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Homeworks: 

- Homework 9 due Thursday April 27

- Homework 10 due Thursday May 4


Course Evaluation:

- Complete by Friday May 5


Class roadmap:
Tuesday, April 25 Reinforcement Learning I

Thursday, April 27 Reinforcement Learning I

Tuesday, May 2 Advanced Search

Thursday, May 4
 Ethics and Trust in AI

Announcements

Final Exam: May 12 5:05 - 7:05 pm
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• Introduction to reinforcement learning

– Basic concepts, mathematical formulation, MDPs, policies.

• Learning policies

– Q-learning, action-values, exploration vs exploitation.
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Back to Our General Model

We have an agent interacting with the world

• Agent receives a reward based on state of the world
– Goal: maximize reward / utility
– Note: data consists of actions & observations

• Compare to unsupervised learning and supervised learning

World

Agent

Actions

Observations

($$$)
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Minecraft, Quake, StarCraft, and more! 

Shao et al, "A Survey of Deep Reinforcement Learning in Video Games"
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Building The Theoretical Model

Basic setup:
• Set of states, S
• Set of actions A

• Information: at time t, observe state st ∈ S. Get reward rt

• Agent makes choice at ∈ A. State changes to st+1, continue

Goal: find a map from states to actions that maximize rewards.

World

Agent

Actions

Observations

A “policy”
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Example of MDP: Grid World

Robot on a grid; goal: find the best policy

Source: P. Abbeel and D. Klein 
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Back to MDP Setup

The formal mathematical model:

• State set S. Initial state s0. Action set A


• State transition model:

– Markov assumption: transition probability only depends on st and at, 

and not previous actions or states. 

• Reward function: r(st)


• Policy:                            action to take at a particular state. 

How do we find 
the best policy?



Reinforcement Learning Challenges



Reinforcement Learning Challenges
Credit-assignment:



Reinforcement Learning Challenges
Credit-assignment:

- May take many actions before reward is received. Which ones were most 
important?



Reinforcement Learning Challenges
Credit-assignment:

- May take many actions before reward is received. Which ones were most 
important?

- Example: you study 15 minutes a day all semester. The morning of the 
final exam, you eat a bowl of yogurt. You receive an A on the final. Was it 
the studying or the yogurt that led to the A?



Reinforcement Learning Challenges
Credit-assignment:

- May take many actions before reward is received. Which ones were most 
important?

- Example: you study 15 minutes a day all semester. The morning of the 
final exam, you eat a bowl of yogurt. You receive an A on the final. Was it 
the studying or the yogurt that led to the A?

Exploration vs. Exploitation:



Reinforcement Learning Challenges
Credit-assignment:

- May take many actions before reward is received. Which ones were most 
important?

- Example: you study 15 minutes a day all semester. The morning of the 
final exam, you eat a bowl of yogurt. You receive an A on the final. Was it 
the studying or the yogurt that led to the A?

Exploration vs. Exploitation:

- Transition probabilities and reward may be unknown to the learner.



Reinforcement Learning Challenges
Credit-assignment:

- May take many actions before reward is received. Which ones were most 
important?

- Example: you study 15 minutes a day all semester. The morning of the 
final exam, you eat a bowl of yogurt. You receive an A on the final. Was it 
the studying or the yogurt that led to the A?

Exploration vs. Exploitation:

- Transition probabilities and reward may be unknown to the learner.

- Should you keep trying actions that led to reward in the past or try new 
actions that might lead to even more reward?
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Break & Quiz
Q 1.1 Which of the following statement about MDP is not true?


• A. The reward function must output a scalar value (True: need to be able to 
compare)


• B. The policy maps states to actions (True: a policy tells you what action to 
take for each state).


• C. The probability of next state can depend on current and previous states 
(False: Markov assumption).


• D. The solution of MDP is to find a policy that maximizes the cumulative 
rewards (True: want to maximize rewards overall).
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Discounting Rewards

One issue: these are possibly infinite series. 
Convergence?
• Solution: discount future rewards.

• Discount factor γ between 0 and 1
– Set according to how important present is VS future
– Note: has to be less than 1 for convergence
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From Value to Policy

Now that is defined, what  should we take? 𝑉 𝜋(𝑠0)  𝑎

• First, let be the optimal policy for  and  its 
expected utility.

𝜋∗  𝑉 𝜋(𝑠0), V⋆(s0)

• What’s the expected utility following an action?

– Specifically, action  in state ?𝑎 𝑠

All the states we 
could go to

Transition probability Expected rewards

r(s) + ∑
s′￼

P(s′￼|s, a)V*(s′￼)
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Slight Problem…

Now we can get the optimal policy by doing

• So we need to know V*(s) (and P).
– But it was defined in terms of the optimal policy!
– So we need some other approach to get V*(s).

– Instead, learn about the utility of actions directly.
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The Q*(s,a) function
• Starting from state s, perform (perhaps suboptimal) 

action a.  THEN follow the optimal policy 

• Equivalent to

Q*(s, a) = r(s) + γ∑
s′￼

P(s′￼|s, a)V*(s′￼)

Q*(s, a) = r(s) + γ∑
s′￼

P(s′￼|s, a) max
a′￼

Q*(s′￼, a′￼)
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Q-Learning

• Our first reinforcement learning algorithm.
• Does not require knowing r or P. Learn from data of the 

form: .{(st, at, rt, st+1)}
• Learns an action-value function Q*(s,a) that tells us the 

expected value of taking a in state s.

• Note: .V*(s) = max
a

Q*(s, a)

• Optimal policy is formed as π*(s) = arg max
a

Q*(s, a)
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Q-learning Algorithm
Input: step size , exploration probability 

1. set Q(s,a) = 0 for all s, a.

2. For each episode:

3.   Get initial state s.

4.   While (s not a terminal state):

5.   Perform a = -greedy(Q, s), receive r, s’

6.   


7.   

8.   End While

9. End For

α ϵ

ϵ
Q(s, a) = (1 − α)Q(s, a) + α(r + γ max

a′￼
Q(s′￼, a′￼))

s ← s′￼

Explore: take action to 
see what happens.

Update action-value 
based on result.

Converges to Q*(s,a) in limit if all states and 
actions visited infinitely often.



Exploration Vs. Exploitation
General question!



Exploration Vs. Exploitation
General question!
• Exploration: take an action with unknown consequences



Exploration Vs. Exploitation
General question!
• Exploration: take an action with unknown consequences

– Pros: 
• Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far



Exploration Vs. Exploitation
General question!
• Exploration: take an action with unknown consequences

– Pros: 
• Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far

– Cons: 
• When exploring, not maximizing your utility
• Something bad might happen



Exploration Vs. Exploitation
General question!
• Exploration: take an action with unknown consequences

– Pros: 
• Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far

– Cons: 
• When exploring, not maximizing your utility
• Something bad might happen

• Exploitation: go with the best strategy found so far



Exploration Vs. Exploitation
General question!
• Exploration: take an action with unknown consequences

– Pros: 
• Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far

– Cons: 
• When exploring, not maximizing your utility
• Something bad might happen

• Exploitation: go with the best strategy found so far
– Pros:

• Maximize reward as reflected in the current utility estimates
• Avoid bad stuff



Exploration Vs. Exploitation
General question!
• Exploration: take an action with unknown consequences

– Pros: 
• Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far

– Cons: 
• When exploring, not maximizing your utility
• Something bad might happen

• Exploitation: go with the best strategy found so far
– Pros:

• Maximize reward as reflected in the current utility estimates
• Avoid bad stuff

– Cons: 
• Might prevent you from discovering the true optimal strategy



Exploration Vs. Exploitation
General question!
• Exploration: take an action with unknown consequences

– Pros: 
• Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far

– Cons: 
• When exploring, not maximizing your utility
• Something bad might happen

• Exploitation: go with the best strategy found so far
– Pros:

• Maximize reward as reflected in the current utility estimates
• Avoid bad stuff

– Cons: 
• Might prevent you from discovering the true optimal strategy



Exploration Vs. Exploitation
General question!
• Exploration: take an action with unknown consequences

– Pros: 
• Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far

– Cons: 
• When exploring, not maximizing your utility
• Something bad might happen

• Exploitation: go with the best strategy found so far
– Pros:

• Maximize reward as reflected in the current utility estimates
• Avoid bad stuff

– Cons: 
• Might prevent you from discovering the true optimal strategy



Q-Learning: ε-Greedy Behavior Policy



Q-Learning: ε-Greedy Behavior Policy

Getting data with both exploration and exploitation

• With probability ε, take a random action; else the action with 

the highest (current) Q(s,a) value.



Q-Learning: ε-Greedy Behavior Policy

Getting data with both exploration and exploitation

• With probability ε, take a random action; else the action with 

the highest (current) Q(s,a) value.



Q-Learning Iteration

How do we get Q(s,a)?

• Iterative procedure


Idea: combine old value and new estimate of future value.

Note: We are using a policy to take actions; based on the 
estimated Q!



Q-Learning Iteration

How do we get Q(s,a)?

• Iterative procedure


Idea: combine old value and new estimate of future value.

Note: We are using a policy to take actions; based on the 
estimated Q!



Q-Learning Iteration

How do we get Q(s,a)?

• Iterative procedure


Idea: combine old value and new estimate of future value.

Note: We are using a policy to take actions; based on the 
estimated Q!

Learning rate
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Break & Quiz
Q 2.1 For Q learning to converge to the true Q function, we must


• A. Visit every state and try every action


• B. Perform at least 20,000 iterations. (No: this is dependent on the 
particular problem, not a general constant).


• C. Re-start with different random initial table values. (No: this is not 
necessary in general).


• D. Prioritize exploitation over exploration. (No: insufficient exploration 
means potentially unupdated state action pairs).




Summary

• Reinforcement learning setup

• Mathematical formulation: MDP

• The Q-learning Algorithm
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Obtaining the Optimal Policy

We know the expected utility of an action

• So, to get the optimal policy, compute

All the states we 
could go to

Transition 
probability 

Expected 
rewards

Credit L. Lazbenik
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Slight Problem…

Now we can get the optimal policy by doing

• So we need to know V*(s).
– But it was defined in terms of the optimal policy!
– So we need some other approach to get V*(s).
– Need some other property of the value function!
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Value Iteration

Q: how do we find V*(s)?
• Why do we want it? Can use it to get the best policy
• Know: reward r(s), transition probability P(s’|s,a)

– Knowing r and P is the “planning” problem. In reality r and P must be 
estimated from interactions : “reinforcement learning”

• Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V0(s)=0. Then, update
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Break & Quiz
Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current 
state and “move” to  other state. Let r be the reward function such that r(A) = 
1, r(B) = 0. Let 𝛾 be the discounting factor. Let π: π(A) = π(B) = move (i.e., an 
“always move” policy). What is the value function 𝑉𝜋(𝐴)?

• A. 0

• B. 1 / (1 -𝛾)

• C. 1 / (1 -𝛾2)

• D. 1
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Break & Quiz
Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current 
state and “move” to  other state. Let r be the reward function such that r(A) = 
1, r(B) = 0. Let 𝛾 be the discounting factor. Let π: π(A) = π(B) = move (i.e., an 
“always move” policy). What is the value function 𝑉𝜋(𝐴)?

• A. 0

• B. 1/(1-𝛾)

• C. 1/(1-𝛾2) (States: A,B,A,B,… rewards 1,0, 𝛾2,0, 𝛾4,0, …)

• D. 1



Summary

• Reinforcement learning setup

• Mathematica formulation: MDP

• Value functions & the Bellman equation

• Value iteration 


