
CS 540 Introduction to Artificial Intelligence
Reinforcement Learning I
University of Wisconsin-Madison

Spring 2023

2

Homeworks:

- Homework 9 due Thursday April 27

- Homework 10 due Thursday May 4

Course Evaluation:

- Complete by Friday May 5

Class roadmap:
Tuesday, April 25 Reinforcement Learning I

Thursday, April 27 Reinforcement Learning I

Tuesday, May 2 Advanced Search

Thursday, May 4
 Ethics and Trust in AI

Announcements

Final Exam: May 12 5:05 - 7:05 pm

Outline

Outline

• Introduction to reinforcement learning

– Basic concepts, mathematical formulation, MDPs, policies.

Outline

• Introduction to reinforcement learning

– Basic concepts, mathematical formulation, MDPs, policies.

• Learning policies

– Q-learning, action-values, exploration vs exploitation.

Back to Our General Model

We have an agent interacting with the world

Back to Our General Model

We have an agent interacting with the world

Agent

Back to Our General Model

We have an agent interacting with the world

World

Agent

Back to Our General Model

We have an agent interacting with the world

World

Agent

Actions

Back to Our General Model

We have an agent interacting with the world

World

Agent

Actions

Observations

Back to Our General Model

We have an agent interacting with the world

• Agent receives a reward based on state of the world

World

Agent

Actions

Observations

Back to Our General Model

We have an agent interacting with the world

• Agent receives a reward based on state of the world
– Goal: maximize reward / utility

World

Agent

Actions

Observations

Back to Our General Model

We have an agent interacting with the world

• Agent receives a reward based on state of the world
– Goal: maximize reward / utility

World

Agent

Actions

Observations

($$$)

Back to Our General Model

We have an agent interacting with the world

• Agent receives a reward based on state of the world
– Goal: maximize reward / utility
– Note: data consists of actions & observations

World

Agent

Actions

Observations

($$$)

Back to Our General Model

We have an agent interacting with the world

• Agent receives a reward based on state of the world
– Goal: maximize reward / utility
– Note: data consists of actions & observations

• Compare to unsupervised learning and supervised learning

World

Agent

Actions

Observations

($$$)

Examples: Gameplay Agents

AlphaZero:

Examples: Gameplay Agents

AlphaZero:

Examples: Gameplay Agents

AlphaZero:

Examples: Gameplay Agents

AlphaZero:

https://deepmind.com/research/alphago/

https://deepmind.com/research/alphago/

Examples: Video Game Agents

Pong, Atari

Mnih et al, “Human-level control through deep reinforcement learning”

A. Nielsen

https://holmdk.github.io/

Examples: Video Game Agents

Pong, Atari

Mnih et al, “Human-level control through deep reinforcement learning”

A. Nielsen

https://holmdk.github.io/

Examples: Video Game Agents

Minecraft, Quake, StarCraft, and more!

Examples: Video Game Agents

Minecraft, Quake, StarCraft, and more!

Shao et al, "A Survey of Deep Reinforcement Learning in Video Games"

Examples: Robotics

Training robots to perform tasks (e.g., grasp objects!)

Examples: Robotics

Training robots to perform tasks (e.g., grasp objects!)

Ibarz et al, " How to Train Your Robot with Deep Reinforcement Learning – Lessons We’ve Learned "

Examples: Robotics

Training robots to perform tasks (e.g., grasp objects!)

Ibarz et al, " How to Train Your Robot with Deep Reinforcement Learning – Lessons We’ve Learned "

Building The Theoretical Model

Basic setup:

Building The Theoretical Model

Basic setup:
World

Agent

Actions

Observations

Building The Theoretical Model

Basic setup:
• Set of states, S World

Agent

Actions

Observations

Building The Theoretical Model

Basic setup:
• Set of states, S
• Set of actions A

World

Agent

Actions

Observations

Building The Theoretical Model

Basic setup:
• Set of states, S
• Set of actions A

• Information: at time t, observe state st ∈ S. Get reward rt

World

Agent

Actions

Observations

Building The Theoretical Model

Basic setup:
• Set of states, S
• Set of actions A

• Information: at time t, observe state st ∈ S. Get reward rt

• Agent makes choice at ∈ A. State changes to st+1, continue

Goal: find a map from states to actions that maximize rewards.

World

Agent

Actions

Observations

Building The Theoretical Model

Basic setup:
• Set of states, S
• Set of actions A

• Information: at time t, observe state st ∈ S. Get reward rt

• Agent makes choice at ∈ A. State changes to st+1, continue

Goal: find a map from states to actions that maximize rewards.

World

Agent

Actions

Observations

A “policy”

Markov Decision Process (MDP)

Markov Decision Process (MDP)
The formal mathematical model:

Markov Decision Process (MDP)
The formal mathematical model:
• State set S. Initial state s0. Action set A

Markov Decision Process (MDP)
The formal mathematical model:
• State set S. Initial state s0. Action set A

• Reward function: r(st)

Markov Decision Process (MDP)
The formal mathematical model:
• State set S. Initial state s0. Action set A

• Reward function: r(st)

• State transition model:

Markov Decision Process (MDP)
The formal mathematical model:
• State set S. Initial state s0. Action set A

• Reward function: r(st)

• State transition model:
– Markov assumption: transition probability only depends on st and at,

and not earlier history (previous actions or states)

Markov Decision Process (MDP)
The formal mathematical model:
• State set S. Initial state s0. Action set A

• Reward function: r(st)

• State transition model:
– Markov assumption: transition probability only depends on st and at,

and not earlier history (previous actions or states)

• More generally: 𝑟(𝑠𝑡, 𝑎𝑡), 𝑃(𝑟𝑡, 𝑠𝑡+1 |𝑠𝑡, 𝑎𝑡)

Markov Decision Process (MDP)
The formal mathematical model:
• State set S. Initial state s0. Action set A

• Reward function: r(st)

• State transition model:
– Markov assumption: transition probability only depends on st and at,

and not earlier history (previous actions or states)

• More generally: 𝑟(𝑠𝑡, 𝑎𝑡), 𝑃(𝑟𝑡, 𝑠𝑡+1 |𝑠𝑡, 𝑎𝑡)

• Policy: action to take at a particular state

Markov Decision Process (MDP)
The formal mathematical model:
• State set S. Initial state s0. Action set A

• Reward function: r(st)

• State transition model:
– Markov assumption: transition probability only depends on st and at,

and not earlier history (previous actions or states)

• More generally: 𝑟(𝑠𝑡, 𝑎𝑡), 𝑃(𝑟𝑡, 𝑠𝑡+1 |𝑠𝑡, 𝑎𝑡)

• Policy: action to take at a particular state

Example of MDP: Grid World

Robot on a grid; goal: find the best policy

Example of MDP: Grid World

Robot on a grid; goal: find the best policy

Example of MDP: Grid World

Robot on a grid; goal: find the best policy

Source: P. Abbeel and D. Klein

Example of MDP: Grid World

Note: (i) Robot is unreliable (ii) Reach target fast

Example of MDP: Grid World

Note: (i) Robot is unreliable (ii) Reach target fast

Example of MDP: Grid World

Note: (i) Robot is unreliable (ii) Reach target fast

 for every
non-terminal state
𝒓(𝑠) = − 0.04

Grid World Abstraction

Note: (i) Robot is unreliable (ii) Reach target fast

Grid World Abstraction

Note: (i) Robot is unreliable (ii) Reach target fast

Grid World Abstraction

Note: (i) Robot is unreliable (ii) Reach target fast

 for every
non-terminal state
𝒓(𝑠) = − 0.04

Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast

 for every
non-terminal state
𝒓(𝑠) = − 0.04

Back to MDP Setup

The formal mathematical model:

• State set S. Initial state s0. Action set A

• State transition model:

– Markov assumption: transition probability only depends on st and at,

and not previous actions or states.

• Reward function: r(st)

• Policy: action to take at a particular state.

Back to MDP Setup

The formal mathematical model:

• State set S. Initial state s0. Action set A

• State transition model:

– Markov assumption: transition probability only depends on st and at,

and not previous actions or states.

• Reward function: r(st)

• Policy: action to take at a particular state.

How do we find
the best policy?

Reinforcement Learning Challenges

Reinforcement Learning Challenges
Credit-assignment:

Reinforcement Learning Challenges
Credit-assignment:

- May take many actions before reward is received. Which ones were most
important?

Reinforcement Learning Challenges
Credit-assignment:

- May take many actions before reward is received. Which ones were most
important?

- Example: you study 15 minutes a day all semester. The morning of the
final exam, you eat a bowl of yogurt. You receive an A on the final. Was it
the studying or the yogurt that led to the A?

Reinforcement Learning Challenges
Credit-assignment:

- May take many actions before reward is received. Which ones were most
important?

- Example: you study 15 minutes a day all semester. The morning of the
final exam, you eat a bowl of yogurt. You receive an A on the final. Was it
the studying or the yogurt that led to the A?

Exploration vs. Exploitation:

Reinforcement Learning Challenges
Credit-assignment:

- May take many actions before reward is received. Which ones were most
important?

- Example: you study 15 minutes a day all semester. The morning of the
final exam, you eat a bowl of yogurt. You receive an A on the final. Was it
the studying or the yogurt that led to the A?

Exploration vs. Exploitation:

- Transition probabilities and reward may be unknown to the learner.

Reinforcement Learning Challenges
Credit-assignment:

- May take many actions before reward is received. Which ones were most
important?

- Example: you study 15 minutes a day all semester. The morning of the
final exam, you eat a bowl of yogurt. You receive an A on the final. Was it
the studying or the yogurt that led to the A?

Exploration vs. Exploitation:

- Transition probabilities and reward may be unknown to the learner.

- Should you keep trying actions that led to reward in the past or try new
actions that might lead to even more reward?

Break & Quiz

Q 1.1 Which of the following statement about MDP is not true?

• A. The reward function must output a scalar value

• B. The policy maps states to actions

• C. The probability of next state can depend on current and

previous states

• D. The solution of MDP is to find a policy that maximizes the

cumulative rewards

Break & Quiz

Q 1.1 Which of the following statement about MDP is not true?

• A. The reward function must output a scalar value

• B. The policy maps states to actions

• C. The probability of next state can depend on current and

previous states

• D. The solution of MDP is to find a policy that maximizes the

cumulative rewards

Break & Quiz
Q 1.1 Which of the following statement about MDP is not true?

• A. The reward function must output a scalar value (True: need to be able to
compare)

• B. The policy maps states to actions (True: a policy tells you what action to
take for each state).

• C. The probability of next state can depend on current and previous states
(False: Markov assumption).

• D. The solution of MDP is to find a policy that maximizes the cumulative
rewards (True: want to maximize rewards overall).

Defining the Optimal Policy

Defining the Optimal Policy

For policy π, expected utility over all possible state
sequences from produced by following that policy:

Called the value function (for π,)

𝑠0

𝑠0

Defining the Optimal Policy

For policy π, expected utility over all possible state
sequences from produced by following that policy:

Called the value function (for π,)

𝑠0

𝑠0

𝑉 𝜋(𝑠0) = ∑sequences

starting from 𝑠0

𝑃(sequence)𝑈(sequence)

Defining the Optimal Policy

For policy π, expected utility over all possible state
sequences from produced by following that policy:

Called the value function (for π,)

𝑠0

𝑠0

𝑉 𝜋(𝑠0) = ∑sequences

starting from 𝑠0

𝑃(sequence)𝑈(sequence)

Probability of sequence
when following π

Utility of sequence

Defining the Optimal Policy

For policy π, expected utility over all possible state
sequences from produced by following that policy:

Called the value function (for π,)

𝑠0

𝑠0

𝑉 𝜋(𝑠0) = ∑sequences

starting from 𝑠0

𝑃(sequence)𝑈(sequence)

Probability of sequence
when following π

Utility of sequence

Discounting Rewards

One issue: these are possibly infinite series.
Convergence?

Discounting Rewards

One issue: these are possibly infinite series.
Convergence?
• Solution: discount future rewards.

Discounting Rewards

One issue: these are possibly infinite series.
Convergence?
• Solution: discount future rewards.

Discounting Rewards

One issue: these are possibly infinite series.
Convergence?
• Solution: discount future rewards.

• Discount factor γ between 0 and 1

Discounting Rewards

One issue: these are possibly infinite series.
Convergence?
• Solution: discount future rewards.

• Discount factor γ between 0 and 1
– Set according to how important present is VS future

Discounting Rewards

One issue: these are possibly infinite series.
Convergence?
• Solution: discount future rewards.

• Discount factor γ between 0 and 1
– Set according to how important present is VS future
– Note: has to be less than 1 for convergence

From Value to Policy

r(s) + ∑
s′￼

P(s′￼|s, a)V*(s′￼)

From Value to Policy

Now that is defined, what should we take? 𝑉 𝜋(𝑠0) 𝑎

r(s) + ∑
s′￼

P(s′￼|s, a)V*(s′￼)

From Value to Policy

Now that is defined, what should we take? 𝑉 𝜋(𝑠0) 𝑎

• First, let be the optimal policy for and its
expected utility.

𝜋∗ 𝑉 𝜋(𝑠0), V⋆(s0)

r(s) + ∑
s′￼

P(s′￼|s, a)V*(s′￼)

From Value to Policy

Now that is defined, what should we take? 𝑉 𝜋(𝑠0) 𝑎

• First, let be the optimal policy for and its
expected utility.

𝜋∗ 𝑉 𝜋(𝑠0), V⋆(s0)

• What’s the expected utility following an action?

r(s) + ∑
s′￼

P(s′￼|s, a)V*(s′￼)

From Value to Policy

Now that is defined, what should we take? 𝑉 𝜋(𝑠0) 𝑎

• First, let be the optimal policy for and its
expected utility.

𝜋∗ 𝑉 𝜋(𝑠0), V⋆(s0)

• What’s the expected utility following an action?

– Specifically, action in state ?𝑎 𝑠 r(s) + ∑
s′￼

P(s′￼|s, a)V*(s′￼)

From Value to Policy

Now that is defined, what should we take? 𝑉 𝜋(𝑠0) 𝑎

• First, let be the optimal policy for and its
expected utility.

𝜋∗ 𝑉 𝜋(𝑠0), V⋆(s0)

• What’s the expected utility following an action?

– Specifically, action in state ?𝑎 𝑠

All the states we
could go to

Transition probability Expected rewards

r(s) + ∑
s′￼

P(s′￼|s, a)V*(s′￼)

Slight Problem…

Now we can get the optimal policy by doing

Slight Problem…

Now we can get the optimal policy by doing

Slight Problem…

Now we can get the optimal policy by doing

• So we need to know V*(s) (and P).

Slight Problem…

Now we can get the optimal policy by doing

• So we need to know V*(s) (and P).
– But it was defined in terms of the optimal policy!

Slight Problem…

Now we can get the optimal policy by doing

• So we need to know V*(s) (and P).
– But it was defined in terms of the optimal policy!
– So we need some other approach to get V*(s).

Slight Problem…

Now we can get the optimal policy by doing

• So we need to know V*(s) (and P).
– But it was defined in terms of the optimal policy!
– So we need some other approach to get V*(s).

– Instead, learn about the utility of actions directly.

The Q*(s,a) function

The Q*(s,a) function
• Starting from state s, perform (perhaps suboptimal)

action a. THEN follow the optimal policy

The Q*(s,a) function
• Starting from state s, perform (perhaps suboptimal)

action a. THEN follow the optimal policy

Q*(s, a) = r(s) + γ∑
s′￼

P(s′￼|s, a)V*(s′￼)

The Q*(s,a) function
• Starting from state s, perform (perhaps suboptimal)

action a. THEN follow the optimal policy

• Equivalent to

Q*(s, a) = r(s) + γ∑
s′￼

P(s′￼|s, a)V*(s′￼)

Q*(s, a) = r(s) + γ∑
s′￼

P(s′￼|s, a) max
a′￼

Q*(s′￼, a′￼)

Q-Learning

Q-Learning

Q-Learning

• Our first reinforcement learning algorithm.

Q-Learning

• Our first reinforcement learning algorithm.
• Does not require knowing r or P. Learn from data of the

form: .{(st, at, rt, st+1)}

Q-Learning

• Our first reinforcement learning algorithm.
• Does not require knowing r or P. Learn from data of the

form: .{(st, at, rt, st+1)}
• Learns an action-value function Q*(s,a) that tells us the

expected value of taking a in state s.

Q-Learning

• Our first reinforcement learning algorithm.
• Does not require knowing r or P. Learn from data of the

form: .{(st, at, rt, st+1)}
• Learns an action-value function Q*(s,a) that tells us the

expected value of taking a in state s.

• Note: .V*(s) = max
a

Q*(s, a)

Q-Learning

• Our first reinforcement learning algorithm.
• Does not require knowing r or P. Learn from data of the

form: .{(st, at, rt, st+1)}
• Learns an action-value function Q*(s,a) that tells us the

expected value of taking a in state s.

• Note: .V*(s) = max
a

Q*(s, a)

• Optimal policy is formed as π*(s) = arg max
a

Q*(s, a)

Q-Learning

Q-Learning

Learning rate

Q-learning Algorithm
Input: step size , exploration probability

1. set Q(s,a) = 0 for all s, a.

2. For each episode:

3. Get initial state s.

4. While (s not a terminal state):

5. Perform a = -greedy(Q, s), receive r, s’

6.

7.

8. End While

9. End For

α ϵ

ϵ
Q(s, a) = (1 − α)Q(s, a) + α(r + γ max

a′￼
Q(s′￼, a′￼))

s ← s′￼

Q-learning Algorithm
Input: step size , exploration probability

1. set Q(s,a) = 0 for all s, a.

2. For each episode:

3. Get initial state s.

4. While (s not a terminal state):

5. Perform a = -greedy(Q, s), receive r, s’

6.

7.

8. End While

9. End For

α ϵ

ϵ
Q(s, a) = (1 − α)Q(s, a) + α(r + γ max

a′￼
Q(s′￼, a′￼))

s ← s′￼

Explore: take action to
see what happens.

Q-learning Algorithm
Input: step size , exploration probability

1. set Q(s,a) = 0 for all s, a.

2. For each episode:

3. Get initial state s.

4. While (s not a terminal state):

5. Perform a = -greedy(Q, s), receive r, s’

6.

7.

8. End While

9. End For

α ϵ

ϵ
Q(s, a) = (1 − α)Q(s, a) + α(r + γ max

a′￼
Q(s′￼, a′￼))

s ← s′￼

Explore: take action to
see what happens.

Update action-value
based on result.

Q-learning Algorithm
Input: step size , exploration probability

1. set Q(s,a) = 0 for all s, a.

2. For each episode:

3. Get initial state s.

4. While (s not a terminal state):

5. Perform a = -greedy(Q, s), receive r, s’

6.

7.

8. End While

9. End For

α ϵ

ϵ
Q(s, a) = (1 − α)Q(s, a) + α(r + γ max

a′￼
Q(s′￼, a′￼))

s ← s′￼

Explore: take action to
see what happens.

Update action-value
based on result.

Converges to Q*(s,a) in limit if all states and
actions visited infinitely often.

Exploration Vs. Exploitation
General question!

Exploration Vs. Exploitation
General question!
• Exploration: take an action with unknown consequences

Exploration Vs. Exploitation
General question!
• Exploration: take an action with unknown consequences

– Pros:
• Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far

Exploration Vs. Exploitation
General question!
• Exploration: take an action with unknown consequences

– Pros:
• Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far

– Cons:
• When exploring, not maximizing your utility
• Something bad might happen

Exploration Vs. Exploitation
General question!
• Exploration: take an action with unknown consequences

– Pros:
• Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far

– Cons:
• When exploring, not maximizing your utility
• Something bad might happen

• Exploitation: go with the best strategy found so far

Exploration Vs. Exploitation
General question!
• Exploration: take an action with unknown consequences

– Pros:
• Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far

– Cons:
• When exploring, not maximizing your utility
• Something bad might happen

• Exploitation: go with the best strategy found so far
– Pros:

• Maximize reward as reflected in the current utility estimates
• Avoid bad stuff

Exploration Vs. Exploitation
General question!
• Exploration: take an action with unknown consequences

– Pros:
• Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far

– Cons:
• When exploring, not maximizing your utility
• Something bad might happen

• Exploitation: go with the best strategy found so far
– Pros:

• Maximize reward as reflected in the current utility estimates
• Avoid bad stuff

– Cons:
• Might prevent you from discovering the true optimal strategy

Exploration Vs. Exploitation
General question!
• Exploration: take an action with unknown consequences

– Pros:
• Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far

– Cons:
• When exploring, not maximizing your utility
• Something bad might happen

• Exploitation: go with the best strategy found so far
– Pros:

• Maximize reward as reflected in the current utility estimates
• Avoid bad stuff

– Cons:
• Might prevent you from discovering the true optimal strategy

Exploration Vs. Exploitation
General question!
• Exploration: take an action with unknown consequences

– Pros:
• Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far

– Cons:
• When exploring, not maximizing your utility
• Something bad might happen

• Exploitation: go with the best strategy found so far
– Pros:

• Maximize reward as reflected in the current utility estimates
• Avoid bad stuff

– Cons:
• Might prevent you from discovering the true optimal strategy

Q-Learning: ε-Greedy Behavior Policy

Q-Learning: ε-Greedy Behavior Policy

Getting data with both exploration and exploitation

• With probability ε, take a random action; else the action with

the highest (current) Q(s,a) value.

Q-Learning: ε-Greedy Behavior Policy

Getting data with both exploration and exploitation

• With probability ε, take a random action; else the action with

the highest (current) Q(s,a) value.

Q-Learning Iteration

How do we get Q(s,a)?

• Iterative procedure

Idea: combine old value and new estimate of future value.

Note: We are using a policy to take actions; based on the
estimated Q!

Q-Learning Iteration

How do we get Q(s,a)?

• Iterative procedure

Idea: combine old value and new estimate of future value.

Note: We are using a policy to take actions; based on the
estimated Q!

Q-Learning Iteration

How do we get Q(s,a)?

• Iterative procedure

Idea: combine old value and new estimate of future value.

Note: We are using a policy to take actions; based on the
estimated Q!

Learning rate

Break & Quiz

Q 2.1 For Q learning to converge to the true Q function, we must

• A. Visit every state and try every action

• B. Perform at least 20,000 iterations.

• C. Re-start with different random initial table values.

• D. Prioritize exploitation over exploration.

Break & Quiz

Q 2.1 For Q learning to converge to the true Q function, we must

• A. Visit every state and try every action

• B. Perform at least 20,000 iterations.

• C. Re-start with different random initial table values.

• D. Prioritize exploitation over exploration.

Break & Quiz
Q 2.1 For Q learning to converge to the true Q function, we must

• A. Visit every state and try every action

• B. Perform at least 20,000 iterations. (No: this is dependent on the
particular problem, not a general constant).

• C. Re-start with different random initial table values. (No: this is not
necessary in general).

• D. Prioritize exploitation over exploration. (No: insufficient exploration
means potentially unupdated state action pairs).

Summary

• Reinforcement learning setup

• Mathematical formulation: MDP

• The Q-learning Algorithm

Obtaining the Optimal Policy

Obtaining the Optimal Policy

We know the expected utility of an action

• So, to get the optimal policy, compute

Obtaining the Optimal Policy

We know the expected utility of an action

• So, to get the optimal policy, compute

All the states we
could go to

Transition
probability

Expected
rewards

Obtaining the Optimal Policy

We know the expected utility of an action

• So, to get the optimal policy, compute

All the states we
could go to

Transition
probability

Expected
rewards

Credit L. Lazbenik

Slight Problem…

Now we can get the optimal policy by doing

Slight Problem…

Now we can get the optimal policy by doing

Slight Problem…

Now we can get the optimal policy by doing

• So we need to know V*(s).

Slight Problem…

Now we can get the optimal policy by doing

• So we need to know V*(s).
– But it was defined in terms of the optimal policy!

Slight Problem…

Now we can get the optimal policy by doing

• So we need to know V*(s).
– But it was defined in terms of the optimal policy!
– So we need some other approach to get V*(s).

Slight Problem…

Now we can get the optimal policy by doing

• So we need to know V*(s).
– But it was defined in terms of the optimal policy!
– So we need some other approach to get V*(s).
– Need some other property of the value function!

Bellman Equation

Bellman Equation

Bellman Equation

Current state
reward

Bellman Equation

Discounted expected
future rewards

Current state
reward

Bellman Equation

Let’s walk over one step for the value function:

• Richard Bellman: inventor of dynamic programming

Discounted expected
future rewards

Current state
reward

Bellman Equation

Let’s walk over one step for the value function:

• Richard Bellman: inventor of dynamic programming

Discounted expected
future rewards

Current state
reward

Bellman Equation

Let’s walk over one step for the value function:

Bellman Equation

Let’s walk over one step for the value function:

Bellman Equation

Let’s walk over one step for the value function:

Current state
reward

Bellman Equation

Let’s walk over one step for the value function:

Discounted expected
future rewards

Current state
reward

Bellman Equation

Let’s walk over one step for the value function:

Discounted expected
future rewards

Current state
reward

Credit L. Lazbenik

Value Iteration

Q: how do we find V*(s)?

Value Iteration

Q: how do we find V*(s)?
• Why do we want it? Can use it to get the best policy

Value Iteration

Q: how do we find V*(s)?
• Why do we want it? Can use it to get the best policy
• Know: reward r(s), transition probability P(s’|s,a)

Value Iteration

Q: how do we find V*(s)?
• Why do we want it? Can use it to get the best policy
• Know: reward r(s), transition probability P(s’|s,a)

– Knowing r and P is the “planning” problem. In reality r and P must be
estimated from interactions : “reinforcement learning”

Value Iteration

Q: how do we find V*(s)?
• Why do we want it? Can use it to get the best policy
• Know: reward r(s), transition probability P(s’|s,a)

– Knowing r and P is the “planning” problem. In reality r and P must be
estimated from interactions : “reinforcement learning”

• Also know V*(s) satisfies Bellman equation (recursion above)

Value Iteration

Q: how do we find V*(s)?
• Why do we want it? Can use it to get the best policy
• Know: reward r(s), transition probability P(s’|s,a)

– Knowing r and P is the “planning” problem. In reality r and P must be
estimated from interactions : “reinforcement learning”

• Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V0(s)=0. Then, update

Value Iteration

Q: how do we find V*(s)?
• Why do we want it? Can use it to get the best policy
• Know: reward r(s), transition probability P(s’|s,a)

– Knowing r and P is the “planning” problem. In reality r and P must be
estimated from interactions : “reinforcement learning”

• Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V0(s)=0. Then, update

Value Iteration: Demo

Source: POMDPBGallery Julia Package

Value Iteration: Demo

Source: POMDPBGallery Julia Package

Break & Quiz
Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let 𝛾 be the discounting factor. Let π: π(A) = π(B) = move (i.e., an
“always move” policy). What is the value function 𝑉𝜋(𝐴)?

• A. 0

• B. 1 / (1 -𝛾)

• C. 1 / (1 -𝛾2)

• D. 1

Break & Quiz
Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let 𝛾 be the discounting factor. Let π: π(A) = π(B) = move (i.e., an
“always move” policy). What is the value function 𝑉𝜋(𝐴)?

• A. 0

• B. 1 / (1 -𝛾)

• C. 1 / (1 -𝛾2)

• D. 1

Break & Quiz
Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let 𝛾 be the discounting factor. Let π: π(A) = π(B) = move (i.e., an
“always move” policy). What is the value function 𝑉𝜋(𝐴)?

• A. 0

• B. 1/(1-𝛾)

• C. 1/(1-𝛾2)

• D. 1

Break & Quiz
Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let 𝛾 be the discounting factor. Let π: π(A) = π(B) = move (i.e., an
“always move” policy). What is the value function 𝑉𝜋(𝐴)?

• A. 0

• B. 1/(1-𝛾)

• C. 1/(1-𝛾2)

• D. 1

Break & Quiz
Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current
state and “move” to other state. Let r be the reward function such that r(A) =
1, r(B) = 0. Let 𝛾 be the discounting factor. Let π: π(A) = π(B) = move (i.e., an
“always move” policy). What is the value function 𝑉𝜋(𝐴)?

• A. 0

• B. 1/(1-𝛾)

• C. 1/(1-𝛾2) (States: A,B,A,B,… rewards 1,0, 𝛾2,0, 𝛾4,0, …)

• D. 1

Summary

• Reinforcement learning setup

• Mathematica formulation: MDP

• Value functions & the Bellman equation

• Value iteration

