
CS 540 Introduction to Artificial Intelligence
Games II

University of Wisconsin-Madison
Spring 2023

2

Homeworks:

- Homework 9 due Thursday April 27

- Homework 10 due Thursday May 4

Course Evaluation:

Class roadmap:
Thursday, April 20 Games II

Tuesday, April 25 Reinforcement Learning I

Thursday, April 27 Reinforcement Learning I

Tuesday, May 2 Review of RL + Games

Thursday, May 4
 Ethics and Trust in AI

Outline

3

Key Ideas in Games

3

Key Ideas in Games
Defining Games

3

Key Ideas in Games
Defining Games Characterizing properties of games

3

Key Ideas in Games
Defining Games

Simultaneous

Characterizing properties of games

3

Key Ideas in Games
Defining Games

Simultaneous Sequential

Characterizing properties of games

3

Key Ideas in Games
Defining Games

Simultaneous Sequential

Characterizing properties of games

What is difference between two?

3

Key Ideas in Games
Defining Games

Simultaneous Sequential

Normal
Form

Characterizing properties of games

What is difference between two?

3

Key Ideas in Games
Defining Games

Simultaneous Sequential

Normal
Form

Minimax
Search

-
pruning

α β Heuristic
Search

Characterizing properties of games

What is difference between two?

3

Key Ideas in Games
Defining Games

Simultaneous Sequential

Normal
Form

Minimax
Search

-
pruning

α β Heuristic
Search

Dominant Strategies

Best Responses

Pure vs. Mixed Strategies

Equilibria Concepts: DSE and Nash Eq

Characterizing properties of games

What is difference between two?

Outline

• Sequential-move games

– Game trees, minimax, search approaches

• Speeding up sequential-move game search

– Pruning, heuristics

Sequential-Move Games

More complex games with multiple moves

Sequential-Move Games

More complex games with multiple moves
• Instead of normal form, extensive form

Sequential-Move Games

More complex games with multiple moves
• Instead of normal form, extensive form
• Represent with a tree

Sequential-Move Games

More complex games with multiple moves
• Instead of normal form, extensive form
• Represent with a tree
• Rewards / pay-offs at leaves

Sequential-Move Games

More complex games with multiple moves
• Instead of normal form, extensive form
• Represent with a tree
• Rewards / pay-offs at leaves

Wiki

Sequential-Move Games

More complex games with multiple moves
• Instead of normal form, extensive form
• Represent with a tree
• Rewards / pay-offs at leaves
• Find strategies: perform search over the tree

Wiki

Sequential-Move Games

More complex games with multiple moves
• Instead of normal form, extensive form
• Represent with a tree
• Rewards / pay-offs at leaves
• Find strategies: perform search over the tree

• Nash equilibrium still well-defined
Wiki

Sequential-Move Games

More complex games with multiple moves
• Instead of normal form, extensive form
• Represent with a tree
• Rewards / pay-offs at leaves
• Find strategies: perform search over the tree

• Nash equilibrium still well-defined
– Backward induction Wiki

II-Nim: Example Sequential-Move Game

II-Nim: Example Sequential-Move Game

2 piles of sticks, each with 2 sticks.

II-Nim: Example Sequential-Move Game

2 piles of sticks, each with 2 sticks.
• Each player takes one or more sticks from pile

II-Nim: Example Sequential-Move Game

2 piles of sticks, each with 2 sticks.
• Each player takes one or more sticks from pile
• Take last stick: lose

II-Nim: Example Sequential-Move Game

2 piles of sticks, each with 2 sticks.
• Each player takes one or more sticks from pile
• Take last stick: lose

(ii, ii)

II-Nim: Example Sequential-Move Game

2 piles of sticks, each with 2 sticks.
• Each player takes one or more sticks from pile
• Take last stick: lose

• Two players: Max and Min

(ii, ii)

II-Nim: Example Sequential-Move Game

2 piles of sticks, each with 2 sticks.
• Each player takes one or more sticks from pile
• Take last stick: lose

• Two players: Max and Min
• If Max wins, its score is +1; otherwise -1

(ii, ii)

II-Nim: Example Sequential-Move Game

2 piles of sticks, each with 2 sticks.
• Each player takes one or more sticks from pile
• Take last stick: lose

• Two players: Max and Min
• If Max wins, its score is +1; otherwise -1
• Min’s score is -1 * Max’s (two-player zero-sum)

(ii, ii)

II-Nim: Example Sequential-Move Game

2 piles of sticks, each with 2 sticks.
• Each player takes one or more sticks from pile
• Take last stick: lose

• Two players: Max and Min
• If Max wins, its score is +1; otherwise -1
• Min’s score is -1 * Max’s (two-player zero-sum)
• Use Max’s as the score of the game

(ii, ii)

Game Trajectory
(ii, ii)

Game Trajectory
(ii, ii)

Max takes one stick from one pile

(i, ii)

Game Trajectory
(ii, ii)

Max takes one stick from one pile

(i, ii)

Min takes two sticks from the other pile

(i,-)

Game Trajectory
(ii, ii)

Max takes one stick from one pile

(i, ii)

Min takes two sticks from the other pile

(i,-)

Max takes the last stick

(-,-)

Max gets score -1

Game tree for II-Nim
(ii ii) Max

Convention: score is w.r.t. the first
player Max. Min’s score = – Max

who is to move
at this state

Two players:

Max and Min

Max wants the largest score

Min wants the smallest score

(ii ii) Max

(i ii) Min (- ii) Min Symmetry

(i ii) = (ii i)

Two players:

Max and Min

Max wants the largest score

Min wants the smallest score

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max (- ii) Max (- i) Max

Two players:

Max and Min

Max wants the largest score

Min wants the smallest score

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max (- ii) Max (- i) Max (- i) Max (- -) Max
+1

Two players:

Max and Min

Max wants the largest score

Min wants the smallest score

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max (- ii) Max (- i) Max (- i) Max (- -) Max
+1

(- i) Min (- -) Min
-1

Two players:

Max and Min

Max wants the largest score

Min wants the smallest score

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max (- ii) Max (- i) Max (- i) Max (- -) Max
+1

(- i) Min (- -) Min
-1

(- i) Min

Two players:

Max and Min

Max wants the largest score

Min wants the smallest score

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max (- ii) Max (- i) Max (- i) Max (- -) Max
+1

(- i) Min (- -) Min
-1

(- i) Min (- -) Min
-1

Two players:

Max and Min

Max wants the largest score

Min wants the smallest score

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max (- ii) Max (- i) Max (- i) Max (- -) Max
+1

(- i) Min (- -) Min
-1

(- i) Min (- -) Min
-1

(- -) Min
-1

Two players:

Max and Min

Max wants the largest score

Min wants the smallest score

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max (- ii) Max (- i) Max (- i) Max (- -) Max
+1

(- i) Min (- -) Min
-1

(- i) Min (- -) Min
-1

(- -) Min
-1

(- -) Max
+1

Two players:

Max and Min

Max wants the largest score

Min wants the smallest score

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max (- ii) Max (- i) Max (- i) Max (- -) Max
+1

(- i) Min (- -) Min
-1

(- i) Min (- -) Min
-1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:

Max and Min

Max wants the largest score

Min wants the smallest score

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max (- ii) Max (- i) Max (- i) Max (- -) Max
+1

(- i) Min
+1

(- -) Min
-1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:

Max and Min

Max wants the largest score

Min wants the smallest score

(- -) Min
-1

(- i) Min
+1

Game tree for II-Nim

(ii ii) Max

(i ii) Min (- ii) Min

(i i) Max
+1

(- ii) Max
+1 (- i) Max

-1
(- i) Max
-1 (- -) Max

+1

(- i) Min
+1

(- i) Min
+1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:

Max and Min

Max wants the largest score

Min wants the smallest score

(- -) Min
-1

(- -) Min
-1

Game tree for II-Nim

(ii ii) Max

(i i) Max
+1

(- ii) Max
+1

(- i) Max
-1

(- i) Max
-1

(- -) Max
+1

(- i) Min
+1

(- i) Min
+1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:

Max and Min

Max wants the largest score

Min wants the smallest score

(- -) Min
-1

(- -) Min
-1

(- ii) Min
-1

(i ii) Min
-1

Game tree for II-Nim

(i i) Max
+1

(- ii) Max
+1

(- i) Max
-1

(- i) Max
-1

(- -) Max
+1

(- i) Min
+1

(- i) Min
+1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:

Max and Min

Max wants the largest score

Min wants the smallest score

(- -) Min
-1

(- -) Min
-1

(- ii) Min
-1

(i ii) Min
-1

(ii ii) Max
-1

Game tree for II-Nim

(i i) Max
+1

(- ii) Max
+1

(- i) Max
-1

(- i) Max
-1

(- -) Max
+1

(- i) Min
+1

(- i) Min
+1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:

Max and Min

Max wants the largest score

Min wants the smallest score

(- -) Min
-1

(- -) Min
-1

(- ii) Min
-1

(i ii) Min
-1

(ii ii) Max
-1

Game tree for II-Nim

(ii ii) Max
-1

(i ii) Min
-1

(- ii) Min
-1

(i i) Max
+1

(- ii) Max
+1

(- i) Max
-1

(- i) Max
-1

(- -) Max
+1

(- i) Min
+1

(- -) Min
-1

(- i) Min
+1

(- -) Min
-1

(- -) Min
-1

(- -) Max
+1

(- -) Max
+1

Two players:

Max and Min

Max wants the largest score

Min wants the smallest score

The first player always loses, if the
second player plays optimally!

Game tree for II-Nim

Our Approach So Far

We find the minimax value/strategy bottom up

Our Approach So Far

We find the minimax value/strategy bottom up

• Minimax value: score of terminal node when both players play
optimally

Our Approach So Far

We find the minimax value/strategy bottom up

• Minimax value: score of terminal node when both players play
optimally
– Max’s turn, take max of children

Our Approach So Far

We find the minimax value/strategy bottom up

• Minimax value: score of terminal node when both players play
optimally
– Max’s turn, take max of children
– Min’s turn, take min of children

Our Approach So Far

We find the minimax value/strategy bottom up

• Minimax value: score of terminal node when both players play
optimally
– Max’s turn, take max of children
– Min’s turn, take min of children

• Can implement this as depth-first search: minimax algorithm

function Max-Value(s)

inputs:

	 s: current state in game, Max about to play

output: best-score (for Max) available from s

	 if (s is a terminal state)

	 then return (terminal value of s)

	 else

	 	α := – infinity

	 	for each s’ in Succ(s)

	 	 α := max(α , Min-value(s’))

	 return α

function Min-Value(s)

output: best-score (for Min) available from s

	 if (s is a terminal state)

	 then return (terminal value of s)

	 else

	 	β := infinity

	 	for each s’ in Succs(s)

	 	 β := min(β , Max-value(s’))

	 return β

Minimax Algorithm

function Max-Value(s)

inputs:

	 s: current state in game, Max about to play

output: best-score (for Max) available from s

	 if (s is a terminal state)

	 then return (terminal value of s)

	 else

	 	α := – infinity

	 	for each s’ in Succ(s)

	 	 α := max(α , Min-value(s’))

	 return α

function Min-Value(s)

output: best-score (for Min) available from s

	 if (s is a terminal state)

	 then return (terminal value of s)

	 else

	 	β := infinity

	 	for each s’ in Succs(s)

	 	 β := min(β , Max-value(s’))

	 return β

Minimax Algorithm
Time complexity?

function Max-Value(s)

inputs:

	 s: current state in game, Max about to play

output: best-score (for Max) available from s

	 if (s is a terminal state)

	 then return (terminal value of s)

	 else

	 	α := – infinity

	 	for each s’ in Succ(s)

	 	 α := max(α , Min-value(s’))

	 return α

function Min-Value(s)

output: best-score (for Min) available from s

	 if (s is a terminal state)

	 then return (terminal value of s)

	 else

	 	β := infinity

	 	for each s’ in Succs(s)

	 	 β := min(β , Max-value(s’))

	 return β

Minimax Algorithm
Time complexity?
• O(bm)

function Max-Value(s)

inputs:

	 s: current state in game, Max about to play

output: best-score (for Max) available from s

	 if (s is a terminal state)

	 then return (terminal value of s)

	 else

	 	α := – infinity

	 	for each s’ in Succ(s)

	 	 α := max(α , Min-value(s’))

	 return α

function Min-Value(s)

output: best-score (for Min) available from s

	 if (s is a terminal state)

	 then return (terminal value of s)

	 else

	 	β := infinity

	 	for each s’ in Succs(s)

	 	 β := min(β , Max-value(s’))

	 return β

Minimax Algorithm
Time complexity?
• O(bm)
Space complexity?

function Max-Value(s)

inputs:

	 s: current state in game, Max about to play

output: best-score (for Max) available from s

	 if (s is a terminal state)

	 then return (terminal value of s)

	 else

	 	α := – infinity

	 	for each s’ in Succ(s)

	 	 α := max(α , Min-value(s’))

	 return α

function Min-Value(s)

output: best-score (for Min) available from s

	 if (s is a terminal state)

	 then return (terminal value of s)

	 else

	 	β := infinity

	 	for each s’ in Succs(s)

	 	 β := min(β , Max-value(s’))

	 return β

Minimax Algorithm
Time complexity?
• O(bm)
Space complexity?
• O(bm)

function Max-Value(s)

inputs:

	 s: current state in game, Max about to play

output: best-score (for Max) available from s

	 if (s is a terminal state)

	 then return (terminal value of s)

	 else

	 	α := – infinity

	 	for each s’ in Succ(s)

	 	 α := max(α , Min-value(s’))

	 return α

function Min-Value(s)

output: best-score (for Min) available from s

	 if (s is a terminal state)

	 then return (terminal value of s)

	 else

	 	β := infinity

	 	for each s’ in Succs(s)

	 	 β := min(β , Max-value(s’))

	 return β

Minimax Algorithm
Time complexity?
• O(bm)
Space complexity?
• O(bm)

Break & Quiz
Q 2.1: We are playing a game where Player A goes first and has 4 moves. Player B
goes next and has 3 moves. Player A goes next and has 2 moves. Player B then has
one move.

How many nodes are there in the minimax tree, including termination nodes
(leaves)?

• A. 23

• B. 65

• C. 41

• D. 2

Break & Quiz
Q 2.1: We are playing a game where Player A goes first and has 4 moves. Player B
goes next and has 3 moves. Player A goes next and has 2 moves. Player B then has
one move.

How many nodes are there in the minimax tree, including termination nodes
(leaves)?

• A. 23

• B. 65

• C. 41

• D. 2

Break & Quiz
Q 2.1: We are playing a game where Player A goes first and has 4 moves. Player B
goes next and has 3 moves. Player A goes next and has 2 moves. Player B then has
one move.

How many nodes are there in the minimax tree, including termination nodes
(leaves)?

• A. 23

• B. 65 (1 + 4 + 4*3 + 4*3*2 + 4*3*2 = 65. Note the root and leaf nodes.)

• C. 41

• D. 2

Break & Quiz
Q 2.2: During minimax tree search, must we examine every node?

• A. Always

• B. Sometimes

• C. Never

Break & Quiz
Q 2.2: During minimax tree search, must we examine every node?

• A. Always

• B. Sometimes

• C. Never

Break & Quiz
Q 2.2: During minimax tree search, must we examine every node?

• A. Always (No: consider layer k, where we take the max of all the mins of its
children at layer k+1. If the current value of a min node at k+1 already smaller
than the current max, we don’t need to continue the minimization.)

• B. Sometimes

• C. Never (No: the event above may simply not happen).

S

A

C

200

D

100

B

E

120

F

20

max

min

max

min

G

H

150

I

100

α=-∞

Minimax algorithm in execution

Minimax algorithm in execution

S

A

C

200

D

100

B

E

120

F

20

max

min

max

min

G

α=-∞

β=+∞

H

150

I

100

S

A

C

200

D

100

B

E

120

F

20

max

min

max

min

G

α=-∞

β=200

H

150

I

100

The execution on the
terminal nodes is omitted.

Minimax algorithm in execution

S

A

100

C

200

D

100

B

E

120

F

20

max

min

max

min

G

α=-∞

β=100

H

150

I

100

Minimax algorithm in execution

S

A

100

C

200

D

100

B

E

120

F

20

max

min

max

min

G

α=100

β=100

H

150

I

100

Minimax algorithm in execution

S

B

E

120

F

20

max

min

max

min

G

α=100

β=+∞A

100

C

200

D

100

H

150

I

100

Minimax algorithm in execution

Minimax algorithm in execution

S

B

E

120

F

20

max

min

max

min

G

β=120A

100

C

200

D

100

α=100

H

150

I

100

Minimax algorithm in execution

S

B

E

120

F

20

max

min

max

min

G

β=20A

100

C

200

D

100

α=100

H

150

I

100

Minimax algorithm in execution

S

B

E

120

F

20

max

min

max

min

G

β=20A

100

C

200

D

100

α=100

H

150

I

100

α=-∞

Minimax algorithm in execution

S

B

E

120

F

20

max

min

max

min

G

β=20A

100

C

200

D

100

α=100

H

150

I

100

α=150

Minimax algorithm in execution

S

B

E

120

F

20

max

min

max

min

G

β=20A

100

C

200

D

100

α=100

H

150

I

100

α=150

Minimax algorithm in execution

S

B

E

120

F

20

max

min

max

min

G

150

β=20A

100

C

200

D

100

α=100

H

150

I

100

Minimax algorithm in execution

S

B

20

E

120

F

20

max

min

max

min

G

150

A

100

C

200

D

100

α=100

H

150

I

100

Can We Do Better?

One downside: we had to examine the entire tree

Can We Do Better?

One downside: we had to examine the entire tree
An idea to speed things up: pruning

Can We Do Better?

One downside: we had to examine the entire tree
An idea to speed things up: pruning
• Goal: want the same minimax value, but faster

Can We Do Better?

One downside: we had to examine the entire tree
An idea to speed things up: pruning
• Goal: want the same minimax value, but faster
• We can get rid of bad branches

Can We Do Better?

One downside: we had to examine the entire tree
An idea to speed things up: pruning
• Goal: want the same minimax value, but faster
• We can get rid of bad branches
• Same principle as quiz question 2.

Can We Do Better?

One downside: we had to examine the entire tree
An idea to speed things up: pruning
• Goal: want the same minimax value, but faster
• We can get rid of bad branches
• Same principle as quiz question 2.

Alpha-beta pruning
function Max-Value (s,α,β)

inputs:

	 s: current state in game, Max about to play

	 α: best score (highest) for Max along path to s

	 β: best score (lowest) for Min along path to s

output: min(β , best-score (for Max) available from s)

	 if (s is a terminal state)

	 then return (terminal value of s)

	 else for each s’ in Succ(s)

	 	 α := max(α , Min-value(s’,α,β))

	 	 if (α ≥ β) then return β /* alpha pruning */

	 return α

function Min-Value(s,α,β)

output: max(α , best-score (for Min) available from s)

	 if (s is a terminal state)

	 then return (terminal value of s)

	 else for each s’ in Succs(s)

	 	 β := min(β , Max-value(s’,α,β))

 if (α ≥ β) then return α /* beta pruning */

	 return β

Starting from the root:

Max-Value(root, -∞, +∞)

How effective is alpha-beta pruning?

Alpha-Beta Pruning

How effective is alpha-beta pruning?

Alpha-Beta Pruning

How effective is alpha-beta pruning?

• Depends on the order of successors!

Alpha-Beta Pruning

How effective is alpha-beta pruning?

• Depends on the order of successors!
– Best case, the # of nodes to search is O(bm/2)

Alpha-Beta Pruning

How effective is alpha-beta pruning?

• Depends on the order of successors!
– Best case, the # of nodes to search is O(bm/2)
– Happens when each player's best move is the leftmost child.

Alpha-Beta Pruning

How effective is alpha-beta pruning?

• Depends on the order of successors!
– Best case, the # of nodes to search is O(bm/2)
– Happens when each player's best move is the leftmost child.
– The worst case is no pruning at all.

Alpha-Beta Pruning

How effective is alpha-beta pruning?

• Depends on the order of successors!
– Best case, the # of nodes to search is O(bm/2)
– Happens when each player's best move is the leftmost child.
– The worst case is no pruning at all.

• In DeepBlue, the average branching factor was about 6 with
alpha-beta instead of 35-40 without.

Alpha-Beta Pruning

Minimax With Heuristics

*If then this pseudocode is equivalent to earlier minimax pseudocode. Check yourself!d = ∞

Minimax With Heuristics

Note that long games may require huge computation

*If then this pseudocode is equivalent to earlier minimax pseudocode. Check yourself!d = ∞

Minimax With Heuristics

Note that long games may require huge computation
• To deal with this: limit d for the search depth

*If then this pseudocode is equivalent to earlier minimax pseudocode. Check yourself!d = ∞

Minimax With Heuristics

Note that long games may require huge computation
• To deal with this: limit d for the search depth
• Q: What to do at depth d, but no termination yet?

– A: Use a heuristic evaluation function e(x)

*If then this pseudocode is equivalent to earlier minimax pseudocode. Check yourself!d = ∞

Minimax With Heuristics

Note that long games may require huge computation
• To deal with this: limit d for the search depth
• Q: What to do at depth d, but no termination yet?

– A: Use a heuristic evaluation function e(x)

Credit: Dana Nau

*If then this pseudocode is equivalent to earlier minimax pseudocode. Check yourself!d = ∞

Heuristic Evaluation Functions

Heuristic Evaluation Functions
• e(x) can be any computable function of x; e.g. a weighted sum

of features (like our linear models)

Heuristic Evaluation Functions
• e(x) can be any computable function of x; e.g. a weighted sum

of features (like our linear models)

Heuristic Evaluation Functions
• e(x) can be any computable function of x; e.g. a weighted sum

of features (like our linear models)

• Chess example: fi(x) = difference between number of white
and black, with i ranging over piece types.

– Set weights according to piece importance

– E.g., 1(# white pawns - # black pawns) + 3(#white knights - # black

knights)

Going Further

Going Further

• Monte Carlo tree search (MCTS)

– Uses random sampling of the search space

– Choose some children (heuristics to figure out #)

– Record results, use for future play

– Self-play

Going Further

• Monte Carlo tree search (MCTS)

– Uses random sampling of the search space

– Choose some children (heuristics to figure out #)

– Record results, use for future play

– Self-play

• AlphaGo and other big results!

Going Further

• Monte Carlo tree search (MCTS)

– Uses random sampling of the search space

– Choose some children (heuristics to figure out #)

– Record results, use for future play

– Self-play

• AlphaGo and other big results!

Credit: Surag Nair

From Extensive Form back to Normal Form Game

(1)-
A

(4)-
A

(3)-
B

(2)-
B

()

+5

()

+4

()

-1

()

+3

()

+7

L

R

RR
M

L

RL

From Extensive Form back to Normal Form Game
• A pure strategy for a player is the mapping

between all possible states the player can
see, to the move the player would make. (1)-

A

(4)-
A

(3)-
B

(2)-
B

()

+5

()

+4

()

-1

()

+3

()

+7

L

R

RR
M

L

RL

From Extensive Form back to Normal Form Game
• A pure strategy for a player is the mapping

between all possible states the player can
see, to the move the player would make.

• Player A has 4 pure strategies:
(1)-
A

(4)-
A

(3)-
B

(2)-
B

()

+5

()

+4

()

-1

()

+3

()

+7

L

R

RR
M

L

RL

From Extensive Form back to Normal Form Game
• A pure strategy for a player is the mapping

between all possible states the player can
see, to the move the player would make.

• Player A has 4 pure strategies:
A’s strategy I: (1L, 4L)

(1)-
A

(4)-
A

(3)-
B

(2)-
B

()

+5

()

+4

()

-1

()

+3

()

+7

L

R

RR
M

L

RL

From Extensive Form back to Normal Form Game
• A pure strategy for a player is the mapping

between all possible states the player can
see, to the move the player would make.

• Player A has 4 pure strategies:
A’s strategy I: (1L, 4L)
A’s strategy II: (1L, 4R)

(1)-
A

(4)-
A

(3)-
B

(2)-
B

()

+5

()

+4

()

-1

()

+3

()

+7

L

R

RR
M

L

RL

From Extensive Form back to Normal Form Game
• A pure strategy for a player is the mapping

between all possible states the player can
see, to the move the player would make.

• Player A has 4 pure strategies:
A’s strategy I: (1L, 4L)
A’s strategy II: (1L, 4R)
A’s strategy III: (1R, 4L)

(1)-
A

(4)-
A

(3)-
B

(2)-
B

()

+5

()

+4

()

-1

()

+3

()

+7

L

R

RR
M

L

RL

From Extensive Form back to Normal Form Game
• A pure strategy for a player is the mapping

between all possible states the player can
see, to the move the player would make.

• Player A has 4 pure strategies:
A’s strategy I: (1L, 4L)
A’s strategy II: (1L, 4R)
A’s strategy III: (1R, 4L)
A’s strategy IV: (1R, 4R)

(1)-
A

(4)-
A

(3)-
B

(2)-
B

()

+5

()

+4

()

-1

()

+3

()

+7

L

R

RR
M

L

RL

From Extensive Form back to Normal Form Game
• A pure strategy for a player is the mapping

between all possible states the player can
see, to the move the player would make.

• Player A has 4 pure strategies:
A’s strategy I: (1L, 4L)
A’s strategy II: (1L, 4R)
A’s strategy III: (1R, 4L)
A’s strategy IV: (1R, 4R)

• Player B has 3 pure strategies:

(1)-
A

(4)-
A

(3)-
B

(2)-
B

()

+5

()

+4

()

-1

()

+3

()

+7

L

R

RR
M

L

RL

From Extensive Form back to Normal Form Game
• A pure strategy for a player is the mapping

between all possible states the player can
see, to the move the player would make.

• Player A has 4 pure strategies:
A’s strategy I: (1L, 4L)
A’s strategy II: (1L, 4R)
A’s strategy III: (1R, 4L)
A’s strategy IV: (1R, 4R)

• Player B has 3 pure strategies:
B’s strategy I: (2L, 3R)

(1)-
A

(4)-
A

(3)-
B

(2)-
B

()

+5

()

+4

()

-1

()

+3

()

+7

L

R

RR
M

L

RL

From Extensive Form back to Normal Form Game
• A pure strategy for a player is the mapping

between all possible states the player can
see, to the move the player would make.

• Player A has 4 pure strategies:
A’s strategy I: (1L, 4L)
A’s strategy II: (1L, 4R)
A’s strategy III: (1R, 4L)
A’s strategy IV: (1R, 4R)

• Player B has 3 pure strategies:
B’s strategy I: (2L, 3R)
B’s strategy II: (2M, 3R)

(1)-
A

(4)-
A

(3)-
B

(2)-
B

()

+5

()

+4

()

-1

()

+3

()

+7

L

R

RR
M

L

RL

From Extensive Form back to Normal Form Game
• A pure strategy for a player is the mapping

between all possible states the player can
see, to the move the player would make.

• Player A has 4 pure strategies:
A’s strategy I: (1L, 4L)
A’s strategy II: (1L, 4R)
A’s strategy III: (1R, 4L)
A’s strategy IV: (1R, 4R)

• Player B has 3 pure strategies:
B’s strategy I: (2L, 3R)
B’s strategy II: (2M, 3R)
B’s strategy III: (2R, 3R)

(1)-
A

(4)-
A

(3)-
B

(2)-
B

()

+5

()

+4

()

-1

()

+3

()

+7

L

R

RR
M

L

RL

From Extensive Form back to Normal Form Game
• A pure strategy for a player is the mapping

between all possible states the player can
see, to the move the player would make.

• Player A has 4 pure strategies:
A’s strategy I: (1L, 4L)
A’s strategy II: (1L, 4R)
A’s strategy III: (1R, 4L)
A’s strategy IV: (1R, 4R)

• Player B has 3 pure strategies:
B’s strategy I: (2L, 3R)
B’s strategy II: (2M, 3R)
B’s strategy III: (2R, 3R)

• How many pure strategies if each player
can see N states, and has b moves at each
state?

(1)-
A

(4)-
A

(3)-
B

(2)-
B

()

+5

()

+4

()

-1

()

+3

()

+7

L

R

RR
M

L

RL

Matrix Normal Form of games

• The matrix normal form is the game value matrix indexed by each player’s
strategies.

A’s strategy I: (1L, 4L)

A’s strategy II: (1L, 4R)

A’s strategy III: (1R, 4L)

A’s strategy IV: (1R, 4R)

B’s strategy I: (2L, 3R)

B’s strategy II: (2M, 3R)

B’s strategy III: (2R, 3R)

(1)-
a

(4)-
a

(3)-
b

(2)-
b

()

+5

()

+4

()

-1

()

+3

()

+7

L

R

RR
M

L

RL

B-IIIB-IIB-I

555A-IV

555A-III

437A-II

-137A-I

The matrix encodes
every outcome of the

game! The rules etc. are
no longer needed.

Another example of normal form

• How many pure strategies does A have?

• How many does B have?

• What is the matrix form of this game?

(1)
-a

(3)
-b

(2)
-b

()

+2()

+5()

+2

L

(4)
-a

()

+4

()

-1

R

R
R L

L

RL

• How many pure strategies does A have? 4

A-I (1L, 4L) A-II (1L,4R) A-III (1R,4L) A-IV (1R, 4R)

• How many does B have? 4

B-I (2L, 3L) B-II (2L,3R) B-III (2R,3L) B-IV (2R, 3R)

• What is the matrix form of this game?

Matrix normal form example
(1)-
a

(3)-
b

(2)-
b

()

+2

()

+5()

+2

L

(4)-
a

()

+4

()

-1

R

R
R L

L

RL

2

2

2
2

B-IVB-IIIB-IIB-I

525A-IV

525A-III

244A-II
2-1-1A-I

Minimax in Matrix Normal Form
• Player A: for each strategy,

consider all B’s counter
strategies (a row in the matrix),
find the minimum value in that
row. Pick the row with the
maximum minimum value.

• Here maximin=5
B-IIIB-IIB-I

555A-IV

555A-III

437A-II

-137A-I

(1)
-a

(4)
-a

(3)
-b

(2)
-b

()

+5

()

+4

()

-1

()

+3

()

+7

L

R

RR
M

L

RL

Minimax in Matrix Normal Form

• Player B: find the maximum value in
each column. Pick the column with
the minimum maximum value.

• Here minimax = 5

B-IIIB-IIB-I

555A-IV

555A-III

437A-II

-137A-I

(1)
-a

(4)
-a

(3)
-b

(2)
-b

()

+5

()

+4

()

-1

()

+3

()

+7

L

R

RR
M

L

RL

Fundamental game theory result (proved by
von Neumann):

In a 2-player, zero-sum game of perfect
information (sequential moves),
Minimax==Maximin. And there always
exists an optimal pure strategy for each
player.

Minimax in Matrix Normal Form

• We can also check for mutual best
responses

B-IIIB-IIB-I

555A-IV

555A-III

437A-II

-137A-I

(1)
-a

(4)
-a

(3)
-b

(2)
-b

()

+5

()

+4

()

-1

()

+3

()

+7

L

R

RR
M

L

RL

Minimax in Matrix Normal Form

• Player B: find the
maximum value in each
column. Pick the column
with the minimum
maximum value.

• Here minimax = 5

B-IIIB-IIB-I

555A-IV

555A-III

437A-II

-137A-I

(1)
-a

(4)
-a

(3)
-b

(2)
-b

()

+5

()

+4

()

-1

()

+3

()

+7

L

R

RR
M

L

RL

Fundamental game theory result
(proved by von Neumann):

In a 2-player, zero-sum game
of perfect information,
Minimax==Maximin. And
there always exists an
optimal pure strategy for
each player.

Interestingly, A can tell B in
advance what strategy A will
use (the maximin), and this
information will not help B!

Similarly B can tell A what

strategy B will use.

In fact A knows what B’s

strategy will be.

And B knows A’s too.

And A knows that B knows

…

The game is at an equilibrium

