Announcements

Assignments:
• Homework 10 due Thursday May 4
• Complete course evaluations by Friday May 5

Class roadmap:

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, April 27</td>
<td>Reinforcement Learning I</td>
</tr>
<tr>
<td>Tuesday, May 2</td>
<td>Advanced Search</td>
</tr>
<tr>
<td>Thursday, May 4</td>
<td>Ethics and Trust in AI</td>
</tr>
</tbody>
</table>

Final Exam: May 12 5:05 - 7:05 pm
Outline
Outline

• Review of reinforcement learning setting.
Outline

- Review of reinforcement learning setting.
 - MDPs, value functions, Q-learning
Outline

• Review of reinforcement learning setting.
 – MDPs, value functions, Q-learning
• Bellman equations and dynamic programming
Outline

• Review of reinforcement learning setting.
 – MDPs, value functions, Q-learning
• Bellman equations and dynamic programming
• From dynamic programming to Q-learning
Key Ideas in Reinforcement Learning

- Define RL Problem
 - States, Actions, Transitions, Rewards, Markov property, discounting
- Value Functions
- Bellman Equation
 - Writing the value of one state in terms of successor states.
 - Using values to choose optimal actions.
- Q-learning
- Value Iteration
- Exploration vs. Exploitation
Back to Our General Model

We have an agent interacting with the world
Back to Our General Model

We have an agent interacting with the world

Agent
Back to Our General Model

We have an **agent** interacting with the **world**
Back to Our General Model

We have an **agent interacting** with the **world**
Back to Our General Model

We have an **agent** interacting with the **world**
Back to Our General Model

We have an agent interacting with the world

- Agent receives a reward based on state of the world
Back to Our General Model

We have an **agent interacting** with the **world**

- Agent receives a reward based on state of the world
 - **Goal**: maximize reward / utility
Back to Our General Model

We have an agent interacting with the world

- Agent receives a reward based on state of the world
 - Goal: maximize reward / utility ($$$)
Back to Our General Model

We have an **agent** interacting with the **world**

- Agent receives a reward based on state of the world
 - **Goal**: maximize reward / utility (**$$**)
 - Note: **data** consists of actions & observations
We have an agent interacting with the world

- Agent receives a reward based on state of the world
 - **Goal**: maximize reward / utility ($$$)
 - Note: data consists of actions & observations
 - Compare to unsupervised learning and supervised learning
Markov Decision Process (MDP)
Markov Decision Process (MDP)

The formal mathematical model:
Markov Decision Process (MDP)

The formal mathematical model:

- **State set** S. Initial state s_0. **Action set** A
Markov Decision Process (MDP)

The formal mathematical model:

- **State set** S. Initial state s_0. **Action set** A
- **State transition model**: $P(s_{t+1} | s_t, a_t)$
Markov Decision Process (MDP)

The formal mathematical model:

- **State set** S. Initial state s_0. **Action set** A
- **State transition model:** $P(s_{t+1}|s_t, a_t)$
 - Markov assumption: transition probability only depends on s_t and a_t, and not previous actions or states.
Markov Decision Process (MDP)

The formal mathematical model:

- **State set** S. Initial state s_0. **Action set** A
- **State transition model**: $P(s_{t+1}|s_t, a_t)$
 - Markov assumption: transition probability only depends on s_t and a_t, and not previous actions or states.
- **Reward function**: $r(s_t)$
Markov Decision Process (MDP)

The formal mathematical model:

- **State set** S. Initial state s_0. **Action set** A.
- **State transition model**: $P(s_{t+1} \mid s_t, a_t)$
 - Markov assumption: transition probability only depends on s_t and a_t, and not previous actions or states.
- **Reward function**: $r(s_t)$
- **Policy**: $\pi(s) : S \rightarrow A$, action to take at a particular state.
Markov Decision Process (MDP)

The formal mathematical model:

- **State set** \(S \). Initial state \(s_0 \). **Action set** \(A \)
- **State transition model**: \(P(s_{t+1} | s_t, a_t) \)
 - Markov assumption: transition probability only depends on \(s_t \) and \(a_t \), and not previous actions or states.
- **Reward function**: \(r(s_t) \)
- **Policy**: \(\pi(s) : S \rightarrow A \), action to take at a particular state.

\[s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \ldots \]
Defining the Optimal Policy

For policy π, expected utility over all possible state sequences from s_0 produced by following that policy:

$$V^\pi(s_0) = \sum_{\text{sequences starting from } s_0} P(\text{sequence})U(\text{sequence})$$

Called the value function (for π, s_0)
Discounting Rewards

One issue: these are infinite series. Convergence?

• Solution

\[U(s_0, s_1 \ldots) = r(s_0) + \gamma r(s_1) + \gamma^2 r(s_2) + \ldots = \sum_{t \geq 0} \gamma^t r(s_t) \]

• Discount factor \(\gamma \) between 0 and 1

 – Set according to how important present is VS future

 – Note: has to be less than 1 for convergence
Deterministic transitions; $\gamma = 0.8$; policy shown with red arrows.
Values and Policies

• Now that $V^{\pi}(s_0)$ is defined what a should we take?
 • First, set $V^*(s)$ to be expected utility for optimal policy from s
 • What’s the expected utility of an action?
 – Specifically, action a in state s?
Values and Policies

• Now that $V^{\pi}(s_0)$ is defined what a should we take?
 • First, set $V^*(s)$ to be expected utility for optimal policy from s
 • What’s the expected utility of an action?
 – Specifically, action a in state s?

$$\sum_{s'} P(s'|s, a)V^*(s')$$
Values and Policies

• Now that $V^\pi(s_0)$ is defined what a should we take?
 • First, set $V^*(s)$ to be expected utility for optimal policy from s
 • What’s the expected utility of an action?
 – Specifically, action a in state s?

$$\sum_{s'} P(s' | s, a) V^*(s')$$

All the states we could go to
Values and Policies

• Now that $V^\pi(s_0)$ is defined what a should we take?
 • First, set $V^*(s)$ to be expected utility for optimal policy from s
 • What’s the expected utility of an action?
 – Specifically, action a in state s?

\[
\sum_{s'} P(s'|s, a) V^*(s')
\]
Values and Policies

• Now that $V^\pi(s_0)$ is defined what a should we take?
 • First, set $V^*(s)$ to be expected utility for optimal policy from s
 • What’s the expected utility of an action?
 – Specifically, action a in state s?
 \[
 \sum_{s'} P(s' | s, a) V^*(s')
 \]
Obtaining the Optimal Policy

Assume, we know the expected utility of an action.

• So, to get the optimal policy, compute
Obtaining the Optimal Policy

Assume, we know the expected utility of an action.

- So, to get the optimal policy, compute

\[
\pi^*(s) = \arg\max_a \sum_{s'} P(s'|s, a)V^*(s')
\]

- All the states we could go to
- Transition probability
- Expected rewards
Obtaining the Optimal Policy

Assume, we know the expected utility of an action.

- So, to get the optimal policy, compute

$$\pi^*(s) = \arg\max_a \sum_{s'} P(s'|s, a) V^*(s')$$

Credit L. Lazbenik

All the states we could go to
Transition probability
Expected rewards
Bellman Equations

Let’s walk over one step for the value function:
Bellman Equations

Let’s walk over one step for the value function:

\[V^*(s) = r(s) + \gamma \max_a \sum_{s'} P(s'|s, a)V^*(s') \]
Bellman Equations

Let’s walk over one step for the value function:

$$V^*(s) = r(s) + \gamma \max_a \sum_{s'} P(s'|s,a)V^*(s')$$

Current state
reward
Bellman Equations

Let’s walk over one step for the value function:

\[V^*(s) = r(s) + \gamma \max_a \sum_{s'} P(s'|s, a) V^*(s') \]

- Current state reward
- Discounted expected future rewards
Bellman Equations

Let’s walk over one step for the value function:

$$V^*(s) = r(s) + \gamma \max_a \sum_{s'} P(s'|s, a)V^*(s')$$

- s: Current state
- a: Current action
- s': Next state
- $r(s)$: Current state reward
- γ: Discount factor
- $P(s'|s, a)$: Transition probability

Credit: L. Lazbenik
Bellman Equations

Let’s walk over one step for the value function:

\[V^*(s) = r(s) + \gamma \max_a \sum_{s'} P(s'|s, a) V^*(s') \]

Current state reward

Discounted expected future rewards

Richard Bellman: Inventor of dynamic programming.
Define state value $V^*(s)$ as the expected sum of discounted rewards if the agent follows an optimal policy starting in state s.

Image source: L. Lazbenik
The Bellman equation

- What is the expected utility of taking action a in state s?

$$\sum_{s'} P(s'|s, a) V^*(s')$$

Agent chooses action a

Agent receives reward $r(s)$

Environment returns $s' \sim P(\cdot | s, a)$

Image source: L. Lazbenik
The Bellman equation

Agent chooses action a

Agent receives reward $r(s)$

Environment returns $s' \sim P(\cdot | s, a)$

- What is the recursive expression for $V^*(s)$ in terms of $V^*(s')$ - the utilities of its successors?

$$V^*(s) = r(s) + \gamma \sum_{s'} P(s'|s, \pi^*(s)) V^*(s')$$

Image source: L. Lazbenik
The Bellman equation

Agent receives reward $r(s)$

Agent chooses action a

Environment returns $s' \sim P(\cdot | s, a)$

- How do we choose the action?

$$\pi^*(s) = \arg \max_a \sum_{s'} P(s'|s, a)V^*(s')$$
The Bellman equation

Agent chooses action a

Agent receives reward $r(s)$

Environment returns $s' \sim P(\cdot | s, a)$

- What is the recursive expression for $V^*(s)$ in terms of $V^*(s')$ - the utilities of its successors?

$$V^*(s) = r(s) + \gamma \max_a \sum_{s'} P(s'|s, a) V^*(s')$$
The Bellman equation

The same reasoning gives the Bellman equation for a general policy:

$$V^\pi(s) = r(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) V^\pi(s')$$
Deterministic transitions; $\gamma = 0.8$; policy shown with red arrows.
Value Iteration
Value Iteration

Q: how do we find $V^*(s)$?
Value Iteration

Q: how do we find $V^*(s)$?

- Why do we want it? Can use it to get the best policy
Value Iteration

Q: how do we find $V^*(s)$?

- Why do we want it? Can use it to get the best policy
- Know: reward $r(s)$, transition probability $P(s'|s,a)$
Value Iteration

Q: how do we find \(V^*(s) \)?

- Why do we want it? Can use it to get the best policy
- Know: reward \(r(s) \), transition probability \(P(s' | s, a) \)
- Also know \(V^*(s) \) satisfies Bellman equation:

\[
V^*(s) = r(s) + \gamma \max_a \sum_{s'} P(s' | s, a) V^*(s')
\]
Value Iteration

Q: how do we find $V^*(s)$?

- Why do we want it? Can use it to get the best policy
- Know: reward $r(s)$, transition probability $P(s' | s, a)$
- Also know $V^*(s)$ satisfies Bellman equation:

$$V^*(s) = r(s) + \gamma \max_a \sum_{s'} P(s' | s, a)V^*(s')$$

A: Use the property. Start with $V_0(s)=0$. Then, update

$$V_{i+1}(s) = r(s) + \gamma \max_a \sum_{s'} P(s' | s, a)V_i(s')$$
Value Iteration Algorithm

Input: Transition function P, reward function r, precision $\delta > 0$

1. For all states s, set $V(s) = 0$.
2. $\Delta \leftarrow \infty$
3. While $\Delta > \delta$:
 4. Loop for each state s:
 5. $V(s) \leftarrow r(s) + \max_a \gamma \sum_{s'} P(s' \mid s, a)V(s')$
 6. $\Delta \leftarrow$ maximum change in $V(s)$ for any state s
 7. End Loop
8. End While
Value Iteration Algorithm

Input: Transition function P, reward function r, precision $\delta > 0$
1. For all states s, set $V(s) = 0$.
2. $\Delta \leftarrow \infty$
3. While $\Delta > \delta$:
 4. Loop for each state s:
 5. $V(s) \leftarrow r(s) + \max_a \gamma \sum_{s'} P(s' \mid s, a) V(s')$
 6. $\Delta \leftarrow \text{maximum change in } V(s) \text{ for any state } s$
7. End Loop
8. End While

Here, P and r are known so no need for exploration or interaction with real world.
Value Iteration Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
Q 2.1 Consider an MDP with 2 states \{A, B\} and 2 actions: “stay” at current state and “move” to other state. Let r be the reward function such that $r(A) = 1$, $r(B) = 0$. Let γ be the discounting factor. Let π: $\pi(A) = \pi(B) =$ move (i.e., an “always move” policy). What is the value function $V_\pi(A)$?

- A. 0
- B. $1 / (1 - \gamma)$
- C. $1 / (1 - \gamma^2)$
- D. 1
Consider an MDP with 2 states \{A, B\} and 2 actions: “stay” at current state and “move” to other state. Let \(r \) be the reward function such that \(r(A) = 1, r(B) = 0 \). Let \(\gamma \) be the discounting factor. Let \(\pi: \pi(A) = \pi(B) = \text{move} \) (i.e., an “always move” policy). What is the value function \(V_{\pi}(A) \)?

- A. 0
- B. \(1/(1-\gamma) \)
- C. \(1/(1-\gamma^2) \)
- D. 1
Q 2.1 Consider an MDP with 2 states \{A, B\} and 2 actions: “stay” at current state and “move” to other state. Let \(r \) be the reward function such that \(r(A) = 1, r(B) = 0 \). Let \(\gamma \) be the discounting factor. Let \(\pi: \pi(A) = \pi(B) = \text{move} \) (i.e., an “always move” policy). What is the value function \(V_{\pi}(A) \)?

- A. 0
- B. \(\frac{1}{1-\gamma} \)
- C. \(\frac{1}{1-\gamma^2} \) (States: A,B,A,B,... rewards 1,0, \(\gamma^2 \),0, \(\gamma^4 \),0,...)
- D. 1

Break & Quiz
Q-Learning
Q-Learning
Q-Learning

- Reinforcement learning without knowledge of r or P
Q-Learning

- Reinforcement learning without knowledge of r or P
- Learn from data of the form: $\{(s_t, a_t, r_t, s_{t+1})\}$.
Q-Learning

- Reinforcement learning without knowledge of r or P
- Learn from data of the form: \(\{(s_t, a_t, r_t, s_{t+1})\} \).
- Learns an action-value function \(Q^*(s, a) \) that tells us the expected value of taking \(a \) in state \(s \).
Q-Learning

- Reinforcement learning without knowledge of r or P
- Learn from data of the form: $\{(s_t, a_t, r_t, s_{t+1})\}$.
- Learns an action-value function $Q^*(s,a)$ that tells us the expected value of taking a in state s.
 - Note: $V^*(s) = \max_a Q^*(s,a)$.
Q-Learning

- Reinforcement learning without knowledge of \(r \) or \(P \)
- Learn from data of the form: \(\{(s_t, a_t, r_t, s_{t+1})\} \).
- Learns an action-value function \(Q^*(s, a) \) that tells us the expected value of taking \(a \) in state \(s \).
 - Note: \(V^*(s) = \max_a Q^*(s, a) \).
 - Optimal policy is formed as \(\pi^*(s) = \arg\max_a Q^*(s, a) \).
Q-Learning

Estimate $Q^*(s,a)$ from data $\{(s_t, a_t, r_t, s_{t+1})\}$:

1. Initialize $Q(.,.)$ arbitrarily (eg all zeros)
 1. Except terminal states $Q(s_{\text{terminal}}, .)=0$

2. Iterate over data until $Q(.,.)$ converges:

 $Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha(r_t + \gamma \max_b Q(s_{t+1}, b))$
Q-Learning

Estimate $Q^*(s,a)$ from data $\{(s_t, a_t, r_t, s_{t+1})\}$:

1. Initialize $Q(.,.)$ arbitrarily (eg all zeros)
 1. Except terminal states $Q(s_{\text{terminal}}, .) = 0$
2. Iterate over data until $Q(.,.)$ converges:

$$Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha(r_t + \gamma \max_b Q(s_{t+1}, b))$$

Learning rate
Q-Learning

Estimate $Q^*(s,a)$ from data $\{(s_t, a_t, r_t, s_{t+1})\}$:

1. Initialize $Q(.,.)$ arbitrarily (eg all zeros)
 1. Except terminal states $Q(s_{\text{terminal}},.)=0$
2. Iterate over data until $Q(.,.)$ converges:

 \[Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha(r_t + \gamma \max_b Q(s_{t+1}, b)) \]

 Learning rate

Equivalent update: $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r(s_t) + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t))$
Q-learning Algorithm

Input: step size α, exploration probability ϵ
1. set $Q(s,a) = 0$ for all s, a.
2. For each episode:
3. Get initial state s.
4. While (s not a terminal state):
5. Perform $a = \epsilon$-greedy(Q, s), receive r, s'
6. $Q(s, a) = (1 - \alpha)Q(s, a) + \alpha(r + \gamma \max_{a'} Q(s', a'))$
7. $s \leftarrow s'$
8. End While
9. End For
Q-learning Algorithm

Input: step size α, exploration probability ϵ
1. set $Q(s,a) = 0$ for all s, a.
2. For each episode:
3. Get initial state s.
4. While (s not a terminal state):
5. Perform $a = \epsilon$-greedy(Q, s), receive r, s'
6. $Q(s, a) = (1 - \alpha)Q(s, a) + \alpha(r + \gamma \max_{a'} Q(s', a'))$
7. $s \leftarrow s'$
8. End While
9. End For

Explore: take action to see what happens.
Q-learning Algorithm

Input: step size α, exploration probability ϵ

1. set $Q(s,a) = 0$ for all s, a.
2. For each episode:
 3. Get initial state s.
 4. While (s not a terminal state):
 5. Perform $a = \epsilon$-greedy(Q, s), receive r, s'
 6. $Q(s,a) = (1 - \alpha)Q(s,a) + \alpha(r + \gamma \max_{a'} Q(s',a'))$
 7. $s \leftarrow s'$
8. End While
9. End For

Explore: take action to see what happens.

Update action-value based on result.
Q-learning Algorithm

Input: step size α, exploration probability ϵ

1. set $Q(s,a) = 0$ for all s, a.
2. For each episode:
3. Get initial state s.
4. While (s not a terminal state):
5. Perform $a = \epsilon$-greedy(Q, s), receive r, s'
6. $Q(s, a) = (1 - \alpha)Q(s, a) + \alpha(r + \gamma \max_{a'} Q(s', a'))$
7. $s \leftarrow s'$
8. End While
9. End For

Explore: take action to see what happens.

Update action-value based on result.

Converges to $Q^*(s,a)$ in limit if all states and actions visited infinitely often.