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Homeworks: 

- Homework 9 due Thursday April 27

- Homework 10 due Thursday May 4


Course Evaluation:


Class roadmap:
Thursday, April 20 Games II

Tuesday, April 25 Reinforcement Learning I

Thursday, April 27 Reinforcement Learning I

Tuesday, May 2 Review of RL + Games

Thursday, May 4
 Ethics and Trust in AI

Outline
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Key Ideas in Games
Defining Games

Simultaneous Sequential

Normal 
Form

Minimax 
Search

-  
pruning

α β Heuristic 
Search

Dominant Strategies

Best Responses


Pure vs. Mixed Strategies

Equilibria Concepts: DSE and Nash Eq

Characterizing properties of games

What is difference between two?



Outline

• Sequential-move games

– Game trees, minimax, search approaches


• Speeding up sequential-move game search

– Pruning, heuristics
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Sequential-Move Games

More complex games with multiple moves
• Instead of normal form, extensive form
• Represent with a tree
• Rewards / pay-offs at leaves
• Find strategies: perform search over the tree

• Nash equilibrium still well-defined
– Backward induction Wiki
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II-Nim: Example Sequential-Move Game

2 piles of sticks, each with 2 sticks. 
• Each player takes one or more sticks from pile
• Take last stick: lose

• Two players: Max and Min
• If Max wins, its score is +1; otherwise -1 
• Min’s score is -1 * Max’s (two-player zero-sum)
• Use Max’s as the score of the game

(ii, ii)



Game Trajectory
(ii, ii) 



Game Trajectory
(ii, ii)


Max takes one stick from one pile


(i, ii) 



Game Trajectory
(ii, ii)


Max takes one stick from one pile


(i, ii)


Min takes two sticks from the other pile


(i,-) 



Game Trajectory
(ii, ii)


Max takes one stick from one pile


(i, ii)


Min takes two sticks from the other pile


(i,-)


Max takes the last stick


(-,-)

Max gets score -1



Game tree for II-Nim
(ii ii) Max   

Convention: score is w.r.t. the first 
player Max.  Min’s score = – Max

who is to move 
at this state

Two players: 

Max and Min

Max wants the largest score

Min wants the smallest score



(ii ii) Max   

(i  ii) Min   (-  ii) Min   Symmetry

(i ii) = (ii i)

Two players: 

Max and Min

Max wants the largest score

Min wants the smallest score

Game tree for II-Nim



(ii ii) Max   

(i  ii) Min   (-  ii) Min   

(i i) Max   (- ii) Max   (- i) Max   

Two players: 

Max and Min

Max wants the largest score

Min wants the smallest score

Game tree for II-Nim
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Two players: 

Max and Min

Max wants the largest score

Min wants the smallest score

The first player always loses, if the 
second player plays optimally!

Game tree for II-Nim
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Our Approach So Far

We find the minimax value/strategy bottom up

• Minimax value: score of terminal node when both players play 
optimally
– Max’s turn, take max of children
– Min’s turn, take min of children

• Can implement this as depth-first search: minimax algorithm



function Max-Value(s)

inputs:

	 s: current state in game, Max about to play

output: best-score (for Max) available from s

	 if ( s is a terminal state )

	 then return ( terminal value of s )

	 else 

	 	α := – infinity

	 	for each s’ in Succ(s)

	 	     α := max( α , Min-value(s’))

	 return α

function Min-Value(s)

output: best-score (for Min) available from s

	 if ( s is a terminal state )

	 then return ( terminal value of s)
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	 	β := infinity
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	 	     β := min( β , Max-value(s’))

	 return β
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function Max-Value(s)

inputs:

	 s: current state in game, Max about to play
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	 	α := – infinity
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function Min-Value(s)

output: best-score (for Min) available from s

	 if ( s is a terminal state )

	 then return ( terminal value of s)

	 else 

	 	β := infinity

	 	for each s’ in Succs(s)
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	 return β
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• O(bm)
Space complexity?
• O(bm)



Break & Quiz
Q 2.1: We are playing a game where Player A goes first and has 4 moves. Player B 
goes next and has 3 moves. Player A goes next and has 2 moves. Player B then has 
one move.


How many nodes are there in the minimax tree, including termination nodes 
(leaves)? 

• A. 23

• B. 65

• C. 41

• D. 2



Break & Quiz
Q 2.1: We are playing a game where Player A goes first and has 4 moves. Player B 
goes next and has 3 moves. Player A goes next and has 2 moves. Player B then has 
one move.


How many nodes are there in the minimax tree, including termination nodes 
(leaves)? 

• A. 23

• B. 65

• C. 41

• D. 2



Break & Quiz
Q 2.1: We are playing a game where Player A goes first and has 4 moves. Player B 
goes next and has 3 moves. Player A goes next and has 2 moves. Player B then has 
one move.

How many nodes are there in the minimax tree, including termination nodes 
(leaves)? 

• A. 23

• B. 65 (1 + 4 + 4*3 + 4*3*2 + 4*3*2 = 65. Note the root and leaf nodes.)

• C. 41

• D. 2
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Break & Quiz
Q 2.2: During minimax tree search, must we examine every node?


• A. Always (No: consider layer k, where we take the max of all the mins of its 
children at layer k+1. If the current value of a min node at k+1 already smaller 
than the current max, we don’t need to continue the minimization.)


• B. Sometimes

• C. Never (No: the event above may simply not happen).
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Alpha-beta pruning
function Max-Value (s,α,β)

inputs:

	 s: current state in game, Max about to play

	 α: best score (highest) for Max along path to s

	 β: best score (lowest) for Min along path to s

output: min(β , best-score (for Max) available from s)

	 if ( s is a terminal state )

	 then return ( terminal value of s )

	 else for each s’ in Succ(s)

	 	 α := max( α , Min-value(s’,α,β))

	 	 if ( α ≥ β ) then return β   /* alpha pruning */

	 return α

function Min-Value(s,α,β)

output: max(α , best-score (for Min) available from s )

	 if ( s is a terminal state )

	 then return ( terminal value of s)

	 else for each s’ in Succs(s)

	 	 β := min( β , Max-value(s’,α,β))

          if (α ≥ β ) then return α   /* beta pruning */

	 return β

Starting from the root:

Max-Value(root, -∞, +∞)
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How effective is alpha-beta pruning?

• Depends on the order of successors!
– Best case, the # of nodes to search is O(bm/2)
– Happens when each player's best move is the leftmost child.  
– The worst case is no pruning at all.

• In DeepBlue, the average branching factor was about 6 with 
alpha-beta instead of 35-40 without.

Alpha-Beta Pruning
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Minimax With Heuristics

Note that long games may require huge computation
• To deal with this: limit d for the search depth
• Q: What to do at depth d, but no termination yet?


– A: Use a heuristic evaluation function e(x)

Credit: Dana Nau

*If  then this pseudocode is equivalent to earlier minimax pseudocode. Check yourself!d = ∞
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Heuristic Evaluation Functions
• e(x) can be any computable function of x; e.g. a weighted sum 

of features (like our linear models)

• Chess example: fi(x) = difference between number of white 
and black, with i ranging over piece types.

– Set weights according to piece importance

– E.g., 1(# white pawns - # black pawns) + 3(#white knights - # black 

knights)
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Going Further

• Monte Carlo tree search (MCTS)

– Uses random sampling of the search space

– Choose some children (heuristics to figure out #)

– Record results, use for future play

– Self-play


• AlphaGo and other big results!

Credit: Surag Nair



From Extensive Form back to Normal Form Game
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From Extensive Form back to Normal Form Game
• A pure strategy for a player is the mapping 

between all possible states the player can 
see, to the move the player would make. (1)-
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From Extensive Form back to Normal Form Game
• A pure strategy for a player is the mapping 

between all possible states the player can 
see, to the move the player would make.

• Player A has 4 pure strategies:
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From Extensive Form back to Normal Form Game
• A pure strategy for a player is the mapping 

between all possible states the player can 
see, to the move the player would make.

• Player A has 4 pure strategies:
A’s strategy I: (1L, 4L)
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From Extensive Form back to Normal Form Game
• A pure strategy for a player is the mapping 

between all possible states the player can 
see, to the move the player would make.

• Player A has 4 pure strategies:
A’s strategy I: (1L, 4L)
A’s strategy II: (1L, 4R)
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From Extensive Form back to Normal Form Game
• A pure strategy for a player is the mapping 

between all possible states the player can 
see, to the move the player would make.

• Player A has 4 pure strategies:
A’s strategy I: (1L, 4L)
A’s strategy II: (1L, 4R)
A’s strategy III: (1R, 4L)
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From Extensive Form back to Normal Form Game
• A pure strategy for a player is the mapping 

between all possible states the player can 
see, to the move the player would make.

• Player A has 4 pure strategies:
A’s strategy I: (1L, 4L)
A’s strategy II: (1L, 4R)
A’s strategy III: (1R, 4L)
A’s strategy IV: (1R, 4R)
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From Extensive Form back to Normal Form Game
• A pure strategy for a player is the mapping 

between all possible states the player can 
see, to the move the player would make.

• Player A has 4 pure strategies:
A’s strategy I: (1L, 4L)
A’s strategy II: (1L, 4R)
A’s strategy III: (1R, 4L)
A’s strategy IV: (1R, 4R)

• Player B has 3 pure strategies:
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From Extensive Form back to Normal Form Game
• A pure strategy for a player is the mapping 

between all possible states the player can 
see, to the move the player would make.

• Player A has 4 pure strategies:
A’s strategy I: (1L, 4L)
A’s strategy II: (1L, 4R)
A’s strategy III: (1R, 4L)
A’s strategy IV: (1R, 4R)

• Player B has 3 pure strategies:
B’s strategy I: (2L, 3R)
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From Extensive Form back to Normal Form Game
• A pure strategy for a player is the mapping 

between all possible states the player can 
see, to the move the player would make.

• Player A has 4 pure strategies:
A’s strategy I: (1L, 4L)
A’s strategy II: (1L, 4R)
A’s strategy III: (1R, 4L)
A’s strategy IV: (1R, 4R)

• Player B has 3 pure strategies:
B’s strategy I: (2L, 3R)
B’s strategy II: (2M, 3R)
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From Extensive Form back to Normal Form Game
• A pure strategy for a player is the mapping 

between all possible states the player can 
see, to the move the player would make.

• Player A has 4 pure strategies:
A’s strategy I: (1L, 4L)
A’s strategy II: (1L, 4R)
A’s strategy III: (1R, 4L)
A’s strategy IV: (1R, 4R)

• Player B has 3 pure strategies:
B’s strategy I: (2L, 3R)
B’s strategy II: (2M, 3R)
B’s strategy III: (2R, 3R)
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From Extensive Form back to Normal Form Game
• A pure strategy for a player is the mapping 

between all possible states the player can 
see, to the move the player would make.

• Player A has 4 pure strategies:
A’s strategy I: (1L, 4L)
A’s strategy II: (1L, 4R)
A’s strategy III: (1R, 4L)
A’s strategy IV: (1R, 4R)

• Player B has 3 pure strategies:
B’s strategy I: (2L, 3R)
B’s strategy II: (2M, 3R)
B’s strategy III: (2R, 3R)

• How many pure strategies if each player 
can see N states, and has b moves at each 
state?

(1)-
A

(4)-
A

(3)-
B

(2)-
B

( )

+5

( )

+4

( )

-1

( )

+3

( )

+7

L

R

RR
M

L

RL



Matrix Normal Form of games

• The matrix normal form is the game value matrix indexed by each player’s 
strategies.

A’s strategy I: (1L, 4L)

A’s strategy II: (1L, 4R)

A’s strategy III: (1R, 4L)

A’s strategy IV: (1R, 4R)

B’s strategy I: (2L, 3R)

B’s strategy II: (2M, 3R)

B’s strategy III: (2R, 3R)
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B-IIIB-IIB-I

555A-IV

555A-III

437A-II

-137A-I

The matrix encodes 
every outcome of the 

game!  The rules etc. are 
no longer needed.



Another example of normal form

• How many pure strategies does A have?

• How many does B have?

• What is the matrix form of this game?
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• How many pure strategies does A have?  4

A-I (1L, 4L)  A-II (1L,4R)  A-III (1R,4L)  A-IV (1R, 4R)

• How many does B have?  4

B-I (2L, 3L)  B-II (2L,3R)  B-III (2R,3L)  B-IV (2R, 3R)

• What is the matrix form of this game?

Matrix normal form example
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Minimax in Matrix Normal Form
• Player A: for each strategy, 

consider all B’s counter 
strategies (a row in the matrix), 
find the minimum value in that 
row.  Pick the row with the 
maximum minimum value.


• Here maximin=5
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Minimax in Matrix Normal Form

• Player B: find the maximum value in 
each column.  Pick the column with 
the minimum maximum value.


• Here minimax = 5
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Fundamental game theory result (proved by 
von Neumann):


In a 2-player, zero-sum game of perfect 
information (sequential moves), 
Minimax==Maximin.  And there always 
exists an optimal pure strategy for each 
player.



Minimax in Matrix Normal Form

• We can also check for mutual best 
responses
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Minimax in Matrix Normal Form

• Player B: find the 
maximum value in each 
column.  Pick the column 
with the minimum 
maximum value.


• Here minimax = 5
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Fundamental game theory result 
(proved by von Neumann):


In a 2-player, zero-sum game 
of perfect information, 
Minimax==Maximin.  And 
there always exists an 
optimal pure strategy for 
each player.

Interestingly, A can tell B in 
advance what strategy A will 
use (the maximin), and this 
information will not help B!

Similarly B can tell A what 

strategy B will use.

In fact A knows what B’s 

strategy will be.

And B knows A’s too.


And A knows that B knows

…


The game is at an equilibrium


