

CS 540 Introduction to Artificial Intelligence Linear Algebra & PCA University of Wisconsin-Madison

Spring 2023

Linear Algebra: What is it good for?

- Almost everything is a **function**
 - Multiple inputs and outputs

- Linear functions
 - Simple, tractable
- Study of linear functions

In AI/ML Context

Building blocks for all models

- E.g., linear regression; part of neural networks

Outline

• Basics: vectors, matrices, operations

• Dimensionality reduction

Lior Pachter

Basics: Vectors

Vectors

- Many interpretations
 - Physics: magnitude + direction

- List of values (represents information)

Basics: Vectors

- Dimension
 - Number of values $x \in \mathbb{R}^d$
 - Higher dimensions: richer but more complex
- AI/ML: often use **very high dimensions**:
 - Ex: images!

Basics: Matrices

- Again, many interpretations
 - Represent linear transformations
 - Apply to a vector, get another vector
 - Also, list of vectors
- Not necessarily square Indexing! $A \in \mathbb{R}^{c \times d}$

 - Dimensions: #rows x #columns

 $A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix}$

Basics: Transposition

- Transposes: flip rows and columns
 - Vector: standard is a column. Transpose: row
 - Matrix: go from *m x n* to *n x m*

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{array}{c} x^T = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}$$
$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \end{bmatrix} \begin{array}{c} A^T = \begin{bmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \\ A_{13} & A_{23} \end{bmatrix}$$

- Vectors
 - Addition: component-wise
 - Commutative
 - Associative

- Scalar Multiplication
 - Uniform stretch / scaling

$$x + y = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ x_3 + y_3 \end{bmatrix}$$

$$cx = \begin{bmatrix} cx_1 \\ cx_2 \\ cx_3 \end{bmatrix}$$

- Vector products.
 - Inner product (e.g., dot product) _

$$\langle x, y \rangle := x^T y = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = x_1 y_1 + x_2 y_2 + x_3 y_3$$

Outer product

$$xy^{T} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} \begin{bmatrix} y_{1} & y_{2} & y_{3} \end{bmatrix} = \begin{bmatrix} x_{1}y_{1} & x_{1}y_{2} & x_{1}y_{3} \\ x_{2}y_{1} & x_{2}y_{2} & x_{2}y_{3} \\ x_{3}y_{1} & x_{3}y_{2} & x_{3}y_{3} \end{bmatrix}$$

Inner product defines "orthogonality"

$$- \operatorname{If}\langle x, y \rangle = 0$$

• Vector norms: "length"

$$\|x\|_2 = \sqrt{\sum_{i=1}^{n} x_i^2}$$

- Matrices:
 - Addition: Component-wise
 - Commutative, Associative

$$A + B = \begin{bmatrix} A_{11} + B_{11} & A_{12} + B_{12} \\ A_{21} + B_{21} & A_{22} + B_{22} \\ A_{31} + B_{31} & A_{32} + B_{32} \end{bmatrix}$$

- Scalar Multiplication
- "Stretching" the linear transformation

$$cA = \begin{bmatrix} cA_{11} & cA_{12} \\ cA_{21} & cA_{22} \\ cA_{31} & cA_{32} \end{bmatrix}$$

- Matrix-Vector multiply
 - I.e., linear transformation; plug in vector, get another vector
 - Each entry in Ax is the inner product of a row of A with x

$$Ax = \begin{bmatrix} A_{11}x_1 + A_{12}x_2 + \dots + A_{1n}x_n \\ A_{21}x_1 + A_{22}x_2 + \dots + A_{2n}x_n \\ \vdots \\ A_{n1}x_1 + A_{n2}x_2 + \dots + A_{nn}x_n \end{bmatrix}$$

Ex: feedforward neural networks. Input x.

• Output of layer k is

Output of layer k: vector

Weight **matrix** for layer k: Note: linear transformation! Wikipedia

Output

Hidden

Input

- Matrix multiplication
 - "Composition" of linear transformations
 - Not commutative (in general)!
 - Lots of interpretations

More on Matrix Operations

- Identity matrix:
 - Like "1"
 - Multiplying by it gets back the same matrix or vector

– Rows & columns are the "standard basis vectors" e_i

• **Q 1.1**: What is
$$\begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 ?

• A. [-1 1 1][⊤]

• B. [2 1 1][⊤]

• C. [1 3 1][⊤]

• D. [1.5 2 1]^T

• **Q 1.1**: What is
$$\begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 ?

• A. [-1 1 1]^T

• B. [2 1 1]^T

• C. [1 3 1][⊤]

• D. [1.5 2 1]^T

• **Q 1.1**: What is
$$\begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
?

- A. [-1 1 1][⊤]
- B. [2 1 1]^T
- C. [1 3 1][⊤]
- D. [1.5 2 1]^T

Check dimensions: answer must be 3 x 1 matrix (i.e., column vector).

$$\begin{array}{cccc} 1 & 2 \\ 3 & 1 \times \\ 1 & 1 \end{array} \stackrel{0}{=} \begin{array}{cccc} 0 * 1 + 1 * 2 & 2 \\ 0 * 3 + 1 * 1 & 1 \\ 0 * 1 + 1 * 1 & 1 \end{array}$$

• **Q 1.2**: Given matrices $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{d \times m}$, $C \in \mathbb{R}^{p \times n}$ What are the dimensions of BAC^T

- A. n x p
- B. *d x p*
- C. *d x n*
- D. Undefined

• **Q 1.2**: Given matrices $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{d \times m}$, $C \in \mathbb{R}^{p \times n}$ What are the dimensions of BAC^T

- A. n x p
- B. *d x p*
- C. *d x n*
- D. Undefined

• **Q 1.2**: Given matrices $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{d \times m}$, $C \in \mathbb{R}^{p \times n}$ What are the dimensions of BAC^T

- A. n x p
- B. *d x p*
- C. *d x n*
- D. Undefined

To rule out (D), check that for each pair of adjacent matrices XY, the # of columns of X = # of rows of Y

Then, B has d rows so solution must have d rows. C^T has p columns so solution has p columns.

• **Q 1.3**: A and B are matrices, neither of which is the identity. Is *AB* = *BA*?

- A. Never
- B. Always
- C. Sometimes

• **Q 1.3**: A and B are matrices, neither of which is the identity. Is *AB* = *BA*?

- A. Never
- B. Always
- C. Sometimes

• **Q 1.3**: A and B are matrices, neither of which is the identity. Is *AB* = *BA*?

- A. Never
- B. Always
- C. Sometimes

Matrix multiplication is not necessarily commutative.

More on Matrices: Inverses

- If for A there is a B such that AB = BA = I
 - Then A is invertible/nonsingular, B is its inverse
 - Some matrices are **not** invertible!

– Usual notation: A^{-1}

$$\begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} \times \begin{bmatrix} 3 & -1 \\ -2 & 1 \end{bmatrix} = I$$

Eigenvalues & Eigenvectors

- For a square matrix A, solutions to $Av=\lambda v$
 - v (nonzero) is a vector: eigenvector
 - $-\lambda$ is a scalar: **eigenvalue**

- Intuition: A is a linear transformation;
- Can stretch/rotate vectors;
- E-vectors: only stretched (by e-vals)

Dimensionality Reduction

- Vectors used to store features
 - Lots of data -> lots of features!
- Document classification
 - Each doc: thousands of words/millions of bigrams, etc
- Netflix surveys: 480189 users x 17770 movies

	movie 1	movie 2	movie 3	movie 4	movie 5	movie 6
Tom	5	?	?	1	3	?
George	?	?	3	1	2	5
Susan	4	3	1	?	5	1
Beth	4	3	?	2	4	2

Dimensionality Reduction

- Ex: MEG Brain Imaging: 120 locations x 500 time points x 20 objects
- Or any image

Dimensionality Reduction

Reduce dimensions

- Why?
 - Lots of features redundant
 - Storage & computation costs

• Goal: take
$$x \in \mathbb{R}^d \to x \in \mathbb{R}^r$$
 for $r << d$ – But, minimize information loss

Compression

Examples: 3D to 2D

Andrew Ng

Q 2.1: What is the inverse of

$$A = \begin{bmatrix} 0 & 2\\ 3 & 0 \end{bmatrix}$$

A:
$$A^{-1} = \begin{bmatrix} -3 & 0 \\ 0 & -2 \end{bmatrix}$$

B: $A^{-1} = \begin{bmatrix} 0 & \frac{1}{3} \\ \frac{1}{2} & 0 \end{bmatrix}$

C: Undefined / A is not invertible

Break & Quiz

 Q 2.1: What is the inverse of

$$A = \begin{bmatrix} 0 & 2 \\ 3 & 0 \end{bmatrix}$$

 A:
 $A^{-1} = \begin{bmatrix} -3 & 0 \\ 0 & -2 \end{bmatrix}$
 $AA^{-1} = \begin{bmatrix} 0 & 2 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} = \begin{bmatrix} 0 * a + c * 2 & 0 * b + 2 * d \\ 3 * a + c * 0 & 3 * b + 0 * d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

 B:
 $A^{-1} = \begin{bmatrix} 0 & \frac{1}{3} \\ \frac{1}{2} & 0 \end{bmatrix}$
 $AA^{-1} = \begin{bmatrix} 0 & \frac{1}{3} \\ 2d = 0 \\ 3b = 1 \end{bmatrix}$

C: Undefined / A is not invertible

 $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 0 & 1/3 \\ 1/2 & 0 \end{bmatrix}$

Break & Quiz Q 2.2: What are the eigenvalues of $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

A. -1, 2, 4
B. 0.5, 0.2, 1.0
C. 0, 2, 5
D. 2, 5, 1

Break & Quiz Q 2.2: What are the eigenvalues of $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

A. -1, 2, 4
B. 0.5, 0.2, 1.0
C. 0, 2, 5
D. 2, 5, 1

Break & Quiz Q 2.2: What are the eigenvalues of $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

A. -1, 2, 4
B. 0.5, 0.2, 1.0
C. 0, 2, 5
D. 2, 5, 1

Solution #1: You may recall from a linear algebra course that the eigenvalues of a diagonal matrix (in which only diagonal entries are non-zero) are just the entries along the diagonal. Hence D is the correct answer.

Q 2.2: What are the eigenvalues of $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Solution #2: Use the definition of eigenvectors and values: $Av = \lambda v$

A. -1, 2, 4
B. 0.5, 0.2, 1.0
C. 0, 2, 5
D. 2, 5, 1

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2v_1 + 0v_2 + 0v_3 \\ 0v_1 + 5v_2 + 0v_3 \\ 0v_1 + 0v_2 + 1v_3 \end{bmatrix} = \begin{bmatrix} 2v_1 \\ 5v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} \lambda v_1 \\ \lambda v_2 \\ \lambda v_3 \end{bmatrix}$$

Since A is a 3x3 matrix, A has 3 eigenvalues and so there are 3 combinations of values for λ and v that will satisfy the above equation. The simple form of the equations suggests starting by checking each of the standard basis vectors* as v and then solving for λ . Doing so gives D as the correct answer.

Q 2.3: Suppose we are given a dataset with n=10000 samples with 100-dimensional binary feature vectors. Our storage device has a capacity of 50000 bits. What's the lower compression ratio we can use?

- A. 20X
- B. 100X
- C. 5X

D. 1X

Q 2.3: Suppose we are given a dataset with n=10000 samples with 100-dimensional binary feature vectors. Our storage device has a capacity of 50000 bits. What's the lower compression ratio we can use?

A. 20X

- B. 100X
- C. 5X

D. 1X

Q 2.3: Suppose we are given a dataset with n=10000 samples with 100-dimensional binary feature vectors. Our storage device has a capacity of 50000 bits. What's the lower compression ratio we can use?

A. 20X

- B. 100X
- C. 5X
- D. 1X

50,000 bits / 10,000 samples means compressed version must have 5 bits / sample.

Dataset has 100 bits / sample.

Must compress 20x smaller to fit on device.

- A type of dimensionality reduction approach
 - For when data is **approximately lower dimensional**

- Goal: find axes of a subspace
 - Will project to this subspace; want to preserve data

- From 2D to 1D: – Find a $v_1 \in \mathbb{R}^d$ so that we maximize "variability" – IE,
 - New representations are along this vector (1D!)

- From *d* dimensions to *r* dimensions
 - Sequentially get $v_1, v_2, \ldots, v_r \in \mathbb{R}^d$
 - Orthogonal!
 - Still minimize the projection error
 - Equivalent to "maximizing variability"
 - The vectors are the principal components

Victor Powell

PCA Setup

• Inputs - Data: $x_1, x_2, \dots, x_n, x_i \in \mathbb{R}^d$ - Can arrange into $X \in \mathbb{R}^{n \times d}$

$$\frac{1}{n}\sum_{i=1}^{n}x_i = 0$$

Victor Powell

- Outputs
 - Principal components $v_1, v_2, \ldots, v_r \in \mathbb{R}^d$
 - Orthogonal!

– Centered!

PCA Goals

- Want directions/components (unit vectors) so that
 - Projecting data maximizes variance
 - What's projection?

here
$$\sum_{i=1}^{n} \langle x_i, v \rangle^2 = \|Xv\|^2$$

 \mathbf{n}

Let's look at an example!

Projection: An Example

 $x_1, x_2, \ldots, x_n, x_i \in \mathbb{R}^2$

Goal of PCA: finding a line that **maximizes** the squared distance from the projected points to the origin (sum over all points)

$$\sum_{i=1}^{n} \langle x_i, v \rangle^2 = \|Xv\|^2$$

PCA First Step

• First component,

$$v_1 = \arg \max_{\|v\|=1} \sum_{i=1}^n \langle v, x_i \rangle^2$$
setting

• Same as getting

$$v_1 = \arg \max_{\|v\|=1} \|Xv\|^2$$

PCA Goals

- Want directions/components (unit vectors) so that
 - Projecting data maximizes variance
 - What's projection?

$$\sum_{i=1}^{n} \langle x_i, v \rangle = \|Xv\|^2$$

 n_{\cdot}

• Do this **recursively**

- Get orthogonal directions $v_1, v_2, \ldots, v_r \in \mathbb{R}^d$

PCA Recursion

• Once we have *k*-1 components, next?

$$\hat{X}_k = X - \sum_{i=1}^{k-1} X v_i v_i^T$$

• Then do the same thing

$$v_k = \underset{||v||=1}{\operatorname{argmax}} \left| \left| \hat{X}_k v \right| \right|^2$$

Deflation

PCA Interpretations

- The v's are eigenvectors of X^TX (Gram matrix)
 - Show via Rayleigh quotient
- X^TX (proportional to) sample covariance matrix
 - When data is 0 mean!
 - I.e., PCA is eigendecomposition of sample covariance

Nested subspaces span(v1), span(v1,v2),...,

Lots of Variations

- PCA, Kernel PCA, ICA, CCA
 - Unsupervised techniques to extract structure from high dimensional dataset
- Uses:
 - Visualization
 - Efficiency
 - Noise removal
 - Downstream machine learning use

Application: Image Compression

• Start with image; divide into 12x12 patches

- I.E., 144-D vector
- Original image:

Application: Image Compression

• 6 most important components (as an image)

Application: Image Compression

• Project to 6D,

Compressed

Application: Exploratory Data Analysis

• [Novembre et al. '08]: Take top two singular vectors of people x SNP matrix (POPRES)

"Genes Mirror Geography in Europe"

Readings

- Vast literature on linear algebra.
- Local class: Math 341.
- Suggested reading:
 - Lecture notes on PCA by Roughgarden and Valiant

https://web.stanford.edu/class/cs168/l/l7.pdf

760 notes by Zhu <u>https://pages.cs.wisc.edu/~jerryzhu/cs760/PCA.pdf</u>