolve a2, c: $B_{1,1}$

a2: $(\neg P_{1,2} \lor B_{1,1})$

a3:
$$(\neg P_{2,1} \lor B_{1,1})$$

b: $\neg B_{1,1}$
c: $P_{1,2}$

Step 2: resolve above (B_{1 1}) and b: *empty*

Q 2.1: Which has more rows: a truth table on *n* symbols, or a joint distribution table on *n* binary random variables?

- A. Truth table
- B. Distribution
- C. Same size
- D. It depends

Q 2.1: Which has more rows: a truth table on *n* symbols, or a joint distribution table on *n* binary random variables?

- A. Truth table
- B. Distribution
- C. Same size
- D. It depends

Q 2.1: Which has more rows: a truth table on *n* symbols, or a joint distribution table on *n* binary random variables?

- A. Truth table
- B. Distribution
- C. Same size
- D. It depends

Both must specify a value for every possible set of variables. Truth tables specify a value in {0,1} and joint distribution tables specify a probability value in the range [0,1].

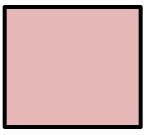
First Order Logic (FOL)

Propositional logic has some limitations

- Ex: how to say "all squares have four sides"
- No context, hard to generalize; express facts

FOL is a more expressive logic; works over

• Facts, Objects, Relations, Functions



First Order Logic Syntax

- Term: an object in the world
 - Constant: Alice, 2, Madison, Green, ...
 - **Variables**: x, y, a, b, c, ...
 - Function(term₁, ..., term_n)
 - Sqrt(9), Distance(Madison, Chicago)
 - Maps one or more objects to another object
 - Can refer to an unnamed object: LeftLeg(John)
 - Represents a user defined functional relation
- A ground term is a term without variables.
 - Constants or functions of constants.

FOL Syntax

- Atom: smallest T/F expression
 - Predicate(term₁, ..., term_n)
 - Teacher(Jerry, you), Bigger(sqrt(2), x)
 - Convention: read "Jerry (is)Teacher(of) you"
 - Maps one or more objects to a truth value
 - Represents a user defined relation
 - term₁ = term₂
 - Radius(Earth)=6400km, 1=2
 - Represents the equality relation when two terms refer to the same object.

FOL Syntax

- **Sentence**: T/F expression
 - Atom
 - Complex sentence using connectives: ∧ V ¬ ⇒ ↔
 - Less(x,22) ∧ Less(y,33)
 - Complex sentence using quantifiers **∀**, **∃**
- Sentences are evaluated under an interpretation
 - Which objects are referred to by constant symbols
 - Which objects are referred to by function symbols
 - What subsets defines the predicates

FOL Quantifiers

- Universal quantifier: ∀
- Sentence is true **for all** values of x in the domain of variable x.

- Main connective typically is ⇒
 - Forms if-then rules
 - "all humans are mammals"

```
\forall x \text{ human}(x) \Rightarrow \text{mammal}(x)
```

Means if x is a human, then x is a mammal

FOL Quantifiers

- Existential quantifier: **3**
- Sentence is true **for some** value of x in the domain of variable x.

- Main connective typically is A
 - "some humans are male"
 - $\exists x \text{ human}(x) \land \text{male}(x)$
 - Means there is an x who is a human and is a male

Q 2.1: How many entries does a truth table have for a FOL sentence with k variables where each variable can take on n values?

- A. Truth tables are not applicable to FOL.
- B. 2^k
- C. n^k
- D. It depends

Q 2.1: How many entries does a truth table have for a FOL sentence with k variables where each variable can take on n values?

- A. Truth tables are not applicable to FOL.
- B. 2^k
- C. n^k
- D. It depends

Q 2.1: How many entries does a truth table have for a FOL sentence with k variables where each variable can take on n values?

- A. Truth tables are not applicable to FOL.
- B. 2^k
- C. n^k
- D. It depends

Must have one entry for every possible assignment of values to variables. That number is (C).