CS 540 Introduction to Artificial Intelligence Linear Models \& Linear Regression

 University of Wisconsin-MadisonSpring 2023

Announcements

- Homeworks:

- HW5 released later today; due next Thursday
- Class roadmap:

Thursday, Feb 23	ML Linear Regression
Tuesday, Feb 28	 Naive Bayes
Thursday, Mar 2	ML: Neural Networks I
Tuesday, Mar 7	ML: Neural Networks II
Thursday, Mar 9	Lecture is TBD; Midterm $5: 45-7: 15 p m ~$

Outline

- Supervised Learning with Linear Models
- Parameterized models, model classes, linear models, train vs. test
- Linear Regression
- Least squares, normal equations, residuals, logistic regression

Supervised Learning

Supervised learning:

- Make predictions, classify data, perform regression
- Dataset: $\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)$

- Goal: find function $f: X \rightarrow Y$ to predict label on new data

Regression

- Continuous label $y \in \mathbb{R}$
- Squared loss function $\ell(f(x), y)=(f(x)-y)^{2}$
- Informally, how well $f(x)$ predicts the value of y .
- Finding f that minimizes the empirical risk.
- How well f predicts y over observed data $\left\{\left(x_{i}, y_{i}\right)\right\}$

$$
\frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(x_{i}\right), y_{i}\right)
$$

Functions/Models

The function f is usually called a model.

- Which possible functions should we consider?
- One option: all functions
- Not a good choice. Consider $\quad f(x)=\sum_{i=1}^{n} 1\left\{x=x_{i}\right\} y_{i}$
- Training loss: zero. Can't do better!
- How will it do on x not in the training set?
(cannot generalize to unseen x values)

Functions/Models

Don't want all functions

- Instead, pick a specific class
- Parametrize it by weights/parameters

- Example: linear models

$$
f(x)=\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}+\ldots+\theta_{d} x_{d}=\theta_{0}+x^{T} \theta
$$

Weights/ Parameters

Training The Model

- Parametrize it by weights/parameters
- Minimize the loss
$\begin{aligned} \begin{array}{l}\text { Best } \\ \text { parameters }= \\ \text { best function } f\end{array} & \min _{\theta} \frac{1}{n} \sum_{i=1}^{n} \ell\left(f\left(x_{i}\right), y_{i}\right) \\ & =\frac{1}{n} \sum_{i=1}^{n} \ell\left(\theta_{0}+x_{i}^{T} \theta, y_{i}\right) \\ & =\frac{1}{n} \sum_{i=1}^{n}\left(\theta_{0}+x_{i}^{T} \theta-y_{i}\right)^{2}\end{aligned}$

How Do We Minimize?

- Need to solve something that looks like $\min _{\theta} g(\theta)$
- Generic optimization problem; many algorithms
- A popular choice: stochastic gradient descent (SGD)
- Most algorithms iterative: find some sequence of points heading towards the optimum

Train vs Test

Now we've trained, have some f parametrized by θ

- Train loss is small $\rightarrow f$ predicts most x_{i} correctly
- How does f do on points not in training set? "Generalizes!"
- To evaluate this, reserve a test set. Do not train on it!

Train vs Test

Use the test set to evaluate f

- Why? Back to our "perfect" train function
- Training loss: 0. Every point matched perfectly
- How does it do on test set? Fails completely!

- Test set helps detect overfitting
- Overfitting: too focused on train points
- "Bigger" class: more prone to overfit
- Need to consider model capacity

Appropriate fit GFG

Overfitting

Break \& Quiz

Q 1.1: When we train a model, we are

- A. Optimizing the parameters and keeping the features fixed.
- B. Optimizing the features and keeping the parameters fixed.
- C. Optimizing the parameters and the features.
- D. Keeping parameters and features fixed and changing the predictions.

Break \& Quiz

Q 1.1: When we train a model, we are

- A. Optimizing the parameters and keeping the features fixed.
- B. Optimizing the features and keeping the parameters fixed.
- C. Optimizing the parameters and the features.
- D. Keeping parameters and features fixed and changing the predictions.

Break \& Quiz

Q 1.1: When we train a model, we are

- A. Optimizing the parameters and keeping the features fixed.
- B. Optimizing the features and keeping the parameters fixed) (Feature vectors x_{i} don't change during training).
- C. Optimizing the parameters and the features. (Same as B)
- D. Keeping parameters and features fixed and changing the predictions. (We can't train if we don't change the parameters)

Break \& Quiz

- Q 1.2: You have trained a classifier, and you find there is significantly higher loss on the test set than the training set. What is likely the case?
- A. You have accidentally trained your classifier on the test set.
- B. Your classifier is generalizing well.
- C. Your classifier is generalizing poorly.
- D. Your classifier is ready for use.

Break \& Quiz

- Q 1.2: You have trained a classifier, and you find there is significantly higher loss on the test set than the training set. What is likely the case?
- A. You have accidentally trained your classifier on the test set.
- B. Your classifier is generalizing well.
- C. Your classifier is generalizing poorly.
- D. Your classifier is ready for use.

Break \& Quiz

- Q 1.2: You have trained a classifier, and you find there is significantly higher loss on the test set than the training set. What is likely the case?
- A. You have accidentally trained your classifier on the test set. (No, this would make test loss lower)
- B. Your classifier is generalizing well. (No, test loss is high means poor generalization)
- C. Your classifier is generalizing poorly.
- D. Your classifier is ready for use. (No, will perform poorly on new data)

Break \& Quiz

- Q 1.3: You have trained a classifier, and you find there is significantly lower loss on the test set than the training set. What is likely the case?
- A. You have accidentally trained your classifier on the test set.
- B. Your classifier is generalizing well.
- C. Your classifier is generalizing poorly.
- D. Your classifier needs further training.

Break \& Quiz

- Q 1.3: You have trained a classifier, and you find there is significantly lower loss on the test set than the training set. What is likely the case?
- A. You have accidentally trained your classifier on the test set. (This is very likely, loss will usually be the lowest on the data set on which a model has been trained)
- B. Your classifier is generalizing well.
- C. Your classifier is generalizing poorly.
- D. Your classifier needs further training.

Linear Regression

Simplest type of regression problem.

- Inputs: $\left(\mathrm{x}_{1}, y_{1}\right),\left(\mathrm{x}_{2}, y_{2}\right), \ldots,\left(\mathrm{x}_{n}, y_{n}\right)$
- x's are vectors, y 's are scalars.
- "Linear": predict a linear combination of x components + intercept

$$
f(x)=\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}+\ldots+\theta_{d} x_{d}=\theta_{0}+x^{T} \theta
$$

- Want: parameters θ, θ_{0}

Linear Regression Setup

Problem Setup

- Goal: figure out how to minimize square loss
- Let's organize it. Train set $\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)$
- Since $f(x)=\theta_{0}+x^{T} \theta$, use a notational trick by augmenting feature vector with a constant dimension of 1:

$$
x=\left[\begin{array}{l}
1 \\
x
\end{array}\right]
$$

- Then, with this one more dimension we can write (θ contains θ_{0} now)

$$
f(x)=x^{T} \theta
$$

Linear Regression Setup

Problem Setup

- Train set $\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)$
- Take train features and make it a $\mathrm{n}^{*}(\mathrm{~d}+1)$ matrix, and y a vector:

$$
X=\left[\begin{array}{c}
x_{1}^{T} \\
\ldots \\
x_{n}^{T}
\end{array}\right] \quad y=\left[\begin{array}{c}
y_{1} \\
\ldots \\
y_{n}
\end{array}\right]
$$

- Then, the empirical risk is $\frac{1}{n}\|x \theta-y\|^{2}$

Finding The Estimated Parameters

Have our loss: $\frac{1}{n}\|x \theta-y\|^{2}$

- Could optimize it with gradient descent, etc...
- But the minimum also has a closed-form solution (can derive with vector calculus):

Not always
"Normal
Equations" invertible...

How Good are the Estimated Parameters?

Now we have parameters

$$
\hat{\theta}=\left(X^{T} X\right)^{-1} X^{T} y
$$

- How good are they?
- Predictions are $f\left(x_{i}\right)=\hat{\theta}^{T} x_{i}=\left(\left(X^{T} X\right)^{-1} X^{T} y\right)^{T} x_{i}$
- Errors ("residuals")

$$
\dot{\otimes} y_{i}-f\left(x_{i}\right)=y_{i}-\hat{\theta}^{T} x_{i}=y_{i}-\left(\left(X^{T} X\right)^{-1} X^{T} y\right)^{T} x_{i}
$$

- If data is linear, residuals are 0 . Almost never the case!
- Mean squared error on a test set

$$
\frac{1}{m} \sum_{i=n+1}^{n+m}\left(\hat{\theta}^{T} x_{i}-y_{i}\right)^{2}
$$

Linear Regression \rightarrow Classification?

What if we want the same idea, but y is 0 or 1 ?

- Need to convert the $\theta^{T} x$ to a probability in $[0,1]$

$$
p(y=1 \mid x)=\frac{1}{1+\exp \left(-\theta^{T} x\right)} \longleftarrow \text { Logistic function }
$$

Why does this work?

- If $\theta^{T} x$ is really big, $\exp \left(-\theta^{T} x\right)$ is really small $\rightarrow p$ close to 1
- If really negative exp is huge $\rightarrow p$ close to 0

Break \& Quiz

Q 2.1: You have a dataset for regression given by $\left(x_{1}, y_{1}\right)=$ $([-1,0,1], 2)$ and $\left(x_{2}, y_{2}\right)=([2,3,1], 4)$.
What are the labels, number of points (n), and dimension of the features (d)?

- A. labels are 2 and $4 ; n=3$, and $d=2$.
- B. labels are 2 and $4 ; n=2$, and $d=3$.
- C. labels are $[-1,0,1]$ and $[2,3,1] ; n=2$, and $d=4$.
- D. labels are 2 and $3 ; n=4$, and $d=2$.

Break \& Quiz

Q 2.1: You have a dataset for regression given by $\left(x_{1}, y_{1}\right)=$ $([-1,0,1], 2)$ and $\left(x_{2}, y_{2}\right)=([2,3,1], 4)$.
What are the labels, number of points (n), and dimension of the features (d)?

- A. labels are 2 and $4 ; n=3$, and $d=2$.
- B. labels are 2 and $4 ; n=2$, and $d=3$.
- C. labels are $[-1,0,1]$ and $[2,3,1] ; n=2$, and $d=4$.
- D. labels are 2 and $3 ; n=4$, and $d=2$.

Break \& Quiz

Q 2.1: You have a dataset for regression given by $\left(x_{1}, y_{1}\right)=$ $([-1,0,1], 2)$ and $\left(x_{2}, y_{2}\right)=([2,3,1], 4)$.
What are the labels, number of points (n), and dimension of the features (d)?

- A. labels are 2 and $4 ; n=3$, and $d=2$.
- B. labels are 2 and $4 ; n=2$, and $d=3$.

There are two data points, each x has 3 features, and the labels are the y-values.

- C. labels are $[-1,0,1]$ and $[2,3,1] ; n=2$, and $d=4$.
- D. labels are 2 and $3 ; n=4$, and $d=2$.

Break \& Quiz

Q 2.2: You have a dataset for regression given by $\left(x_{1}, y_{1}\right)=$ $([-1,0,1], 2)$ and $\left(x_{2}, y_{2}\right)=([2,3,1], 4)$.
We have the weights $\beta_{0}=0, \beta_{1}=2, \beta_{2}=1, \beta_{3}=1$. Predict \widehat{y} for $x=[1,10,1]$

- A. 15
- B. 9
- C. 13
- D. 21

Break \& Quiz

Q 2.2: You have a dataset for regression given by $\left(x_{1}, y_{1}\right)=$ $([-1,0,1], 2)$ and $\left(x_{2}, y_{2}\right)=([2,3,1], 4)$.
We have the weights $\beta_{0}=0, \beta_{1}=2, \beta_{2}=1, \beta_{3}=1$. Predict \widehat{y} for $x=[1,10,1]$

- A. 15
- B. 9
- C. 13
- D. 21

Break \& Quiz

Q 2.2: You have a dataset for regression given by $\left(x_{1}, y_{1}\right)=$ $([-1,0,1], 2)$ and $\left(x_{2}, y_{2}\right)=([2,3,1], 4)$.
We have the weights $\beta_{0}=0, \beta_{1}=2, \beta_{2}=1, \beta_{3}=1$. Predict \widehat{y} for $x=[1,10,1]$

- A. 15
- B. 9
- C. 13
- D. 21

Break \& Quiz

Q 2.3: You have a dataset for regression given by $\left(x_{1}, y_{1}\right)=$ $([-1,0,1], 2)$ and $\left(x_{2}, y_{2}\right)=([2,3,1], 4)$.
We have the weights $\beta_{0}=0, \beta_{1}=2, \beta_{2}=1, \beta_{3}=1$. What is the mean squared error (MSE) on the training set?

- A. 9
- B. $13 / 2$
- C. $25 / 2$
- D. 25

Break \& Quiz

Q 2.3: You have a dataset for regression given by $\left(x_{1}, y_{1}\right)=$ $([-1,0,1], 2)$ and $\left(x_{2}, y_{2}\right)=([2,3,1], 4)$.
We have the weights $\beta_{0}=0, \beta_{1}=2, \beta_{2}=1, \beta_{3}=1$. What is the mean squared error (MSE) on the training set?

- A. 9
- B. $13 / 2$
- C. 25/2
- D. 25

Break \& Quiz

Q 2.3: You have a dataset for regression given by $\left(x_{1}, y_{1}\right)=$ $([-1,0,1], 2)$ and $\left(x_{2}, y_{2}\right)=([2,3,1], 4)$.
We have the weights $\beta_{0}=0, \beta_{1}=2, \beta_{2}=1, \beta_{3}=1$. What is the mean squared error (MSE) on the training set?

- A. 9
- B. $13 / 2$
- C. 25/2

Compute the predicted label for each data point, then compute the squared error for each data
point, then take the mean error of the two points:

$$
\begin{gathered}
\hat{y}_{1}=-1 * \beta_{1}+0 * \beta_{2}+1 * \beta_{3}=-1 \\
\ell\left(\hat{y}_{1}, y_{1}\right)=(-1-2)^{2}=9
\end{gathered}
$$

- D. 25

$$
\begin{gathered}
\hat{y}_{2}=2 * \beta_{1}+3 * \beta_{2}+1 * \beta_{3}=8 \\
\ell\left(\hat{y}_{1}, y_{1}\right)=(8-4)^{2}=16 \\
\text { MSE }=(16+9) / 2=25 / 2
\end{gathered}
$$

Reading

- Linear regression, logistic regression, stochastic gradient descent by Prof. Zhu https://pages.cs.wisc.edu/~jerryzhu/cs540/ha ndouts/regression.pdf

