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CS 540 Introduction to Artificial Intelligence
Classification - KNN and Naive Bayes

University of Wisconsin-Madison
Spring 2023



Announcements

e Homeworks:
e HWS due Thursday.

IS TOAAMAPT e e

Thursday, Mar 2 ML: Neural Networks |
Last topic
. Tuesday, Mar 7 -
nidterm! y :\I/IL. Neural Networks
Thursday, Mar 9 Review Lecture;

Midterm 5:45-7:15pm



Today’s outline

 The K-Nearest Neighbors for supervised learning.
 Maximum likelihood estimation (MLE) and classification with MLE.

* Naive Bayes Classifiers
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Part |. K-nearest neighbors



Article Talk

wikirpiA | k-nearest neighbors algorithm

The Free Encycloped: '
e S1e¢ Cncyclopedia From Wikipedia, the free encyclopedia

Main page Not to be confused with k-means clustering.

A~

(source: wiki)



Example 1: Predict whether a user likes a song or not

model
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Example 1: Predict whether a user likes a song or not
1-NN
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K-nearest neighbors for classification

 Input: Training data (X1, Y1) (X0, Vo), - - 5 (X, 1)

d(X;, X;); number of neighbors k; test data X

1. Find the k training instances X; , . . ., X; closest to X™ under d(X;, X))

l

2. Output y™ as the majority class of Vi»--» Y, . Break ties randomly.



Example 2: 1-NN for little green man
- Predict gender (M,F) from weight, height

- Predict age (adult, juvenile) from weight, height
Decision boundary

70F
651 female
__60r __60r Juvenile
= c
£ 5™ ﬁ.ﬂ “
kel =2
2 50t 2 50}
adult
45+ 45}
40r male - 40+ *
80 90 100 110 30 90 100 110
weight (Ibs.) weight (Ibs.)

(a) classification by gender (b) classification by age



The decision regions for 1-NN

Voronoi diagram: each polyhedron indicates the region of feature
space that is in the nearest neighborhood of each training instance

r
|

S




K-NN for regression

 What if we want regression?

* |nstead of majority vote, take average of neighbors’ labels

X

- Given test point X™, find its k nearest neighbors X; i

]
- Output the predicted label ;(y,-1 +...+ )

1



What distance function to use?

» K-nearest neighbors requires a distance function to determine nearest neighbors. How
to define this?

o All features take on discrete values.

 Use Hamming distance: count the number of features in which the features values
differ.

o All features take on continuous values.
* Euclidean Distance: sum of squares:

d

_d(p.q) = \ Y (n-a)

i=1

e Manhattan Distance:
d

,d(p.g) =) |p—q

i=1



What distance function to use?

Be careful with scale

Same feature but different units may change relative distance
(fixing other features)

Sometimes OK to normalize each feature dimension (z-score)

X /[/ Training set mean for dimension d
id Md .
X, = Vi=1...n,Vd

04

\Training set standard deviation for dimension d

Other times not OK: e.g. dimension contains small random noise



Effect of k

What's the predicted label for the black dot
using 1 neighbor? 3 neighbors?



How to pick the number of neighbors

* Split data into training and tuning sets
» (Classify tuning set with different k

* Pick k that produces least tuning-set error

(Shuffle whole dataset first)

(xla yl) (xnayn) (xNayN)
Training set Tuning set Test set



Quiz break
Q1-1: K-NN algorithms can be used for:

* A Only classification

* B Only regression

e C Both



Quiz break
Q1-1: K-NN algorithms can be used for:

* A Only classification

* B Only regression

e C Both



Quiz break

Q1-2: Which of the following distance measure do we use In
case of categorical (discrete) variables in k-NN?

A Hamming distance
e B Euclidean distance

e C Manhattan distance



Quiz break

Q1-2: Which of the following distance measure do we use In
case of categorical (discrete) variables in k-NN?

A Hamming distance
B Euclidean distance

e C Manhattan distance



Quiz break

Q1-3: Consider binary classification in 2D where the intended
label of a point x = (x1, x2) is positive if x1>x2 and negative
otherwise. Let the training set be all points of the form x = [44a,
3b] where a,b are integers. Each training item has the correct
label that follows the rule above. With a 1NN classifier (Euclidean
distance), which ones of the following points are labeled
positive”? Multiple answers.

. [5.52, 2.41]
. [8.47, 5.84]
. [7,8.17]

. [6.7,8.88]



Quiz break

Q1-3: Consider binary classification in 2D where the intended
label of a point x = (x1, x2) is positive if x1>x2 and negative
otherwise. Let the training set be all points of the form x = [44a,
3b] where a,b are integers. Each training item has the correct
label that follows the rule above. With a 1NN classifier (Euclidean
distance), which ones of the following points are labeled

o .
positive”? Multiple answers. Nearest neighbors are

* [5.92, 2.41] 14,3] => positive
e [8.47, 5.84] [8,6] => positive

[8,9] => negative
* [7,8.17] [8,9] => negative

. [6.7,8.88] Individually.
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Part |I: Maximum Likelihood Estimation



Supervised Machine Learning

Non-parametric s Parametric
(e.g., KNN) |




Supervised Machine Learning
Statistical modeling approach

Labeled training

data (n examples)

(X19 yl)a (X29 y2)9 BRI (Xm yn)

drawn independently from
a fixed underlying distribution
(also called the 1.1.d. assumption)



Supervised Machine Learning
Statistical modeling approach

Labeled training q Learning Clas/:::ifier
data (n examples) algorithm #

(X19 yl)a (X29 y2)9 BRI (Xm yn)

N\
select f(6) from a pool of models F#

drawn independently from that best describe the data observed
a fixed underlying distribution

(also called the 1.1.d. assumption)



N\
How to select f € F#?

e Maximum likelihood (best fits the data)
e Maximum a posteriori (best fits the data but incorporates prior assumptions)

o Optimization of ‘loss’ criterion (best discriminates the labels)



Maximum Likelihood Estimation: An Example
Flip a coin 10 times, how can you estimate 8 = p(Head)?

HITIHIHLT

TATAHLTLT,

Intuitively, 8 = 4/10 = 0.4



How good is 67?

It depends on how likely it is to generate the observed data

X1, X9,...,X, (Let’s forget about labels for a second)

Likelihood function L(60) = H,'P(Xi | 0)

4

Under 1.I.d assumption
Interpretation: How probable (or how likely) is the data given

the probabilistic model p,?




How good is 67?
It depends on how likely it is to generate the observed data

X1 X9, ..., X (Let’s forget about label for a second)
Likelihood function L(6) = IL.p(x; | 0)
HT T H. H
E Ly(0)=60-(1-6)-(1-6)-6-0

Bernoulli distribution



Log-likelihood function

LO)=0-(1-6)-(1-60)-0-0 Ny, NpIs
— ONu . (1 — H)NT number of
B heads, tails
Log-likelihood function respectively.

£ (0) = log L(6)
= Nylog 0 + Njlog (1 — 0)



Maximum Likelihood Estimation (MLE)

Find optimal 6™ to maximize the likelihood function (and log-likelihood)

0* = argmax Nylogh + N log(1l — 6)

ol(f) N Ny
00 0 " Np+ Ny

which confirms your intuition for estimating p(Head)!



Maximum Likelihood Estimation: Gaussian Model

Fitting a model to heights of females
Observed some data (in inches): 60, 62, 53, 58,... € ¥

X175 Xy e o e s Xy )

Model class: Gaussian model _/\

)= oo (1580

So, what’s the MLE for the given data?



Estimating the parameters in a Gaussian

* Mean )
N
u=EKEx] hence jy=— ) x
n -

i=1

* Variance [
o> =E[(x—w?] hence & =—) (x,— )

& i=1

courses.d2l.ai/berkeley-stat-157



Maximum Likelihood Estimation: Gaussian Model

Observe some data (in inches): X, Xy, ..., X, € R

Assume that the data is drawn from a Gaussian A

L(u,0°| X) = ﬁp(x‘ﬂ %) = ﬁ : eXp( (xi_”)z)
’ — is Mo — ) T )
e 2o 20

=1

Fitting parameters is maximizing likelihood w.r.t 1, 6*

(maximize likelihood that data was generated by model)

n
MLE arg max | [t 1,67
’ i=1



Maximum Likelihood

» Estimate parameters by finding ones that explain the data
argglaXHp(X,, U, 0°) = arggnn - IOng(X,, U, %)

. Decompose I|keI|hood

n

1 1
—log(27o? + —(x; — 2 —10 2767%) + —— X; — 2
,ZI‘ —log(2707) + ——(x; = )’ = ~log(270?) 2022( )

L. |
Minimized for U=— 2 X,

n
i=1

courses.d2l.ai/berkeley-stat-157



Maximum Likelihood

» Estimating the variance

n

n |
— log(276?%) + — X: — 1)*
- log(270°) ZGZZ,(l )



Maximum Likelihood

» Estimating the variance

2 2
Elog(Zﬂa ) —+ 2—0_2 Z (X — /1)

» [ake derivatives with respect to it

Opa[ - ] ———Z(x—/ft)2

202 204

=;i221(xi—/4)2

courses d?!| ai/lberkelev-stat-157



How do we use MLE for classification?

p(x|y=1)

px|y =0)

o
*v@®
§~

- = m
e N
@
) }

Intensity

’




Classification via Bayes Rule

j} — f(x) = arg max p(y | X) (Posterior)
(Prediction)



Classification via Bayes Rule

j‘; — f(x) = arg max p(y ‘ X)  (Posterior)

(Prediction)

px|y) - p(y)
— argmaxX —— — —  (by Bayes’ rule)

y p(x)

= arg ymax px|y)pQ)

Using labelled training data, learn class priors and class conditionals



Quiz break

Q2-2: True or False
Maximum likelihood estimation is the same regardless of whether
we maximize the likelihood or log-likelihood function.

e A True

e B False



Quiz break

Q2-2: True or False
Maximum likelihood estimation is the same regardless of whether
we maximize the likelihood or log-likelihood function.

e A True

e B False



Quiz break

Q2-3: Suppose the weights of randomly selected American female
college students are normally distributed with unknown mean (¢ and

standard deviation o. A random sample of 10 American female college

students yielded the following weights in pounds:
115122 130 127 149 160 152 138 149 180.

Find a maximum likelihood estimate of /.
e A 132.2

* B 142.2
« C 152.2
« D 162.2



Quiz break

Q2-3: Suppose the weights of randomly selected American female
college students are normally distributed with unknown mean (¢ and

standard deviation o. A random sample of 10 American female college

students yielded the following weights in pounds:
115122 130 127 149 160 152 138 149 180.

Find a maximum likelihood estimate of /.
e A 132.2

« C 152.2
« D 162.2



. vl

A w’?—w'm\’ -L. ~ ‘.:’?“f\ - ‘r... ey -‘?":
. . . 0 et S s VAL T

vo ' % . ok e e o e — )
Fo - Nl W YRR BTN R I

Sl RS - AR T SN T BEa e e
= SRR LT | A e

Wt )
e

g
"
s ¢ M
4 €
.
= -

. “« s

':'-"‘aaf ¢

Part Ill: Naive Bayes



Example 1: Play outside or not?

* |f weather is sunny, would you likely to play outside?

Posterior probability p(Yes | ) vs. p(No | )



Example 1: Play outside or not?

* |f weather is sunny, would you likely to play outside?

Posterior probability p(Yes | ) vs. p(No | )
 Weather = {Sunny, Rainy, Overcast}

* Play = {Yes, No}
 Observed data {Weather, play on day m}, m={1,2,...,N}



Example 1: Play outside or not?

* |f weather is sunny, would you likely to play outside?

Posterior probability p(Yes | ) vs. p(No | )
 Weather = {Sunny, Rainy, Overcast}

* Play = {Yes, No}
 Observed data {Weather, play on day m}, m={1,2,...,N}

p( | Play) p(Play)
p(=¢ )

p(Play | -C5)

Bayes rule



Example 1: Play outside or not?

o Step 1: Convert the data to a frequency table of Weather and Play

Weather |Play

Sunny No Frequency Table
Overcast |Yes Weather NO Yes
Rainy Yes Overcast ~
sunny Yes Rainy 3 2
sunny Yes sunny 2 3
Overcast |Yes Grand Total 5 9
Rainy NO

Rainy NO

sunny Yes

Rainy Yes

sunny NO

Overcast |Yes

Overcast |Yes

Rainy NO

https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/



Example 1: Play outside or not?

Step 1: Convert the data to a frequency table of Weather and Play

Step 2: Based on the frequency table, calculate likelihoods and priors

Weather |Play

Sunny No Frequency Table ‘ Likelihood table _l

Overcast |Yes Weather No Yes Weather NO Yes

Rainy Yes Overcast - Overcast - =4/14 0.29
sunny Yes Rainy 3 2 Rainy 3 2 =5/14 0.30
sunny Yes sunny 2 3 sunny 2 3 =5/14 0.36
Overcast [Yes Grand Total 5 9 All 5 9

Rainy NoO =5/14 =9/14

Rainy NoO 0.30 0.04

sunny Yes

p(Play = Yes) = 0.64

sunny NO

Overcast |Yes p( ‘ YeS) — 3/9 — 033

Overcast |Yes

Rainy NO

https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/



Example 1: Play outside or not?

Step 3: Based on the likelihoods and priors, calculate posteriors

P(Yes| ¢ ) n
=P( |Yes)*P(Yes)/P( ©7) .

P(No| ) n
=P( INo)*P(No)/P( ) -



Example 1: Play outside or not?

Step 3: Based on the likelihoods and priors, calculate posteriors

P(Yes| :¢: )
=P( lYes)*P(Yes)/P( ©7)
=0.3370.64/0.36
=0.6

P(No| «¢: )
=P( INo)*P(No)/P( “©- )
=0.470.36/0.36
=0.4

P(Yes| ) > P(No| ") go outside and play!



Bayesian classification

j\; — arg max p(y | X) (Posterior)

(Prediction)

- p(x|y) - p(y)
— aIrg max —— — —  (by Bayes’ rule)

p(x)

= argmax p(x|y)p(y)



Bayesian classification
What if x has multiple attributes X = { X, ..., X}

y = al’gglaXp(y | X, ..., X;)  (Posterior)

(Prediction)



Bayesian classification
What if x has multiple attributes X = { X, ..., X, }

j} — arg)r/naxp(y |X1, ¢ oo Xk) (Posterior)
(Prediction)

(by Bayes’ rule)

Independent of y



Bayesian classification
What if x has multiple attributes X = { X, ..., X;}

j\) — arg)I}naXp(y |X1, .o oo Xk) (Posterior)

(Prediction)

= arg max w (by Bayes’ rule)

Y p(Xla---axk)

= arg max pXy, ..., Xk |y) p(y)

Class conditional
likelihood

Class prior



Conditional independence of feature attributes
pXi,.... X [y =TI pX; | y)p(y)

1

Easier to estimate
(using MLE!)




Quiz break

Q3-1: Which of the following about Naive Bayes is incorrect?

A Attributes can be nominal or numeric
B Attributes are equally important
 (C Attributes are statistically dependent of one another given the class value

D Attributes are statistically independent of one another given the class value

e E All of above



Quiz break

Q3-1: Which of the following about Naive Bayes is incorrect?

A Attributes can be nominal or numeric
B Attributes are equally important
 C Attributes are statistically dependent of one another given the class value

D Attributes are statistically independent of one another given the class value

e E All of above



Quiz break

Q3-2: Consider a classification problem with two binary features,

X1, X2 € {0,1}. Suppose P(Y =y)=1/32, P(x1 =1| Y =y) = y/46,
P(x2=1|Y =y)=y/62. Which class will naive Bayes classifier produce
on a test item with x4 =1 and x2 = 07

* A 16
* B 26
 C 31
e D 32



Quiz break

Q3-2: Consider a classification problem with two binary features,

X1, X2 € {0,1}. Suppose P(Y =y)=1/32, P(x1 =1| Y =y) = y/46,
P(x2=1|Y =y)=y/62. Which class will naive Bayes classifier produce
on a test item with x4 =1 and x2 = 07

* A 16
* B 26

e D 32



Quiz break

Q3-3: Consider the following dataset showing the result whether
a person has passed or failed the exam based on various factors.
Suppose the factors are independent to each other.

We want to classify a new instance with

Confident=Yes, Studied=Yes, and Sick=No.

Confident Studied Sick Result
Yes No No Fail e A Pass
Yes No Yes Pass _
No Yes Yes Fail e B Fall
No Yes No Pass
Yes Yes Yes Pass




Quiz break

Q3-3: Consider the following dataset showing the result whether
a person has passed or failed the exam based on various factors.
Suppose the factors are independent to each other.

We want to classify a new instance with

Confident=Yes, Studied=Yes, and Sick=No.

Confident

Studied

Sick

Result

Yes

No

No

Fall

Yes

No

Yes

Pass

No

Yes

Yes

Fall

No

Yes

No

Pass

Yes

Yes

Yes

Pass

e B Fall



What we’ve learned today...

 K-Nearest Neighbors for classification and regression
 Maximum likelihood estimation

* Bernoulli model

* Gaussian model
 Nalve Bayes

» Conditional independence assumption
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