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Today’s goals

* Understanding deep neural networks as computational graphs.
* Forward propagation of inputs to outputs.
 Backward propagation of loss gradients to weights and biases.
* Understand numerical stablility issues in training neural networks.
 Vanishing or exploding gradients.

* Review of generalization how to use regularization for better
generalization.

» Overfitting, underfitting
* Weight decay and dropout
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Part |: Neural Networks as a
omputational Graph




Review: neural networks with one hidden layer

* Input x € R? Input
| Hidden layer
e« Hidden W € R4 ph) € R™ m neurons

* |Intermediate output
h = cs(Wx + b))
he R"™




Review: neural networks with one hidden layer
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Review: neural networks with one hidden layer

Key elements: linear operations + Nonlinear activations

X d X 1
" dx 1 "

Element-wise
activation function

g
=+
|



Deep neural networks (DNNs)
h, = s(WVx 4+ b))

Output layer f [2
h, = 6s(W®h, + b®)
Hidden layer }%{ h3 — U(W(B)hz + b(3))
cdn ey @‘@ o) f = W%h; +b®
P _
é 9;,“?&\ p = softmax(f)
e 0(@(0 Q> : NNs are composition

/4'4'/0\“.~\‘ of non!lnear
nputiayer ° e Q functions




Neural networks as variables + operations
a = sigmoid(Wx + b)

 Can describe with a computational graph

 Decompose functions into atomic operations

e Separate data (variables) and computing (operations)

®w 1 576
W b



Neural networks as a computational graph

* A two-layer neural network




Neural networks as a computational graph

* A two-layer neural network
* Forward propagation vs. backward propagation
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Neural networks: forward propagation

* A two-layer neural network
* |ntermediate variables Z

AT -

w z




Neural networks: backward propagation

* A two-layer neural network
 Assuming forward propagation is done
* Minimize a loss function L




Neural networks: backward propagation

* A two-layer neural network
* Assuming forward propagation is done
* Minimize a loss function L o0l ol
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Neural networks: backward propagation

* A two-layer neural network
* Assuming forward propagation is done
* Minimize a loss function L oL Ol

0z, 0z




Neural networks: backward propagation

* A two-layer neural network
 Assuming forward propagation is done
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Backward propagation: A modern treatment

* First, define a neural network as a computational graph
* Nodes are variables and operations.

 Must be a directed graph

* All operations must be differentiable.

 Backpropagation computes partial derivatives starting
from the loss and then working backwards through the
graph.



Backward propagation: PyTlTorch

for t in range(2000):

# Forward pass: compute predicted y by passing x to the
# override the __call _ operator so you can call them .
# doing so you pass a Tensor of input data to the Modu.
# a Tensor of output data.
y-pred = moderteo Forward propagation
# Compute and print loss. We pass Tensors containing ti
# values of y, and the loss function returns a Tensor ¢
# loss.
loss = loss_fIn(y_pred, y)
if t % 100 == 99:

print(t, loss.item())

# Zero the gradients before running the backward pass.
model.zerxo_grad()

# Backward pass: compute gradient of the loss with resj
# parameters of the model. Internally, the parameters ¢
# in Tensors with requires_grad=True, so this call wil.

# all learnable parameters in the model. BaCkWard prOpagatlcn

loss.backwaxd()

# Update the weights using gradient descent. Each parar
# we can access 1ts gradients like we did before. _
with toxch.no_grad(): Grad|ent Descent
for param in model.parameters():
param -= learning_rate * param.grad



Q1. Suppose we want to solve the following k-class classification problem with cross entropy loss

k
£(y,§) = — Z y;log yj . where the ground truth and predicted probabilities y, § € R*. Recall that the

j=1
| | - exp fi(x) | |
softmax function turns output into probabilities: Vi = . What is the partial derivative
2. EXp fi(x)
Hidden layer
A Y. —y. M=3 neurons
S Input Output
B. exp(y;) — ; & /i
x € R?
C. Y=Y X

/fk



Q1. Suppose we want to solve the following k-class classification problem with cross entropy loss
k

£(y,y) = — 2 y;logy;, wherey,y € R*. Recall that the softmax function turns output into
j=1
X exp f,(x) | | - X
probabilities: y; = . What is the partial derivative 0,2(y, y)?
k J
2. EXpfi(x)
o0 Hidden layer
CX
Rewrite  £(y, §) = Z y, log —— m=3 neurons
> 16Xp(f) Input Output
k \
Z lOg 2 GXp(f) o Z y] .xl fi
_ _ x € R?

_ tog Y, exp(f) — Yy

=1 j=1 / f];
exp(f;)

We have aﬁf(ya y) = P ] Yi=Yi— Y-
1 €Xp(fi)
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Part lI: Numerical Stability



Gradients for Neural Networks

» Compute the gradient of the loss £ w.r.t. W,

o  o¢ oh®  oh™*! oh’
OW!  ohd ohd-1""" oht OW!

Wikipedia



Two Issues for Deep Neural Networks ﬁ oh'*!
ohi

1=t

Gradient Exploding Gradient Vanishing

0.8100 ~ 2 x 1071V



Issues with Gradient Exploding

» Value out of range: infinity value (NaN)
» Sensitive to learning rate (LR)
* Not small enough LR -> larger gradients
 Joo small LR -> No progress
* May need to change LR dramatically during training



Gradient Vanishing

» Use sigmoid as the activation function

|
o(x) = o'(x) = o(x)(1 — o(x
- (x) = o(x)( (X))
0a{ SOmall Small
gradients gradients




Issues with Gradient Vanishing

» Gradients with value O
* NoO progress In training

* No matter how to choose learning rate
» Severe with bottom layers

* Only top layers are well trained

* No benefit to make networks deeper



How to
stabilize
training?




Stabilize Training: Practical Considerations

* Goal: make sure gradient values are in a proper range
 E.g.In[1e-6, 1e3]

* Multiplication -> plus
* Architecture change (e.g., ResNet)

 Normalize
» Batch Normalization, Gradient clipping

* Proper activation functions



Quiz. Which of the following are TRUE about the vanishing gradient problem in neural
networks? Multiple answers are possible?
A.Deeper neural networks tend to be more susceptible to vanishing gradients.
B.Using the RelL.U function can reduce this problem.
C. If a network has the vanishing gradient problem for one training point due to the
sigmoid function, it will also have a vanishing gradient for every other training point.
D. Networks with sigmoid functions don't suffer from the vanishing gradient problem if

trained with the cross-entropy loss.



Quiz. Which of the following are TRUE about the vanishing gradient problem in neural
networks? Multiple answers are possible?
A.Deeper neural networks tend to be more susceptible to vanishing gradients.
B.Using the RelLU function can reduce this problem.
C. If a network has the vanishing gradient problem for one training point due to the
sigmoid function, it will also have a vanishing gradient for every other training point.
D. Networks with sigmoid functions don't suffer from the vanishing gradient problem if

trained with the cross-entropy loss.



Quiz. Let’s compare sigmoid with rectified linear unit (ReLU). Which of the following
statement is NOT true?

A. Sigmoid function is more expensive to compute
B. ReLU has non-zero gradient everywhere
C. The gradient of Sigmoid is always less than 0.3

D. The gradient of RelLLU is constant for positive input



Quiz. Let’s compare sigmoid with rectified linear unit (ReLU). Which of the following
statement is NOT true?

A. Sigmoid function is more expensive to compute
B.
C. The gradient of Sigmoid is always less than 0.3

D. The gradient of RelLLU is constant for positive input



Q5. A Leaky RelLU is defined as f(x)=max(0.7x, x). Let f(0)=1. Does it have non-zero
gradient everywhere??

A.Yes

B. NoO



Q5. A Leaky RelLU is defined as f(x)=max(0.7x, x). Let f(0)=1. Does it have non-zero
gradient everywhere??

B. NoO
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Part lll: Generalization & Regularization
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Training Error and Generalization Error

 [raining error: model error on the training data
* Generalization error: model error on new data
« Example: practice a future exam with past exams

* Doing well on past exams (training error) doesn't
guarantee a good score on the future exam
(generalization error)



Underfitting —~— \/ WA

Ove I‘fitti n g Overfitting

Image credit: hackernoon.com



Model Capacity

» The ability to fit variety of functions

* Low capacity models struggles to ____._
fit training set ' ‘

» Underfitting
» High capacity models can

memorize the training set
» Overfitting



Influence of Model Complexity

D E— s
Underfitting Optimum Overfitting

Also known as “Test

loss”

Loss

Generalization loss

Training loss

Model complexity

* Recent research has challenged this view for some types of models.



Estimate Neural Network Capacity

* |t's hard to compare complexity
between different families of models.

* e.g. K-NN vs neural networks

* Given a model family, two main factors
matter:

* The number of parameters
* The values taken by each parameter

d+ 1

d+1)m+m+ Dk



Data Complexity

* Multiple factors matters
* # of examples
» # of features in each example
* time/space structure
o # of labels

B




Quiz Break: When training a neural network,
which one below indicates that the network has
overfit the training data”

A. Training loss Is low and generalization loss is high.
B. Iraining loss is low and generalization loss is low.
C. Training loss is high and generalization loss is high.
D. Training loss Is high and generalization loss is low.

E. None of these.



Quiz Break: When training a neural network,
which one below indicates that the network has
overfit the training data”

A. Training loss Is low and generalization loss Is high.
B. Iraining loss is low and generalization loss is low.
C. Training loss is high and generalization loss is high.
D. Training loss Is high and generalization loss is low.

E. None of these.



Quiz Break: Adding more layers to a multi-layer
perceptron may cause

A. Vanishing gradients during back propagation.
B. A more complex decision boundary.

C. Underfitting.

D. Lower test loss.

E. None of these.



Quiz Break: Adding more layers to a multi-layer
perceptron may cause

A. Vanishing gradients during back propagation.
B. A more complex decision boundary.

C. Underfitting.

D. Higher test loss.

E. None of these.



How to regularize the model for
better generalization?




Neural Network - 10 Units, No Weight Decay Neural Network - 10 Units, Weight Decay=0.02

0
Q
Training Emor: 0.100 1 Traning Emor. 0.160
Test Enor: 0259 Test Emor: 0.223

Bayes Emor.  0.210 Bayes Ermor.  0.210



Squared Norm Regularization as Hard Constraint

* Reduce model complexity by limiting value
range A

min L(w,b) subjectto ||w|*<B y

» Often do not regularize bias b \
* Doing or not doing has little difference in

practice
 Asmall B means more regularization



Squared Norm Regularization as Soft Constraint

« \We can rewrite the hard constraint version as

. Ao
min L(w, D) +5||W||



Squared Norm Regularization as Soft Constraint
* WWe can rewrite the hard constraint version as
. A
min L(w, b) + —||w||
2
* Hyper-parameter Acontrols regularization importance

e 1=0: no effect

e L —> oo,w*¥ > ()
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Apply Dropout

» Often apply dropout on the output of hidden fully-
connected layers

MLP with one hidden layer Hidden layer after dropout

h = G(W(l)X + b(l)) \, A
h’ = dropout(h) Q’% ;";’\{ @/‘3\
oowonspe  GRELEID G B
p = softmax(o) o'/va'/

courses.d2l.ai/berkeley-stat-157



Dropout

PW
Present with Always
probability p present
(a) At training time (b) At test time

Figure 2: Left: A unit at training time that is present with probability p and is connected to units
in the next layer with weights w. Right: At test time, the unit is always present and
the weights are multiplied by p. The output at test time is same as the expected output

at training time.



Dropout

Hinton et al.

Classification Error %

1.0

1.5

A ‘
A

J

f " L 1
200000 400000 600000 800000 1000000
Number of weight updates

Figure 4: Test error for different architectures

with and without dropout. The net-

works have 2 to 4 hidden layers each
with 1024 to 2048 units.



Q3. In standard dropout regularization, with dropout probability p, the each intermediate

o . . , 0 with probability p
activation h is replaced by a random variable h’ as: i’ = .

? otherwise
To make E|h'] = h. What is “?”

Ao h Hidden layer
M=3 neurons
|
C.h/(1-p) X, N~
d
D. h(1-p) x €R h,
X2



Q3. In standard dropout regularization, with dropout probability p, the each intermediate

o . . , 0 with probability p
activation h is replaced by a random variable h’ as: h’ = .

? otherwise
To make E|h'] = h. What is “?”

Ao h Hidden layer
M=3 neurons
|
C.h/(1-p) X, \
d
D. h(1-p) x €R h,
X2



What we’ve learned today...

 Deep neural networks

 Computational graph (forward and backward propagation)
 Numerical stability in training

» Gradient vanishing/exploding
* (Generalization and regularization

* Qverfitting, underfitting

* Weight decay and dropout



