

CS 540 Introduction to Artificial Intelligence Logic

University of Wisconsin-Madison

Spring 2023

Announcements

- Homeworks:
- Good luck on HW2!
- Class roadmap:

Thursday, Jan 26	Probability			
Tuesday, Jan. 31	Linear Algebra and			
PCA		$	$	PCA, Statistics and
:---				
Math Review	,	Stats Review,		
:---				
Introduction to Logic	,			

Logic \& AI

Why are we studying logic?

- Traditional approach to AI ('50s-'80s)
- "Symbolic Al"
- The Logic Theorist - 1956
- Proved a bunch of theorems!
- Logic also the language of:
- Knowledge rep., databases, etc.

Symbolic Techniques in AI

Lots of systems based on symbolic approach:

- Ex: expert systems, planning, more
- Playing great chess
- Less popular recently!

Symbolic vs Connectionist

Rival approach: connectionist

- Probabilistic models
- Neural networks

- Extremely popular last 20 years

Symbolic vs Connectionist

Analogy: Logic versus probability

- Which is better?
- Future: combination; best-of-both-worlds.
- "Neurosymbolic AI"
- Example: Markov Logic Networks

Outline

- Introduction to logic
- Arguments, validity, soundness
- Propositional logic
- Sentences, semantics, inference
- First order logic (FOL)
- Predicates, objects, formulas, quantifiers

BEGRIFPSSCHRIPT,

DES REINEN DENKENS

Ft comice rame
of tornice rume

HatLE + /a
verus vox Leve maxt

Basic Logic

- Arguments, premises, conclusions
- Argument: a set of sentences (premises) + a sentence (a conclusion).
- Validity: argument is valid iff it's necessary that if all premises are true, the conclusion is true.
- Soundness: argument is sound iff valid \& premises true.
- Entailment: when argument is valid, premises entail conclusion.

Propositional Logic Basics

Logic Vocabulary:

- Sentences, symbols, connectives, parentheses
- Symbols: P, Q, R, ... (atomic sentences)
- Connectives:

$\hat{\wedge}$ and	[conjunction]
\checkmark or	[disjunction]
\Rightarrow implies	[implication]
\Leftrightarrow is equivalen	[bicondition
\rightarrow not	[negation]

- Literal: P or negation $\neg P$

Propositional Logic Basics

Examples:

- $(P \vee Q) \Rightarrow S$
- "If it is cold or it is raining, then I need a jacket"
- $Q \Rightarrow P$
- "If it is raining, then it is cold"
- \sim R
- "It is not hot"

Propositional Logic Basics

Several rules in place

- Precedence: $\neg, \wedge, \vee, \Rightarrow, \Leftrightarrow$
- Use parentheses when needed
- Sentences: well-formed or not well-formed:
$-P \Rightarrow Q \Rightarrow S$ not well-formed (not associative!)

Sentences \& Semantics

- Think of symbols as defined by user
- Sentences: built up from symbols with connectives
- Interpretation: assigning True / False to symbols
- Semantics: interpretations for which sentence evaluates to True
- Model: (of a set of sentences) interpretation for which all sentences are True

Evaluating a Sentence

- Example:

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

- Note:
- If P is false, $P \Rightarrow Q$ is true regardless of Q (" 5 is even implies 6 is odd" is True!)
- Causality unneeded: " 5 is odd implies the Sun is a star" is True!)

Evaluating a Sentence: Truth Table

- Ex:

P	Q	R	$\neg \mathrm{P}$	$\mathrm{Q} \wedge \mathrm{R}$	$\neg \mathrm{PVQ} \mathbf{\wedge} \mathrm{R}$	$\neg \mathrm{P} \vee \mathrm{Q} \wedge \mathrm{R} \Rightarrow \mathrm{Q}$
0	0	0	1	0	1	0
0	0	1	1	0	1	0
0	1	0	1	0	1	1
0	1	1	1	1	1	1
1	0	0	0	0	0	1
1	0	1	0	0	0	1
1	1	0	0	0	0	1
1	1	1	0	1	1	1

- Satisfiable
- There exists some interpretation where the sentence is true.

Break \& Quiz

Q 1.1: Suppose P is false, Q is true, and R is true. Does this assignment satisfy
(i) $\quad \neg(\neg p \rightarrow \neg q) \wedge r$
(ii) $\quad(\neg p \vee \neg q) \rightarrow(p \vee \neg r)$

- A. Both
- B. Neither
- C. Just (i)
- D. Just (ii)

Break \& Quiz

Q 1.1: Suppose P is false, Q is true, and R is true. Does this assignment satisfy
(i) $\quad \neg(\neg p \rightarrow \neg q) \wedge r$
(ii) $\quad(\neg p \vee \neg q) \rightarrow(p \vee \neg r)$

- A. Both
- B. Neither
- C. Just (i)
- D. Just (ii)

Break \& Quiz

Q 1.1: Suppose P is false, Q is true, and R is true. Does this assignment satisfy
(i) $\quad \neg(\neg p \rightarrow \neg q) \wedge r$
(ii) $\quad(\neg p \vee \neg q) \rightarrow(p \vee \neg r)$

- A. Both
- B. Neither
- C. Just (i)
- D. Just (ii)

Plug interpretation into each sentence.

For (i): $(\neg p \rightarrow \neg q)$ will be false so \neg $(\neg p \rightarrow \neg q)$ will be true and r is true by assignment.

For (ii): $(\neg p \vee \neg q)$ is true and ($p \vee$
\neg r)
is false which makes the implication

Break \& Quiz

Q 1.2: Let $\mathrm{A}=$ "Aldo is Italian" and $\mathrm{B}=$ " Bob is English". Formalize "Aldo is Italian or if Aldo isn't Italian then Bob is English".

- a. $A \vee(\neg A \rightarrow B)$
-b. $A \vee B$
- c. $A \vee(A \rightarrow B)$
- d. $A \rightarrow B$

Break \& Quiz

Q 1.2: Let $A=$ "Aldo is Italian" and $B=$ " $B o b$ is English". Formalize "Aldo is Italian or if Aldo isn't Italian then Bob is English".

- a. $\mathrm{A} \vee(\neg \mathrm{A} \rightarrow \mathrm{B})$
- b. $A \vee B$ (equivalent!)
- c. $A \vee(A \rightarrow B)$
- d. $A \rightarrow B$

Break \& Quiz

Q 1.2: Let $A=" A l d o$ is Italian" and $B=" B o b$ is English". Formalize "Aldo is Italian or if Aldo isn't Italian then Bob is English".

- a. $\mathrm{A} V(\neg \mathrm{~A} \rightarrow \mathrm{~B})$
- b. $\mathrm{A} V \mathrm{~B}$ (equivalent!)
- c. $A \vee(A \rightarrow B)$
- d. $A \rightarrow B$

Answer a. is the exact translation of the English sentence into a logic sentence. You can see that answer b. is also correct by writing out the truth table for all answers and seeing that a and b have the same truth tables.

Or you can use the fact that $\neg A \rightarrow B=A$ $\vee B$ and that $A \vee A \vee B=A \vee B$ to prove equivalence.

Break \& Quiz

Q 1.3: How many different assignments can there be to

$$
\left(x_{1} \wedge y_{1}\right) \vee\left(x_{2} \wedge y_{2}\right) \vee \ldots \vee\left(x_{n} \wedge y_{n}\right)
$$

- A. 2
- B. 2^{n}
- C. $2^{2 n}$
- D. 2 n

Break \& Quiz

Q 1.3: How many different assignments can there be to

$$
\left(x_{1} \wedge y_{1}\right) \vee\left(x_{2} \wedge y_{2}\right) \vee \ldots \vee\left(x_{n} \wedge y_{n}\right)
$$

- A. 2
- B. 2^{n}
-C. $2^{2 n}$
- D. 2 n

Break \& Quiz

Q 1.3: How many different assignments can there be to

$$
\left(x_{1} \wedge y_{1}\right) \vee\left(x_{2} \wedge y_{2}\right) \vee \ldots \vee\left(x_{n} \wedge y_{n}\right)
$$

-A. 2

- B. 2^{n}
-C. $2^{2 n}$
- D. 2 n
2^{k} assignments for k variables. We have n variables of the form x_{i}, y_{i} so $\mathrm{k}=2 \mathrm{n}$.

Knowledge Bases

* Knowledge Base (KB): A set of sentences
$\left\{A_{1}, A_{2}, \ldots A_{n}\right\}$.
- Like a long sentence, connect with conjunction:
-KB is $A_{1} \wedge A_{2} \wedge \cdots \wedge A_{n}$.
Model of a KB: interpretations where all sentences are True

Goal: inference to discover new sentences

Entailment

Entailment: a sentence logically follows from others

- Like from a KB. Write $A \vDash B$
- $A \vDash B$ iff in every interpretation where A is true, B is also true

All interpretations
B is true

A is true

Inference

- Given a set of sentences (a KB), logical inference creates new sentences
- Compare to prob. inference!
- Challenges:
- Soundness
- Completeness
- Efficiency

Methods of Inference: 1. Enumeration

- Enumerate all interpretations; look at the truth table - "Model checking"
- Downside: 2^{n} interpretations for n symbols

S. Leadley

Methods of Inference: 2. Using Rules

- Modus Ponens: $(A \Rightarrow B, A) \vDash B$
- And-elimination
- Many other rules
- Commutativity, associativity, de Morgan's laws, distribution for conjunction/disjunction

Logical equivalences

$$
\begin{aligned}
(\alpha \wedge \beta) & \equiv(\beta \wedge \alpha) \text { commutativity of } \wedge \\
(\alpha \vee \beta) & \equiv(\beta \vee \alpha) \text { commutativity of } \vee \\
((\alpha \wedge \beta) \wedge \gamma) & \equiv(\alpha \wedge(\beta \wedge \gamma)) \text { associativity of } \wedge \\
((\alpha \vee \beta) \vee \gamma) & \equiv(\alpha \vee(\beta \vee \gamma)) \text { associativity of } \vee \\
\neg(\neg \alpha) & \equiv \alpha \text { double-negation elimination } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \beta \Rightarrow \neg \alpha) \text { contraposition } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \alpha \vee \beta) \text { implication elimination } \\
(\alpha \Leftrightarrow \beta) & \equiv((\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)) \text { biconditional elimination } \\
\neg(\alpha \wedge \beta) & \equiv(\neg \alpha \vee \neg \beta) \text { de Morgan } \\
\neg(\alpha \vee \beta) & \equiv(\neg \alpha \wedge \neg \beta) \text { de Morgan } \\
(\alpha \wedge(\beta \vee \gamma)) & \equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma)) \text { distributivity of } \wedge \text { over } \vee \\
(\alpha \vee(\beta \wedge \gamma)) & \equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma)) \text { distributivity of } \vee \text { over } \wedge
\end{aligned}
$$

You can use these equivalences to modify sentences.

Methods of Inference: 3. Resolution

- Convert to special form and use a single rule
- Conjunctive Normal Form (CNF)

$$
(\underbrace{\neg \mathrm{A} \vee \mathrm{~B} \vee \mathrm{C}}_{\text {a clause }}) \wedge(\neg \mathrm{B} \vee \mathrm{~A}) \wedge(\neg \mathrm{C} \vee \mathrm{~A})
$$

Conjunction of clauses; each clause disjunction of literals

- Simple rules for converting to CNF

Conjunctive Normal Form (CNF)

$$
\left(\neg \mathrm{B}_{1,1} \vee \mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right) \wedge \underset{\left.\mathrm{B}_{1,1}\right)}{\left(\neg \mathrm{P}_{1,2} \vee \mathrm{~B}_{1,1}\right) \wedge\left(\neg \mathrm{P}_{2,1} \vee\right.}
$$

- Replace all using biconditional elimination
- Replace all \Rightarrow using implication elimination
- Move all negations inward using -double-negation elimination -de Morgan's rule
- Apply distributivity of \vee over \wedge

Convert example sentence into CNF

$$
\begin{aligned}
& \mathrm{B}_{1,1} \Leftrightarrow\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right) \quad \text { starting sentence } \\
& \left(\mathrm{B}_{1,1} \Rightarrow\left(\mathrm{P}_{1,2,2} \vee \mathrm{P}_{2,2,1}\right)\right) \wedge\left(\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right) \Rightarrow \mathrm{B}_{1,1}\right)
\end{aligned}
$$

biconditional elimination
$\left(\neg \mathrm{B}_{1,1} \vee \mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right) \wedge\left(\neg\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right) \vee \mathrm{B}_{1,1}\right)$ implication elimination
$\left(\neg \mathrm{B}_{1,1} \vee \mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right) \wedge\left(\left(\neg \mathrm{P}_{1,2} \wedge \neg \mathrm{P}_{2,1}\right) \vee \mathrm{B}_{1,1}\right)$ move negations inward
$\left(\neg \mathrm{B}_{1,1} \vee \mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right) \wedge\left(\neg \mathrm{P}_{1,2} \vee \mathrm{~B}_{1,1}\right) \wedge\left(\neg \mathrm{P}_{2,1} \vee \mathrm{~B}_{1,1}\right)$ distribute \vee over \wedge
: Given KB and β (query)

- Add $-\beta$ to $K B$, show the set of satisfying interpretations is empty (implies $\neg \beta$ is False. Proof by contradiction)
- Everything needs to be in CNF
- Example KB:
$-\mathrm{B}_{1,1} \Leftrightarrow\left(\mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right)$
$--\mathrm{B}_{1,1}$
- Example query: $\rightarrow \mathrm{P}_{1,2}$

Resolution Preprocessing

- Add $\neg \beta$ to KB , convert to CNF:
a : $\left(\neg \mathrm{B}_{1,1} \vee \mathrm{P}_{1,2} \vee \mathrm{P}_{2,1}\right)$
a2: $\left(\neg \mathrm{P}_{1,2} \vee \mathrm{~B}_{1,1}\right)$
a3: $\left(\neg \mathrm{P}_{2,1} \vee \mathrm{~B}_{1,1}\right)$
b: $\neg \mathrm{B}_{1,1}$
$\mathrm{c}: \mathrm{P}_{1,2} \quad \leftarrow$ Query
- Want to reach goal: empty

Resolution

- Take any two clauses where one contains some symbol, and the other contains its complement (negative)

$$
P \vee Q \vee R \quad \neg Q \vee S \vee T
$$

- Merge (resolve) them, throw away the symbol and its complement
P V R V S V T
- If two clauses resolve and there's no symbol left, you have reached empty (False). KB |= β
- If no new clauses can be added, KB does not entail β

Resolution Example

$$
\begin{aligned}
& \text { a1: }\left(-B_{1,1} \vee P_{1,2} \vee P_{2,1}\right) \\
& \text { a2: }\left(-P_{1,2} \vee B_{1,1}\right) \\
& \text { a3: }\left(-\mathrm{P}_{2,1} \vee \mathrm{~B}_{1,1}\right) \\
& \text { b: }-\mathrm{B}_{1,1} \\
& \text { c: } \mathrm{P}_{1,2}
\end{aligned}
$$

Resolution Example
a1: $\left(-B_{1,1} \vee P_{1,2} \vee P_{2,1}\right)$
a2: $\left(-P_{1,2} \vee B_{1,1}\right)$
a3: $\left(-P_{2,1} \vee B_{1,1}\right)$
b: $\neg B_{1,1}$
c: $P_{1,2}$

Step 1: resolve a2, c: $\quad B_{1,1}$

Step 2: resolve above $\left(\mathrm{B}_{11}\right)$ and b: empty

Break \& Quiz

Q 2.1: Which has more rows: a truth table on n symbols, or a joint distribution table on n binary random variables?

- A. Truth table
- B. Distribution
- C. Same size
- D. It depends

Break \& Quiz

Q 2.1: Which has more rows: a truth table on n symbols, or a joint distribution table on n binary random variables?

- A. Truth table
- B. Distribution
- C. Same size
- D. It depends

Break \& Quiz

Q 2.1: Which has more rows: a truth table on n symbols, or a joint distribution table on n binary random variables?

- A. Truth table
- B. Distribution
- C. Same size
- D. It depends

> Both must specify a value for every possible set of variables. Truth tables specify a value in $\{0,1\}$ and joint distribution tables specify a probability value in the range $[0,1]$.

First Order Logic (FOL)

Propositional logic has some limitations

- Ex: how to say "all squares have four sides"
- No context, hard to generalize; express facts

FOL is a more expressive logic; works over

- Facts, Objects, Relations, Functions

First Order Logic Syntax

- Term: an object in the world
- Constant: Alice, 2, Madison, Green, ...
- Variables: x, y, a, b, c, \ldots
- Function(term ${ }_{1}, \ldots$, term ${ }_{n}$)
- Sqrt(9), Distance(Madison, Chicago)
- Maps one or more objects to another object
- Can refer to an unnamed object: LeftLeg(John)
- Represents a user defined functional relation
- A ground term is a term without variables.
- Constants or functions of constants.

FOL Syntax

- Atom: smallest T/F expression
- Predicate $\left(\right.$ term $_{1}, \ldots$, term ${ }_{n}$)
- Teacher(Jerry, you), Bigger(sqrt(2), x)
- Convention: read "Jerry (is)Teacher(of) you"
- Maps one or more objects to a truth value
- Represents a user defined relation
- term $_{1}=$ term $_{2}$
- Radius(Earth)=6400km, 1=2
- Represents the equality relation when two terms refer to the same object.

FOL Syntax

- Sentence: T/F expression
- Atom
- Complex sentence using connectives: $\wedge \mathbf{V} \neg \Rightarrow \Leftrightarrow$
- Less(x,22) ^ Less(y,33)
- Complex sentence using quantifiers \forall, \exists
- Sentences are evaluated under an interpretation
- Which objects are referred to by constant symbols
- Which objects are referred to by function symbols
- What subsets defines the predicates

FOL Quantifiers

- Universal quantifier: \forall
- Sentence is true for all values of x in the domain of variable x.
- Main connective typically is \Rightarrow
- Forms if-then rules
- "all humans are mammals"

$$
\forall x \text { human }(x) \Rightarrow \text { mammal }(x)
$$

- Means if x is a human, then x is a mammal

FOL Quantifiers

- Existential quantifier: \exists
- Sentence is true for some value of x in the domain of variable x.
- Main connective typically is \wedge
-"some humans are male"

```
\existsx human(x) \ male(x)
```

-Means there is an x who is a human and is a male

Break \& Quiz

Q 2.1: How many entries does a truth table have for a FOL sentence with k variables where each variable can take on n values?

- A. Truth tables are not applicable to FOL.
- B. 2^{k}
- C. n^{k}
- D. It depends

Break \& Quiz

Q 2.1: How many entries does a truth table have for a FOL sentence with k variables where each variable can take on n values?

- A. Truth tables are not applicable to FOL.
- B. 2^{k}
- C. n^{k}
- D. It depends

Break \& Quiz

Q 2.1: How many entries does a truth table have for a FOL sentence with k variables where each variable can take on n values?

- A. Truth tables are not applicable to FOL.
- B. 2^{k}
- C. \boldsymbol{n}^{k}
- D. It depends
Must have one entry for every possible assignment of values to variables. That number is (C).

