CS 540 Introduction to Artificial Intelligence

Search II: Informed Search

University of Wisconsin-Madison

Spring 2023
Announcements

Homeworks:
- Homework 8 released today; due Tuesday April 18

Class roadmap:

<table>
<thead>
<tr>
<th>Tuesday, April 11</th>
<th>Informed Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, April 13</td>
<td>Advanced Search</td>
</tr>
<tr>
<td>Tuesday, April 18</td>
<td>Games I</td>
</tr>
<tr>
<td>Thursday, April 20</td>
<td>Games II</td>
</tr>
<tr>
<td>Tuesday, April 25</td>
<td>Reinforcement Learning I</td>
</tr>
</tbody>
</table>
Announcements

Homeworks:
- Homework 8 released today; due Tuesday April 18

Class roadmap:

<table>
<thead>
<tr>
<th>Tuesday, April 11</th>
<th>Informed Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, April 13</td>
<td>Advanced Search</td>
</tr>
<tr>
<td>Tuesday, April 18</td>
<td>Games I</td>
</tr>
<tr>
<td>Thursday, April 20</td>
<td>Games II</td>
</tr>
<tr>
<td>Tuesday, April 25</td>
<td>Reinforcement Learning I</td>
</tr>
</tbody>
</table>

Practice questions on search and neural networks on Canvas.
Today’s Goals
Today’s Goals

- Finish and review of uninformed search strategies.
Today’s Goals

• Finish and review of uninformed search strategies.
• Understand the difference between uninformed and informed search.
Today’s Goals

• Finish and review of uninformed search strategies.
• Understand the difference between uninformed and informed search.
• Introduce A* Search
 – Heuristic properties, stopping rules, analysis
Today’s Goals

- Finish and review of uninformed search strategies.
- Understand the difference between uninformed and informed search.
- Introduce A* Search
 - Heuristic properties, stopping rules, analysis
- Extensions: Beyond A*
 - Iterative deepening, beam search
Breadth-First Search

Recall: expand **shallowest** node first
Breadth-First Search

Recall: expand \textit{shallowest} node first

Wiki
Breadth-First Search

Recall: expand **shallowest** node first

- Data structure: queue
Breadth-First Search

Recall: expand shallowest node first

- Data structure: queue
- Properties:
Breadth-First Search

Recall: expand **shallowest** node first

- Data structure: queue
- **Properties:**
 - Complete
Breadth-First Search

Recall: expand **shallowest** node first

- Data structure: queue

Properties:
- Complete
- Optimal (if edge cost 1)
Breadth-First Search

Recall: expand **shallowest** node first

- Data structure: queue
- **Properties:**
 - Complete
 - Optimal (if edge cost 1)
 - Time $O(b^d)$
Breadth-First Search

Recall: expand **shallowest** node first

- Data structure: queue
- **Properties:**
 - Complete
 - Optimal (if edge cost 1)
 - Time $O(b^d)$
Breadth-First Search

Recall: expand **shallowest** node first

- Data structure: queue
- **Properties:**
 - Complete
 - Optimal (if edge cost 1)
 - Time $O(b^d)$
Breadth-First Search

Recall: expand **shallowest** node first

- Data structure: queue
- **Properties:**
 - Complete
 - Optimal (if edge cost 1)
 - Time $O(b^d)$
 - Space $O(b^d)$
Uniform Cost Search

Like BFS, but keeps track of cost
Uniform Cost Search

Like BFS, but keeps track of cost

- Expand least cost node
Uniform Cost Search

Like BFS, but keeps track of cost

- Expand least cost node
Uniform Cost Search

Like BFS, but keeps track of cost

- Expand least cost node
- Data structure: priority queue

Credit: DecorumBY
Uniform Cost Search

Like BFS, but keeps track of cost

• Expand least cost node
• Data structure: priority queue
• Properties:
Uniform Cost Search

Like BFS, but keeps track of cost

- Expand least cost node
- Data structure: priority queue

Properties:
 - Complete
Uniform Cost Search

Like BFS, but keeps track of cost

- Expand least cost node
- Data structure: priority queue

Properties:
- Complete
- Optimal (if weight lower bounded by ε)
Uniform Cost Search

Like BFS, but keeps track of cost

• Expand least cost node
• Data structure: priority queue
• Properties:
 – Complete
 – Optimal (if weight lower bounded by ε)
 – Time $O(b^{c*/\varepsilon})$
Uniform Cost Search

Like BFS, but keeps track of cost

- Expand least cost node
- Data structure: priority queue

Properties:
- Complete
- Optimal (if weight lower bounded by ε)
- Time $O(b^{c*/\varepsilon})$
- Space $O(b^{c*/\varepsilon})$
Uniform Cost Search

Like BFS, but keeps track of cost

- Expand least cost node
- Data structure: priority queue
- **Properties:**
 - Complete
 - Optimal (if weight lower bounded by ε)
 - Time $O(b^{C^*/\varepsilon})$
 - Space $O(b^{C^*/\varepsilon})$

C^* is optimal path cost to goal.

ε is cost of edge with smallest cost.
Depth-First Search

Recall: expand **deepest** node first
Depth-First Search

Recall: expand **deepest** node first
Depth-First Search

Recall: expand **deepest** node first

- Data structure: stack
Depth-First Search

Recall: expand **deepest** node first

- Data structure: stack
- **Properties:**
Depth-First Search

Recall: expand **deepest** node first

- Data structure: stack
- **Properties:**
 - Incomplete (stuck in infinite tree...)

![Diagram of a tree](Wiki)
Depth-First Search

Recall: expand deepest node first

- Data structure: stack
- **Properties:**
 - Incomplete (stuck in infinite tree...)
 - Suboptimal
Depth-First Search

Recall: expand **deepest** node first

- Data structure: stack
- **Properties:**
 - Incomplete (stuck in infinite tree...)
 - Suboptimal
 - Time $O(b^m)$
Depth-First Search

Recall: expand **deepest** node first

- Data structure: stack
- **Properties:**
 - Incomplete (stuck in infinite tree...)
 - Suboptimal
 - Time $O(b^m)$

Max Depth

Wiki
Recall: expand **deepest** node first

- Data structure: stack

Properties:
- Incomplete (stuck in infinite tree...)
- Suboptimal
- Time $O(b^m)$
- Space $O(bm)$
Iterative Deepening DFS

Repeated limited DFS
Iterative Deepening DFS

Repeated limited DFS
Iterative Deepening DFS

Repeated limited DFS

- Search like BFS, fringe like DFS
Iterative Deepening DFS

Repeated limited DFS

- Search like BFS, fringe like DFS
- **Properties:**
Iterative Deepening DFS

Repeated limited DFS

- Search like BFS, fringe like DFS

- **Properties:**
 - Complete
Iterative Deepening DFS

Repeated limited DFS

- Search like BFS, fringe like DFS

- Properties:
 - Complete
 - Optimal (if edge cost 1)
Iterative Deepening DFS

Repeated limited DFS

- Search like BFS, fringe like DFS

- **Properties:**
 - Complete
 - Optimal (if edge cost 1)
 - Time $O(b^d)$
Iterative Deepening DFS

Repeated limited DFS

- Search like BFS, fringe like DFS

- **Properties:**
 - Complete
 - Optimal (if edge cost 1)
 - Time \(O(b^d)\)
 - Space \(O(bd)\)
Iterative Deepening DFS

Repeated limited DFS

- Search like BFS, fringe like DFS
- **Properties:**
 - Complete
 - Optimal (if edge cost 1)
 - Time $O(b^d)$
 - Space $O(bd)$

A good option!
Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:
Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:

- Path cost $g(s)$ from start to state s.
Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:

- Path cost $g(s)$ from start to state s.
- Successors.
Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:

- Path cost $g(s)$ from start to state s.
- Successors.

[Diagram showing start, state s, and goal states]
Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:

- Path cost $g(s)$ from start to state s.
- Successors.
Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:

- Path cost $g(s)$ from start to state s.
- Successors.

Informed search. Know:
Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:

- Path cost $g(s)$ from start to state s.
- Successors.

Informed search. Know:

- All uninformed search properties, plus
Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:

- Path cost $g(s)$ from start to state s.
- Successors.

Informed search. Know:

- All uninformed search properties, plus
- Heuristic $h(s)$ from s to goal.
Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:

- Path cost $g(s)$ from start to state s.
- Successors.

Informed search. Know:

- All uninformed search properties, plus
- Heuristic $h(s)$ from s to goal.
Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:

- Path cost $g(s)$ from start to state s.
- Successors.

Informed search. Know:

- All uninformed search properties, plus
- Heuristic $h(s)$ from s to goal.
Informed Search

Informed search. Know:
Informed Search

Informed search. Know:

- All uninformed search properties, plus
Informed Search

Informed search. Know:

• All uninformed search properties, plus
• Heuristic $h(s)$ from s to goal.
Informed Search

Informed search. Know:

- All uninformed search properties, plus
- Heuristic $h(s)$ from s to goal.
Informed Search

Informed search. Know:

• All uninformed search properties, plus
• Heuristic $h(s)$ from s to goal.
Informed Search

Informed search. Know:

- All uninformed search properties, plus
- Heuristic $h(s)$ from s to goal.
Informed Search

Informed search. Know:

- All uninformed search properties, plus
- Heuristic $h(s)$ from s to goal.

• Goal: speed up search.
Using the Heuristic

Recall uniform-cost search
Using the Heuristic

Recall uniform-cost search

- We store potential next states with a priority queue
Using the Heuristic

Recall uniform-cost search

- We store potential next states with a priority queue
- Expand the state with the smallest $g(s)$
Using the Heuristic

Recall uniform-cost search

- We store potential next states with a priority queue
- Expand the state with the smallest $g(s)$
 - $g(s)$ “first-half-cost”
Using the Heuristic

Recall uniform-cost search

• We store potential next states with a priority queue
• Expand the state with the smallest $g(s)$
 – $g(s)$ “first-half-cost”
Using the Heuristic

Recall uniform-cost search

- We store potential next states with a priority queue
- Expand the state with the smallest $g(s)$
 - $g(s)$ “first-half-cost”
- Now let’s use the heuristic (“second-half-cost”)
Using the Heuristic

Recall uniform-cost search

- We store potential next states with a priority queue
- Expand the state with the smallest $g(s)$
 - $g(s)$ “first-half-cost”

Now let’s use the heuristic (“second-half-cost”)
 - Several possible approaches: let’s see what works
Attempt 1: Best-First Greedy

One approach: just use $h(s)$ alone
Attempt 1: Best-First Greedy

One approach: just use $h(s)$ alone

- Specifically, expand the state with smallest $h(s)$
Attempt 1: Best-First Greedy

One approach: just use $h(s)$ alone

- Specifically, expand the state with smallest $h(s)$
- This isn’t a good idea. Why?
Attempt 1: Best-First Greedy

One approach: just use $h(s)$ alone

- Specifically, expand the state with smallest $h(s)$
- This isn’t a good idea. Why?
Attempt 1: Best-First Greedy

One approach: just use \(h(s) \) alone

- Specifically, expand the state with smallest \(h(s) \)
- This isn’t a good idea. Why?

Not optimal! **Get** A → C → G. **Want:** A → B → C → G
Attempt 2: A Search

Next approach: use both $g(s) + h(s)$
Attempt 2: A Search

Next approach: use both $g(s) + h(s)$

• Specifically, expand state with smallest $g(s) + h(s)$
Attempt 2: A Search

Next approach: use both $g(s) + h(s)$

- Specifically, expand state with smallest $g(s) + h(s)$
- Again, use a priority queue
Attempt 2: A Search

Next approach: use both $g(s) + h(s)$

- Specifically, expand state with smallest $g(s) + h(s)$
- Again, use a priority queue
- Called “A” search
Attempt 2: A Search

Next approach: use both \(g(s) + h(s) \)

- Specifically, expand state with smallest \(g(s) + h(s) \)
- Again, use a priority queue
- Called “A” search
Attempt 2: A Search

Next approach: use both $g(s) + h(s)$

- Specifically, expand state with smallest $g(s) + h(s)$
- Again, use a priority queue
- Called "A" search

Still not optimal! (Does work for former example).
Attempt 3: A* Search

Same idea, use $g(s) + h(s)$, with one requirement
Attempt 3: A* Search

Same idea, use $g(s) + h(s)$, with one requirement

- Demand that $h(s) \leq h^*(s)$ where $h^*(s)$ is true cost from s to goal.
Attempt 3: A* Search

Same idea, use $g(s) + h(s)$, with one requirement

- Demand that $h(s) \leq h^*(s)$ where $h^*(s)$ is true cost from s to goal.
- If heuristic has this property, it is called “admissible”
Attempt 3: A* Search

Same idea, use $g(s) + h(s)$, with one requirement:

- Demand that $h(s) \leq h^*(s)$ where $h^*(s)$ is true cost from s to goal.
- If heuristic has this property, it is called “admissible”
 - Optimistic! Never over-estimates
Attempt 3: A* Search

Same idea, use $g(s) + h(s)$, with one requirement:

- Demand that $h(s) \leq h^*(s)$ where $h^*(s)$ is true cost from s to goal.
- If heuristic has this property, it is called “admissible”
 - Optimistic! Never over-estimates
- Still need $h(s) \geq 0$
Attempt 3: A* Search

Same idea, use $g(s) + h(s)$, with one requirement

• Demand that $h(s) \leq h^*(s)$ where $h^*(s)$ is true cost from s to goal.

• If heuristic has this property, it is called “admissible”
 – Optimistic! Never over-estimates

• Still need $h(s) \geq 0$
 – Negative heuristics can lead to strange behavior
Attempt 3: A* Search

Same idea, use $g(s) + h(s)$, with one requirement

- Demand that $h(s) \leq h^*(s)$ where $h^*(s)$ is true cost from s to goal.
- If heuristic has this property, it is called “admissible”
 - Optimistic! Never over-estimates
- Still need $h(s) \geq 0$
 - Negative heuristics can lead to strange behavior
- This is A* search
Attempt 3: A* Search

Same idea, use $g(s) + h(s)$, with one requirement

- Demand that $h(s) \leq h^*(s)$ where $h^*(s)$ is true cost from s to goal.
- If heuristic has this property, it is called “admissible”
 - Optimistic! Never over-estimates
- Still need $h(s) \geq 0$
 - Negative heuristics can lead to strange behavior

- This is A* search
Attempt 3: A* Search

Origins: robots and planning

Animation: finding a path around obstacle

Credit: Wiki
Attempt 3: A* Search

Origins: robots and planning

Shakey the Robot, 1960’s

Credit: Wiki

Animation: finding a path around obstacle

Credit: Wiki
Attempt 3: A* Search

Origins: robots and planning

Shakey the Robot, 1960’s

Credit: Wiki

Animation: finding a path around obstacle

Credit: Wiki
Admissible Heuristic Functions

Have to be careful to ensure admissibility (optimism!)
Admissible Heuristic Functions

Have to be careful to ensure admissibility (optimism!)

- Example: 8 Game
Admissible Heuristic Functions

Have to be careful to ensure admissibility (optimism!)

- Example: 8 Game

<table>
<thead>
<tr>
<th>Example State</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>
Admissible Heuristic Functions

Have to be careful to ensure admissibility (optimism!)

- Example: 8 Game

Example State

\[
\begin{array}{ccc}
1 & 5 \\
2 & 6 & 3 \\
7 & 4 & 8 \\
\end{array}
\]

Goal State

\[
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 \\
\end{array}
\]
Admissible Heuristic Functions

Have to be careful to ensure admissibility (optimism!)

- Example: 8 Game

- One useful approach: relax constraints
Admissible Heuristic Functions

Have to be careful to ensure admissibility (**optimism!**)

- **Example:** 8 Game

 ![Example State](image)

 ![Goal State](image)

- One useful approach: **relax constraints**
 - $h(s) =$ number of tiles in wrong position
Admissible Heuristic Functions

Have to be careful to ensure admissibility (**optimism**!)

- **Example: 8 Game**
 - Example State:

1	5
2	6
7	4

 - Goal State:

1	2	3
4	5	6
7	8	

- One useful approach: **relax constraints**
 - \(h(s) \) = number of tiles in wrong position
 - allows tiles to fly to destination in a single step
Q 1.1: Consider finding the fastest driving route from one US city to another. Measure cost as the number of hours driven when driving at the speed limit. Let $h(s)$ be the number of hours needed to ride a bike from city s to your destination. $h(s)$ is

- A. An admissible heuristic
- B. Not an admissible heuristic
Q 1.1: Consider finding the fastest driving route from one US city to another. Measure cost as the number of hours driven when driving at the speed limit. Let $h(s)$ be the number of hours needed to ride a bike from city s to your destination. $h(s)$ is

- A. An admissible heuristic
- B. Not an admissible heuristic
Q 1.1: Consider finding the fastest driving route from one US city to another. Measure cost as the number of hours driven when driving at the speed limit. Let $h(s)$ be the number of hours needed to ride a bike from city s to your destination. $h(s)$ is

- A. An admissible heuristic No: riding your bike takes longer.
- B. Not an admissible heuristic
Q 1.2: Which of the following are admissible heuristics?

(i) \(h(s) = h^*(s) \)
(ii) \(h(s) = \max(2, h^*(s)) \)
(iii) \(h(s) = \min(2, h^*(s)) \)
(iv) \(h(s) = h^*(s) - 2 \)
(v) \(h(s) = \sqrt{h^*(s)} \)

- A. All of the above
- B. (i), (iii), (iv)
- C. (i), (iii)
- D. (i), (iii), (v)
Q 1.2: Which of the following are admissible heuristics?

(i) $h(s) = h^*(s)$
(ii) $h(s) = \max(2, h^*(s))$
(iii) $h(s) = \min(2, h^*(s))$
(iv) $h(s) = h^*(s) - 2$
(v) $h(s) = \sqrt{h^*(s)}$

- A. All of the above
- B. (i), (iii), (iv)
- C. (i), (iii)
- D. (i), (iii), (v)
Q 1.2: Which of the following are admissible heuristics?

(i) \(h(s) = h^*(s) \)

(ii) \(h(s) = \max(2, h^*(s)) \)
 No: \(h(s) \) might be too big

(iii) \(h(s) = \min(2, h^*(s)) \)

(iv) \(h(s) = h^*(s) - 2 \)
 No: \(h(s) \) might be negative

(v) \(h(s) = \sqrt{h^*(s)} \)
 No: if \(h^*(s) < 1 \) then \(h(s) \) is bigger

• A. All of the above
• B. (i), (iii), (iv)
• C. (i), (iii)
• D. (i), (iii), (v)
Heuristic Function Tradeoffs
Heuristic Function Tradeoffs

Dominance: h_2 dominates h_1 if for all states s,,
Heuristic Function Tradeoffs

Dominance: h_2 dominates h_1 if for all states s,

$$h_1(s) \leq h_2(s) \leq h^*(s)$$
Heuristic Function Tradeoffs

Dominance: h_2 dominates h_1 if for all states s,

$$h_1(s) \leq h_2(s) \leq h^*(s)$$

- **Idea**: we want to be as close to h^* as possible
 - But not over! **Must under-estimate true cost.**
Heuristic Function Tradeoffs

Dominance: h_2 dominates h_1 if for all states s,

$$h_1(s) \leq h_2(s) \leq h^*(s)$$

- **Idea**: we want to be as close to h^* as possible
 - But not over! **Must under-estimate true cost.**

- **Tradeoff**: being very close might require a very complex heuristic, expensive computation
 - Might be better off with cheaper heuristic & expand more nodes.
A* Termination

When should A* stop?
A* Termination

When should A* stop?

• One idea: as soon as we reach goal state?
A* Termination

When should A* **stop**?

- One idea: as soon as we reach goal state?
A* Termination

When should A* stop?

• One idea: as soon as we reach goal state?

 ![Diagram]

 - h is admissible, but note that we get $A \rightarrow B \rightarrow G$ (cost 1000)!
A* Termination

When should A* stop?
A* Termination

When should A* stop?

- **Rule:** terminate *when a goal is popped* from queue.
A* Termination

When should A* **stop**?

- **Rule**: terminate **when a goal is popped** from queue.
A* Termination

When should A* stop?

- Rule: terminate when a goal is popped from queue.

Note: taking $h = 0$ reduces to uniform cost search rule.
A* Revisiting Expanded States
A* Revisiting Expanded States

Possible to revisit an expanded state, get a shorter path:
A* Revisiting Expanded States

Possible to revisit an expanded state, get a shorter path:

![Diagram showing A* algorithm with states A, B, C, D, and G, with costs and heuristic values标注]
A* Revisiting Expanded States

Possible to revisit an expanded state, get a shorter path:

- Put D back into priority queue, smaller \(g+h \).
A* Revisiting Expanded States

Possible to revisit an expanded state, get a shorter path:

- Put D back into priority queue, smaller $g+h$.
- **Note**: uninformed search methods will not revisit expanded states.
A* Full Algorithm

1. Put the start state S on the priority queue. We call the priority queue OPEN.
2. If OPEN is empty, exit with failure.
3. Remove from OPEN and place on CLOSED a node n for which $f(n)$ is minimum (note that $f(n)=g(n)+h(n)$).
4. If n is a goal node, exit (recover path by tracing back pointers from n to S).
5. Expand n, generating all successors and attach to pointers back to n. For each successor n' of n:
 1. If n' is not already on OPEN or CLOSED compute $h(n')$, $g(n')=g(n)+c(n,n')$, $f(n')=g(n')+h(n')$, and place it on OPEN.
 2. If n' is already on OPEN or CLOSED, then check if $g(n')$ is lower for the new version of n'. If so, then:
 1. Redirect pointers backward from n' along path yielding lower $g(n')$.
 2. Put n' on OPEN.
 3. If $g(n')$ is not lower for the new version, do nothing.
A* Full Algorithm

1. Put the start state S on the priority queue. We call the priority queue OPEN
2. If OPEN is empty, exit with failure
3. Remove from OPEN and place on CLOSED a node n for which $f(n)$ is minimum (note that $f(n)=g(n)+h(n)$)
4. If n is a goal node, exit (recover path by tracing back pointers from n to S)
5. Expand n, generating all successors and attach to pointers back to n. For each successor n' of n
 1. If n' is not already on OPEN or CLOSED compute $h(n')$, $g(n')=g(n)+c(n,n')$, $f(n')=g(n')+h(n')$, and place it on OPEN.
 2. If n' is already on OPEN or CLOSED, then check if $g(n')$ is lower for the new version of n'. If so, then:
 1. Redirect pointers backward from n' along path yielding lower $g(n')$.
 2. Put n' on OPEN.
 3. If $g(n')$ is not lower for the new version, do nothing.
A* Analysis

Some properties:
A* Analysis

Some properties:

- Terminates!
A* Analysis

Some properties:

- Terminates!
- A* can use **lots of memory**:
A* Analysis

Some properties:

- Terminates!
- A* can use *lots of memory*:
 - $O(# \text{ states})$.
A* Analysis

Some properties:

- Terminates!
- A* can use **lots of memory**:
 - $O(\# \text{ states})$.
- Will run out on large problems.
Some properties:

- Terminates!
- A* can use **lots of memory**:
 - $O(\# \text{ states})$.
- Will run out on large problems.
- Next, we will consider some alternatives to deal with this.
Q 2.1: Consider two heuristics for the 8 puzzle problem. h_1 is the number of tiles in wrong position. h_2 is the l_1/Manhattan distance between the tiles and the goal location. How do h_1 and h_2 relate?

- A. h_2 dominates h_1
- B. h_1 dominates h_2
- C. Neither dominates the other
Q 2.1: Consider two heuristics for the 8 puzzle problem. h_1 is the number of tiles in wrong position. h_2 is the l_1/Manhattan distance between the tiles and the goal location. How do h_1 and h_2 relate?

- A. h_2 dominates h_1
- B. h_1 dominates h_2
- C. Neither dominates the other
Q 2.1: Consider two heuristics for the 8 puzzle problem. h_1 is the number of tiles in wrong position. h_2 is the l_1/Manhattan distance between the tiles and the goal location. How do h_1 and h_2 relate?

- A. h_2 dominates h_1
- B. h_1 dominates h_2 (No: h_1 is a distance where each entry is at most 1, h_2 can be greater)
- C. Neither dominates the other
Q 2.2: Consider the state space graph below. Goal states have bold borders. $h(s)$ is shown next to each node. What node will be expanded by A* after the initial state I?

- A. A
- B. B
- C. C
Q 2.2: Consider the state space graph below. Goal states have bold borders. $h(s)$ is shown next to each node. What node will be expanded by A* after the initial state I?

- A. A
- B. B
- C. C
IDA*: Iterative Deepening A*

Similar idea to our earlier iterative deepening.
IDA*: Iterative Deepening A*

Similar idea to our earlier iterative deepening.

- Bound the memory in search.
IDA*: Iterative Deepening A*

Similar idea to our earlier iterative deepening.

• Bound the memory in search.
• At each phase, don’t expand any node with $g(s) + h(s) > k$,
IDA*: Iterative Deepening A*

Similar idea to our earlier iterative deepening.

- Bound the memory in search.
- At each phase, don’t expand any node with $g(s) + h(s) > k$,
 - Assuming integer costs, do this for $k=0$, then $k=1$, then $k=2$, and so on
IDA*: Iterative Deepening A*

Similar idea to our earlier iterative deepening.

- Bound the memory in search.
- At each phase, don’t expand any node with $g(s) + h(s) > k$,
 - Assuming integer costs, do this for $k=0$, then $k=1$, then $k=2$, and so on
IDA*: Iterative Deepening A*

Similar idea to our earlier iterative deepening.

- Bound the memory in search.
- At each phase, don’t expand any node with $g(s) + h(s) > k$,
 - Assuming integer costs, do this for $k=0$, then $k=1$, then $k=2$, and so on
- Complete + optimal, might be costly time-wise
IDA*: Iterative Deepening A*

Similar idea to our earlier iterative deepening.

- Bound the memory in search.
- At each phase, don’t expand any node with $g(s) + h(s) > k$,
 - Assuming integer costs, do this for $k=0$, then $k=1$, then $k=2$, and so on

- Complete + optimal, might be costly time-wise
 - Revisit many nodes
IDA*: Iterative Deepening A*

Similar idea to our earlier iterative deepening.

- Bound the memory in search.
- At each phase, don’t expand any node with $g(s) + h(s) > k$,
 - Assuming integer costs, do this for $k=0$, then $k=1$, then $k=2$, and so on

- Complete + optimal, might be costly time-wise
 - Revisit many nodes
- Lower memory use than A*
IDA*: Properties

How many restarts do we expect?
IDA*: Properties

How many restarts do we expect?

- With integer costs, optimal solution C^*, at most C^*
IDA*: Properties

How many restarts do we expect?

• With integer costs, optimal solution C^*, at most C^*

What about non-integer costs?
IDA*: Properties

How many restarts do we expect?
• With integer costs, optimal solution C^*, at most C^*

What about non-integer costs?
• Initial threshold k. Use the same rule for non-expansion
IDA*: Properties

How many restarts do we expect?

- With integer costs, optimal solution C^*, at most C^*

What about non-integer costs?

- Initial threshold k. Use the same rule for non-expansion
- Set new k to be the min $g(s) + h(s)$ for non-expanded nodes
IDA*: Properties

How many restarts do we expect?
• With integer costs, optimal solution C^*, at most C^*

What about non-integer costs?
• Initial threshold k. Use the same rule for non-expansion
• Set new k to be the min $g(s) + h(s)$ for non-expanded nodes
• Worst case: restarted for each state
Beam Search

General approach (beyond A* too)
Beam Search

General approach (beyond A* too)

• Priority queue with fixed size k; beyond k nodes, discard!
Beam Search

General approach (beyond A* too)

- Priority queue with fixed size k; beyond k nodes, **discard**!
Beam Search

General approach (beyond A* too)

- Priority queue with fixed size k; beyond k nodes, **discard**!
- **Upside**: good memory efficiency
Beam Search

General approach (beyond A* too)

- Priority queue with fixed size k; beyond k nodes, **discard**!
- **Upside**: good memory efficiency
- **Downside**: not complete or optimal
Beam Search

General approach (beyond A* too)

• Priority queue with fixed size k; beyond k nodes, **discard**!

• **Upside**: good memory efficiency

• **Downside**: not complete or optimal

Variation:
Beam Search

General approach (beyond A* too)

- Priority queue with fixed size k; beyond k nodes, **discard**!
- **Upside**: good memory efficiency
- **Downside**: not complete or optimal

Variation:

- Priority queue with nodes that are at most ε worse than best node.
Recap and Examples
Recap and Examples

Example for A*:
Recap and Examples

Example for A*:

Initial state

Goal state

S

A

B

C

D

E

G

h=8

h=7

h=4

h=3

h=3

h=inf

h=inf

h=0

h=inf
Recap and Examples
Recap and Examples

Example for A*:
Recap and Examples

Example for A*:

- Initial state
 - S
 - A
 - B
 - C

- Goal state
 - D
 - E
 - G

- Heuristic values:
 - h=8 for S
 - h=7 for A
 - h=4 for B
 - h=3 for C
 - h=0 for G
 - h=inf for D and E
Recap and Examples

Example for A*:

- OPEN
 - S(0+8)
 - A(1+7) B(5+4) C(8+3)
- CLOSED
 - S(0+8)
- Initial state
- Goal state

Diagram:
- Initial state (S) connected to:
 - A (h=7)
 - B (h=4)
 - C (h=3)
- A connected to:
 - D (h=inf)
 - E (h=inf)
- B connected to G (h=0)
- C connected to:
 - G (h=0)

Path:
1. S → A → G
2. S → B → G
3. S → C → G

Key:
- OPEN:
 - Current node
- CLOSED:
 - Nodes visited
- h:
 - Heuristic value
Recap and Examples

Example for A*:

OPEN
S(0+8)
A(1+7) B(5+4) C(8+3)
B(5+4) C(8+3) D(4+inf) E(8+inf) G(10+0)
C(8+3) D(4+inf) E(8+inf) G(9+0)
C(8+3) D(4+inf) E(8+inf)

CLOSED

- S(0+8)
- S(0+8) A(1+7)
- S(0+8) A(1+7) B(5+4)
- S(0+8) A(1+7) B(5+4) G(9+0)

G → B → S
Recap and Examples
Recap and Examples

Example for IDA*:
Recap and Examples

Example for IDA*:

![Diagram of IDA* algorithm example]
Recap and Examples

Example for IDA*:
Threshold = 8
Recap and Examples

Example for IDA*:

Threshold = 8

```
PATH PREFIX  OPEN
-  S(0+8)
S  A(1+7)
S A  H(2+2) D(4+4)
S A H  D(4+4) F(6+1)
S A D H F  D(4+4)
S A D  
```

![Diagram of IDA* algorithm example with states and costs](image)
Recap and Examples
Recap and Examples

Example for IDA*:

Recap and Examples

Example for IDA*:

Initial state

Goal state

h=8

h=7

h=4

h=3

h=0

h=inf

h=inf

h=inf

h=inf

h=inf

h=1

h=2

h=inf

h=inf

h=inf

h=inf

h=inf
Recap and Examples

Example for IDA*:
Threshold = 9
Recap and Examples

Example for IDA*:

Threshold = 9

<table>
<thead>
<tr>
<th>PREFIX</th>
<th>OPEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>S(0+8)</td>
</tr>
<tr>
<td>S</td>
<td>A(1+7) B(5+4)</td>
</tr>
<tr>
<td>S A</td>
<td>B(5+4) H(2+2) D(4+4)</td>
</tr>
<tr>
<td>S A H</td>
<td>B(5+4) D(4+4) F(6+1)</td>
</tr>
<tr>
<td>S A H F</td>
<td>B(5+4) D(4+4)</td>
</tr>
<tr>
<td>S A D</td>
<td>B(5+4)</td>
</tr>
<tr>
<td>S B</td>
<td>G(9+0)</td>
</tr>
<tr>
<td>S B G</td>
<td></td>
</tr>
</tbody>
</table>

Diagram:

- **Initial state**: S
- **Goal state**: G
- **Threshold**: 9

The diagram shows the search process with nodes representing states and edges representing transitions. The heuristic values (h) are shown for each state, and the search progresses towards the goal state G, respecting the threshold. The prefix sequence is shown at each step of the search.
Recap and Examples
Recap and Examples

Example for Beam Search: $k=2$
Recap and Examples

Example for Beam Search: $k=2$
Recap and Examples

Example for Beam Search: \(k=2 \)
Recap and Examples

Example for Beam Search: $k=2$

CURRENT

OPEN

- S(0+8)

S (1+7) B(5+4)

A (2+2) D(4+4)

H (4+4) F(6+1)

D (4+4) G(10+0)

G (10+0)

Initial state

Goal state

G → F → H → A → S

Not optimal!
Summary

• Informed search: introduce heuristics
 – Not all approaches work: best-first greedy is bad

• A* algorithm
 – Properties of A*, idea of admissible heuristics

• Beyond A*
 – IDA*, beam search. Ways to deal with space requirements.
Acknowledgements: Adapted from materials by Jerry Zhu (University of Wisconsin).