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Announcements
• Homeworks:

• HW5 due Thursday.

• Class roadmap: Tuesday, Feb 28 ML: K - Nearest Neighbors 

& Naive Bayes

Thursday, Mar 2
 ML: Neural Networks I

Tuesday, Mar 7 ML: Neural Networks 
II

Thursday, Mar 9 Review Lecture; 
Midterm 5:45-7:15pm

Last topic 
included on 

midterm!



Today’s outline
• The K-Nearest Neighbors for supervised learning.


• Maximum likelihood estimation (MLE) and classification with MLE.


• Naive Bayes Classifiers



Part I: K-nearest neighbors



(source: wiki)



Example 1: Predict whether a user likes a song or not

model



User Sharon

Tempo

Intensity

Example 1: Predict whether a user likes a song or not



User Sharon

Tempo

Intensity

Relaxed Fast

DisLike

Like

Example 1: Predict whether a user likes a song or not
1-NN



User Sharon

Tempo

Intensity

Relaxed Fast

DisLike

Like

Example 1: Predict whether a user likes a song or not
1-NN



K-nearest neighbors for classification

• Input: Training data 

               Distance function ; number of neighbors ; test data 


1. Find the  training instances  closest to  under 


2. Output  as the majority class of . Break ties randomly.

𝑑(𝐱𝑖, 𝐱𝑗) 𝑘 𝐱∗

𝑘 𝐱𝑖1, . . . , 𝐱𝑖𝑘 𝐱∗ 𝑑(𝐱𝑖, 𝐱𝑗)

𝑦∗ 𝑦𝑖1, . . . , 𝑦𝑖𝑘

(𝐱1, 𝑦1), (𝐱2, 𝑦2), . . . , (𝐱𝑛, 𝑦𝑛)



Example 2: 1-NN for little green man
- Predict gender (M,F) from weight, height


- Predict age (adult, juvenile) from weight, height



The decision regions for 1-NN
Voronoi diagram: each polyhedron indicates the region of feature 
 space that is in the nearest neighborhood of each training instance



K-NN for regression

• What if we want regression?


• Instead of majority vote, take average of neighbors’ labels

       - Given test point , find its  nearest neighbors


       - Output the predicted label  

𝐱∗ 𝑘
1
𝑘

(𝑦𝑖1 + . . . + 𝑦𝑖𝑘)

𝐱𝑖1, . . . , 𝐱𝑖𝑘



What distance function to use?
• K-nearest neighbors requires a distance function to determine nearest neighbors. How 

to define this?

• All features take on discrete values.

• Use Hamming distance: count the number of features in which the features values 

differ.

• All features take on continuous values.

• Euclidean Distance: sum of squares:


•
• Manhattan Distance:


•

𝑑(𝑝, 𝑞) =
𝑑

∑
𝑖=1

(𝑝𝑖 − 𝑞𝑖)2

𝑑(𝑝, 𝑞) =
𝑑

∑
𝑖=1

𝑝𝑖 − 𝑞𝑖



What distance function to use?
• Be careful with scale


• Same feature but different units may change relative distance 
(fixing other features)


• Sometimes OK to normalize each feature dimension (z-score) 
 

• Other times not OK: e.g. dimension contains small random noise



Effect of 𝑘



How to pick the number of neighbors
• Split data into training and tuning sets


• Classify tuning set with different k


• Pick k that produces least tuning-set error



Quiz break
Q1-1: K-NN algorithms can be used for: 

• A Only classification


• B Only regression


• C Both
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Quiz break
Q1-2: Which of the following distance measure do we use in 

case of categorical (discrete) variables in k-NN? 
• A Hamming distance


• B Euclidean distance


• C Manhattan distance



Quiz break

• A Hamming distance


• B Euclidean distance


• C Manhattan distance

Q1-2: Which of the following distance measure do we use in 

case of categorical (discrete) variables in k-NN? 



Quiz break
Q1-3: Consider binary classification in 2D where the intended 
label of a point x = (x1, x2) is positive if x1>x2 and negative 
otherwise. Let the training set be all points of the form  x = [4a, 
3b] where a,b are integers. Each training item has the correct 
label that follows the rule above. With a 1NN classifier (Euclidean 
distance), which ones of the following points are labeled 
positive? Multiple answers.

• [5.52, 2.41]


• [8.47, 5.84]


• [7,8.17]


• [6.7,8.88]



Q1-3: Consider binary classification in 2D where the intended 
label of a point x = (x1, x2) is positive if x1>x2 and negative 
otherwise. Let the training set be all points of the form  x = [4a, 
3b] where a,b are integers. Each training item has the correct 
label that follows the rule above. With a 1NN classifier (Euclidean 
distance), which ones of the following points are labeled 
positive? Multiple answers.

• [5.52, 2.41]


• [8.47, 5.84]


• [7,8.17]


• [6.7,8.88]

Quiz break



Part II: Maximum Likelihood Estimation



Supervised Machine Learning

Non-parametric

(e.g., KNN) Parametricvs.



Supervised Machine Learning
Statistical modeling approach

Labeled training 
data (n examples)

(𝐱1, 𝑦1), (𝐱2, 𝑦2), . . . , (𝐱𝑛, 𝑦𝑛)

drawn independently from 
a fixed underlying distribution 
(also called the i.i.d. assumption)



Supervised Machine Learning

Labeled training 
data (n examples)

(𝐱1, 𝑦1), (𝐱2, 𝑦2), . . . , (𝐱𝑛, 𝑦𝑛)

drawn independently from 
a fixed underlying distribution 
(also called the i.i.d. assumption)

Learning 
algorithm

Classifier

𝑓̂

select  from a pool of models  
that best describe the data observed

𝑓̂(𝜃) ℱ

Statistical modeling approach



How to select ?𝑓̂ ∈ ℱ
• Maximum likelihood (best fits the data) 
• Maximum a posteriori (best fits the data but incorporates prior assumptions)
• Optimization of ‘loss’ criterion (best discriminates the labels)



Maximum Likelihood Estimation: An Example
Flip a coin 10 times, how can you estimate ?𝜃 = 𝑝(Head)

Intuitively, 𝜃 = 4/10 = 0.4



How good is ?𝜃
It depends on how likely it is to generate the observed data 
𝐱1, 𝐱2, . . . , 𝐱𝑛 (Let’s forget about labels for a second)

Interpretation: How probable (or how likely) is the data given 

the probabilistic model ?𝑝𝜃

𝐿(𝜃) = Π𝑖𝑝(𝐱𝑖 |𝜃)Likelihood function

Under i.i.d assumption



How good is ?𝜃

𝐿(𝜃) = Π𝑖𝑝(𝐱𝑖 |𝜃)Likelihood function

H,T, T, H, H 

Bernoulli distribution

It depends on how likely it is to generate the observed data 
𝐱1, 𝐱2, . . . , 𝐱𝑛 (Let’s forget about label for a second)



Log-likelihood function

= 𝜃𝑁𝐻 ⋅ (1 − 𝜃)𝑁𝑇

Log-likelihood function

ℓ(𝜃) = log 𝐿(𝜃)

= 𝑁𝐻log 𝜃 + 𝑁𝑇log (1 − 𝜃)

 is 
number of 
heads, tails 
respectively.

𝑁𝐻, 𝑁𝑇𝐿(𝜃) = 𝜃 ⋅ (1 − 𝜃) ⋅ (1 − 𝜃) ⋅ 𝜃 ⋅ 𝜃



Maximum Likelihood Estimation (MLE)
Find optimal  to maximize the likelihood function (and log-likelihood)𝜃∗

𝜃∗ = argmax  𝑁𝐻log𝜃 + 𝑁𝑇log(1 − 𝜃)

𝜕𝑙(𝜃)
𝜕𝜃

=
𝑁𝐻

𝜃
−

𝑁𝑇

1 − 𝜃
= 0 𝜃∗ =

𝑁𝐻

𝑁𝑇 + 𝑁𝐻

which confirms your intuition for estimating p(Head)!



Maximum Likelihood Estimation: Gaussian Model
Fitting a model to heights of females
Observed some data (in inches): 60, 62, 53, 58,…  ∈ ℝ

{𝑥1, 𝑥2, . . . , 𝑥𝑛}

So, what’s the MLE for the given data?

Model class: Gaussian model 



courses.d2l.ai/berkeley-stat-157

Estimating the parameters in a Gaussian

• Mean


• Variance

𝜇 = 𝐄[𝑥]   hence  𝜇̂ =
1
𝑛

𝑛

∑
𝑖=1

𝑥𝑖

𝜎2 = 𝐄[(𝑥 − 𝜇)2]  hence   𝜎̂2 =
1
𝑛

𝑛

∑
𝑖=1

(𝑥𝑖 − 𝜇̂)2

Why?



Maximum Likelihood Estimation: Gaussian Model



courses.d2l.ai/berkeley-stat-157

Maximum Likelihood

• Estimate parameters by finding ones that explain the data


• Decompose likelihood
𝑛

∑
𝑖=1

1
2

log(2𝜋𝜎2) +
1

2𝜎2
(𝑥𝑖 − 𝜇)2 =

𝑛
2

log(2𝜋𝜎2) +
1

2𝜎2

𝑛

∑
𝑖=1

(𝑥𝑖 − 𝜇)2

  Minimized for     𝜇 =
1
𝑛

𝑛

∑
𝑖=1

𝑥𝑖

argmax
𝑛

∏
𝑖=1

𝑝(𝑥𝑖; 𝜇, 𝜎2) = argmin − log
𝑛

∏
𝑖=1

𝑝(𝑥𝑖; 𝜇, 𝜎2)
𝜇, 𝜎2 𝜇, 𝜎2







How do we use MLE for classification?

Tempo

Intensity

𝑝(𝐱 |𝑦 = 0) 𝑝(𝐱 |𝑦 = 1)



Classification via Bayes Rule



Classification via Bayes Rule



Quiz break
Q2-2: True or False

Maximum likelihood estimation is the same regardless of whether 

we maximize the likelihood or log-likelihood function.

• A  True


• B  False



Quiz break

• A  True


• B  False

Q2-2: True or False

Maximum likelihood estimation is the same regardless of whether 

we maximize the likelihood or log-likelihood function.



Quiz break
Q2-3: Suppose the weights of randomly selected American female 

college students are normally distributed with unknown mean  and 

standard deviation . A random sample of 10 American female college 

students yielded the following weights in pounds: 

115 122 130 127 149 160 152 138 149 180. 

Find a maximum likelihood estimate of .

𝜇
𝜎

𝜇
• A  132.2


• B  142.2


• C  152.2


• D  162.2



Quiz break
Q2-3: Suppose the weights of randomly selected American female 

college students are normally distributed with unknown mean  and 

standard deviation . A random sample of 10 American female college 

students yielded the following weights in pounds: 

115 122 130 127 149 160 152 138 149 180. 

Find a maximum likelihood estimate of .

𝜇
𝜎

𝜇
• A  132.2


• B  142.2


• C  152.2


• D  162.2



Part III: Naïve Bayes



Example 1: Play outside or not?

• If weather is sunny, would you likely to play outside?


Posterior probability p(Yes |       ) vs. p(No |       )
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• If weather is sunny, would you likely to play outside?


Posterior probability p(Yes |       ) vs. p(No |       )
• Weather = {Sunny, Rainy, Overcast}


• Play = {Yes, No}


• Observed data {Weather, play on day m}, m={1,2,…,N}



Example 1: Play outside or not?

• If weather is sunny, would you likely to play outside?


Posterior probability p(Yes |       ) vs. p(No |       )
• Weather = {Sunny, Rainy, Overcast}


• Play = {Yes, No}


• Observed data {Weather, play on day m}, m={1,2,…,N}

p(Play |       ) = 
p(        | Play) p(Play)

p(      )
Bayes rule



Example 1: Play outside or not?

• Step 1: Convert the data to a frequency table of Weather and Play



Example 1: Play outside or not?

• Step 1: Convert the data to a frequency table of Weather and Play

• Step 2: Based on the frequency table, calculate likelihoods and priors

p(Play = Yes) = 0.64
p(     | Yes) = 3/9 = 0.33



Example 1: Play outside or not?

• Step 3: Based on the likelihoods and priors, calculate posteriors
P(Yes|      )
  =P(        |Yes)*P(Yes)/P(      )
  =0.33*0.64/0.36
  =0.6
P(No|      )
  =P(        |No)*P(No)/P(      )
  =0.4*0.36/0.36
  =0.4

?

?



Example 1: Play outside or not?

• Step 3: Based on the likelihoods and priors, calculate posteriors
P(Yes|      )
  =P(        |Yes)*P(Yes)/P(      )
  =0.33*0.64/0.36
  =0.6
P(No|      )
  =P(        |No)*P(No)/P(      )
  =0.4*0.36/0.36
  =0.4

P(Yes|      ) > P(No|      ) go outside and play!



Bayesian classification

̂𝑦 = arg𝑚𝑎𝑥𝑝(𝑦 |𝐱)

= arg𝑚𝑎𝑥
𝑝(𝐱 |𝑦) ⋅ 𝑝(𝑦)

𝑝(𝐱)

= arg𝑚𝑎𝑥𝑝(𝐱 |𝑦)𝑝(𝑦)

(Posterior)

(by Bayes’ rule)

(Prediction)



Bayesian classification

̂𝑦 = arg𝑚𝑎𝑥𝑝(𝑦 |𝑋1, . . . , 𝑋𝑘)

= arg𝑚𝑎𝑥
𝑝(𝑋1, . . . , 𝑋𝑘 |𝑦) ⋅ 𝑝(𝑦)

𝑝(𝑋1, . . . , 𝑋𝑘)

= arg𝑚𝑎𝑥𝑝(𝑋1, . . . , 𝑋𝑘 |𝑦)𝑝(𝑦)

(Posterior)

(by Bayes’ rule)

(Prediction)

What if x has multiple attributes 𝐱 = {𝑋1, . . . , 𝑋𝑘}

𝑦

𝑦

𝑦



Bayesian classification

̂𝑦 = arg𝑚𝑎𝑥𝑝(𝑦 |𝑋1, . . . , 𝑋𝑘)

= arg𝑚𝑎𝑥
𝑝(𝑋1, . . . , 𝑋𝑘 |𝑦) ⋅ 𝑝(𝑦)

𝑝(𝑋1, . . . , 𝑋𝑘)

= arg𝑚𝑎𝑥𝑝(𝑋1, . . . , 𝑋𝑘 |𝑦)𝑝(𝑦)

(Posterior)

(by Bayes’ rule)

(Prediction)

What if x has multiple attributes 𝐱 = {𝑋1, . . . , 𝑋𝑘}

𝑦

𝑦

𝑦

Independent of y



Bayesian classification

̂𝑦 = arg𝑚𝑎𝑥𝑝(𝑦 |𝑋1, . . . , 𝑋𝑘)

= arg𝑚𝑎𝑥
𝑝(𝑋1, . . . , 𝑋𝑘 |𝑦) ⋅ 𝑝(𝑦)

𝑝(𝑋1, . . . , 𝑋𝑘)

= arg𝑚𝑎𝑥𝑝(𝑋1, . . . , 𝑋𝑘 |𝑦)𝑝(𝑦)

(Posterior)

(by Bayes’ rule)

(Prediction)

What if x has multiple attributes 𝐱 = {𝑋1, . . . , 𝑋𝑘}

Class conditional

 likelihood Class prior

𝑦

𝑦

𝑦



Naïve Bayes Assumption

𝑝(𝑋1, . . . , 𝑋𝑘 |𝑦)𝑝(𝑦) = Π𝑘
𝑖=1𝑝(𝑋𝑖 |𝑦)𝑝(𝑦)

Conditional independence of feature attributes

Easier to estimate

(using MLE!)



Quiz break
Q3-1: Which of the following about Naive Bayes is incorrect?

• A  Attributes can be nominal or numeric


• B  Attributes are equally important


• C  Attributes are statistically dependent of one another given the class value


• D  Attributes are statistically independent of one another given the class value


• E  All of above



Quiz break
Q3-1: Which of the following about Naive Bayes is incorrect?

• A  Attributes can be nominal or numeric


• B  Attributes are equally important


• C  Attributes are statistically dependent of one another given the class value


• D  Attributes are statistically independent of one another given the class value


• E  All of above



Quiz break
Q3-2: Consider a classification problem with two binary features, 

x1, x2  {0,1}. Suppose P(Y = y) = 1/32, P(x1 = 1| Y = y) = y/46,

P(x2 = 1 | Y = y) = y/62. Which class will naive Bayes classifier produce 

on a test item with x1 = 1 and x2 = 0?

∈

• A  16


• B  26


• C  31


• D  32
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Q3-2: Consider a classification problem with two binary features, 

x1, x2  {0,1}. Suppose P(Y = y) = 1/32, P(x1 = 1| Y = y) = y/46,

P(x2 = 1 | Y = y) = y/62. Which class will naive Bayes classifier produce 

on a test item with x1 = 1 and x2 = 0?

∈

• A  16


• B  26


• C  31


• D  32



Quiz break
Q3-3: Consider the following dataset showing the result whether 

a person has passed or failed the exam based on various factors. 

Suppose the factors are independent to each other. 

We want to classify a new instance with 

Confident=Yes, Studied=Yes, and Sick=No.

• A  Pass


• B  Fail

Confident Studied Sick Result

Yes No
 No Fail

Yes No Yes Pass
No Yes Yes Fail
No Yes No Pass
Yes Yes Yes Pass



Quiz break
Q3-3: Consider the following dataset showing the result whether 

a person has passed or failed the exam based on various factors. 

Suppose the factors are independent to each other. 

We want to classify a new instance with 

Confident=Yes, Studied=Yes, and Sick=No.

• A  Pass


• B  Fail

Confident Studied Sick Result

Yes No
 No Fail

Yes No Yes Pass
No Yes Yes Fail
No Yes No Pass
Yes Yes Yes Pass



What we’ve learned today…
• K-Nearest Neighbors for classification and regression


• Maximum likelihood estimation


• Bernoulli model


• Gaussian model


• Naive Bayes


• Conditional independence assumption



Thanks!


