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Linear Algebra: What is it good for?

* Almost everything is a function
— Multiple inputs and outputs

e Linear functions

— Simple, tractable

e Study of linear functions -




In Al/ML Context

Building blocks for all models

- E.g., linear regression; part of neural networks

Hieu Tran

—

wg ® 5
‘\“'

input layer

R
;.;.

§
N
.

)

tput layer

hidden layer 1 hidden layer 2
Stanford CS231n



Outline

* Basics: vectors, matrices, operations

* Dimensionality reduction

* Principal Components Analysis (PCA)

Lior Pachter




Basics: Vectors

Vectors

* Many interpretations

— Physics: magnitude + direction
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— List of values (represents information)




Basics: Vectors

* Dimension
d
— Number of values 0 &
— Higher dimensions: richer but more complex
* Al/ML: often use very high dimensions:

— Ex: images!
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Basics: Matrices

* Again, many interpretations
— Represent linear transformations
— Apply to a vector, get another vector

— Also, list of vectors -
Ay
* Not necessarily square A= | A
— Indexing! A € Rexd _A31

— Dimensions: #rows x #columns




Basics: Transposition

* Transposes: flip rows and columns
— Vector: standard is a column. Transpose: row

— Matrix: gofrommxntonxm

.CCT:[$1 ) $3]

A:[All A Ais AT
Asp Age Ao




Matrix & Vector Operations

* Vectors
— Addition: component-wise 21 + U1
* Commutative T+y= |z2+ 1Yo
* Associative T3 + U3

— Scalar Multiplication
* Uniform stretch / scaling cr =




Matrix & Vector Operations

* Vector products.

— Inner product (e.g., dot product)

"
<zy>=z'y= [331 T2 333] Y2 | = T1Y1 + T2Y2 + T3Y3
Y3
— OQOuter product
E2N _Ilyl L1Y2 mlys_
nyT — |22 [?Jl Y2 ys] = [T2Y1  T2Y2 T2Y3
| L3 ] | X3Y1  L3Y2  X3Y3_




Matrix & Vector Operations

* |[nner product defines “orthogonality”
- If(z,y) =0

e Vector norms: “length”

lzll2 = \ Z:BZ



Matrix & Vector Operations

* Matrices:
— Addition: Component-wise

_ o A1+ B Aia+ Bio
— Commutative, Associative A+ B = |Ay + By;  Agy + Bag
A1 + B31  Asz + B3

— Scalar Multiplication cA11 cAio ]

— “Stretching” the linear transformation cA = |cAy cAy
cA31  cAsz|




Matrix & Vector Operations

* Matrix-Vector multiply

— l.e., linear transformation; plug in vector, get another
vector

— Each entry in Ax is the inner product of a row of A with x

A+ Apzs + .o+ Ay,

A21£C1 -+ AQQSIZQ + ...+ Agnﬂﬁn
Az = ,

Anlxl + An2$2 + ... T Annxn_



Matrix & Vector Operations

Ex: feedforward neural networks. Input x.

* Qutput of layer k is

-
fP@) = oW f* D))
. T O
[ Output of layer k-1: vector
Output of layer k: vector Weight matrix for layer k:

Note: linear transformation!

Wikipedia



Matrix & Vector Operations

* Matrix multiplication

— “Composition” of linear transformations In — =
— Not commutative (in general)! -
— Lots of interpretations a2, (@)
a?, a2,2
A as,|a;, e—————— O
a 84'2

Wikipedia
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More on Matrix Operations

* |dentity matrix:

— Like “1” 1 0
— Multiplying by it gets back the 0 1

same matrix or vector I = : :
— Rows & columns are the _O 0

“standard basis vectors” ¢;




Q1.1: Whatis

o0 wp

-111]"
211]"
131]

[1.521]

Break & Quiz

— Y =

— = DN




Q1.1: Whatis

A [-111]
B.[211]
C.[131]
D.[1.521]"

Break & Quiz

1 2
3 1
I 1
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Q1.1: Whatis

A [-111]
B.[211]
C.[131]
D.[1.521]"

Break & Quiz

1 2
31><[O]?
1 1

Check dimensions: answer
must be 3 x 1 matrix (i.e.,
column vector).

1 2 0 Ox1+1%x2 2
3 1><1=0*3+1*1=1
1 1 Ox1+1x1 1
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Break & Quiz

* Q1.2: Given matrices A € R"™*™ B ¢ Rde’ (' ¢ Rpx™
What are the dimensions of BACT

A.nxp
B.dxp
C.dxn
D. Undefined
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Break & Quiz

* Q1.2: Given matrices A € R"™*™ B ¢ Rde, (' ¢ Rpx™
What are the dimensions of BACT

To rule out (D), check
that for each pair of

adjacent matrices XY,
* A nx p the # of columns of X =
# of rows of Y
e B.dxp
e C.dxn Then, B has d rows so
. solution must have d
¢ D UndeﬂnEd rows. C AT has p

columns so solution has
p columns.



Break & Quiz

Q 1.3: A and B are matrices, neither of which is the
identity. Is AB = BA?

A. Never
B. Always
C. Sometimes



Break & Quiz

Q 1.3: A and B are matrices, neither of which is the
identity. Is AB = BA?

A. Never
B. Always
C. Sometimes
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Break & Quiz

Q 1.3: A and B are matrices, neither of which is the
identity. Is AB = BA?

A. Never
Matrix multiplication is
B. AlWayS not neces§arlly
commutative.

C. Sometimes

25



More on Matrices: Inverses

e |ffor AthereisaBsuchthat AB=BA=1

— Then A is invertible/nonsingular, B is its inverse
— Some matrices are not invertible!

— Usual notation: 4—1

N —
Ao =
|
(\W)




Eigenvalues & Eigenvectors

* For a square matrix A, solutions toA”U — )\U

— v (nonzero) is a vector: eigenvector
— )\ is a scalar: eigenvalue

— Intuition: A is a linear transformation;
— Can stretch/rotate vectors;
— E-vectors: only stretched (by e-vals)

Y
Ay

y

AX = AX

Wikipedia

AX



Dimensionality Reduction

e \ectors used to store features
— Lots of data -> lots of features!

e Document classification

— Each doc: thousands of words/millions of bigrams, etc

* Netflix surveys: 480189 users x 17770 movies

movie 1 | movie 2 | movie 3 | movie 4 | movie 5 | movie 6

Tom 5 ? T 1 3 ?
George ? ? 3 1 2 5
Susan 4 3 1 ? 8 1
Beth 4 3 » 2 4 2

28



Dimensionality Reduction

Ex: MEG Brain Imaging: 120 locations x 500 time points
X 20 objects

MEG0513

MEG0913

MEG0923

MEG0313 MEG1213

Time ()
MEG1412

MEG1423

MEG1243

* Or any image

k

MEG0213 MEG0222 MEG1442

MEG1312 EG1323
MEGOs22 MEG0633 MEG1043 pegiyiz MEGT123

MEG0143 MEG1433
MEG0232 MEG0443 MEG0432 NGO ANECOr2s MEG1142 MEG1133 MEG1342
MEG1512 MEBEH MEa13s MEG2612
MEG0743 MEGO0733
MEGis1s MEG1822 MEG2212 \easons
MEG1543 MEG1622 MEG2412 MEG2623
MEG2642 |5
MEG2013 MEG2023
MEG1533
MEG1722 MEG2522
MEG2042 MEG2032
MEG1943 MEG2323
MEG1713 - MEG2113 - 25'2 MEG2533

MEG1743

MEG2543

29



Dimensionality Reduction

Reduce dimensions

e Why?
— Lots of features redundant
— Storage & computation costs

 Goal: take xERdéxERT for r<<d

— But, minimize information loss

bo|ganneas)

30



Compression

3D to 2D

Examples
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Break & Quiz

Q 2.1: What is the inverse of 0 2]
A =
_3 O_
A _1_ —3 O
e
)
20

C: Undefined / A is not invertible



Break & Quiz

Q 2.1: What is the inverse of 0 2]
A =
_3 O_
A P [—3 o] a =[5 olle d=raielo siptora=lo
01 _2 2c=1
B: AT = [9 8] 2o
5 3h =1
C: Undefined / A is not invertible @ b1 [0 1/3
[c d _[1/2 0]



Break & Quiz

Q 2.2: What are the eigenvalues of 4

_001_
oo O

_200_




Break & Quiz

Q 2.2: What are the eigenvalues of 4

_001_
oo O

_200_
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Break & Quiz

Q 2.2: What are the eigenvalues of A= |0

@)
-

_1 2 4 Solution #1: You may recall from a linear algeb_ra_

) &) course that the eigenvalues of a diagonal matrix (in
which only diagonal entries are non-zero) are just the

0.5, O 2, 1 O entries along the diagonal. Hence D is the correct

O’ 2’ 5 answer.
. 2,51

o0 ®»

36



Break & Quiz

Q 2.2: What are the eigenvalues of A= |0

Solution #2: Use the definition of O O
eigenvectors and values: Av = Av -

1,2, 4 [(2) : 8]3; le] Ev]
, :

0 0 11vs3
5' O ’ 1 O Since A is a 3x3 matrix, A has 3 eigenvalues
5 and so there are 3 combinations of values for

@)

2v, + 0v, + Ovg
Ov; + 5v, + Ovg | =
Ov, + Ov, + 1v,

A and v that will satisfy the above equation.
The simple form of the equations suggests
starting by checking each of the standard
basis vectors* as v and then solving for A.
Doing so gives D as the correct answer.

A.

B. 0.
C. 0,2
D. 2,5,

*Each standard basis vector e; € R" is the vector in which all components are zero except component i is 1.

37



Break & Quiz

Q 2.3: Suppose we are given a dataset with n=10000
samples with 100-dimensional binary feature vectors.
Our storage device has a capacity of 50000 bits. What's
the lower compression ratio we can use?

A. 20X
B. 100X
C. 5X

D. 1X



Break & Quiz
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Break & Quiz

Q 2.3: Suppose we are given a dataset with n=10000
samples with 100-dimensional binary feature vectors.
Our storage device has a capacity of 50000 bits. What's
the lower compression ratio we can use?

A. 20X
50,000 bits / 10,000 samples

B. 100X means compressed version must
have 5 bits / sample.

C. 5X

D. 1X

Dataset has 100 bits / sample.

Must compress 20x smaller to fit on
device.



Principal Components Analysis (PCA)

* A type of dimensionality reduction approach
— For when data is approximately lower dimensional




Principal Components Analysis (PCA)
e Goal: find axes of a subspace

— Will project to this subspace; want to preserve data
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Principal Components Analysis (PCA)

* From 2D to 1D:

— Finda v € R%  so that we maximize “variability”

— IE, .

— New representations are along this vector (1D!)



Principal Components Analysis (PCA)

From d dimensions to r dimensions-
— Sequentially get vy, vs,...,0, € RY y
— Orthogonal! 2 |
— Still minimize the projection error
* Equivalent to “maximizing variability”
— The vectors are the principal
components

Victor Powell

44



PCA Setup

* Inputs )
— Data: L1y L2y ey lp, jSER
— Can arrange into X e R
1 o .
— Centered! - ;IEZ =0
i OUtpUtS = Victor Powell
— Principal components v, v, ..., v, € R?

— Orthogonal!

45



PCA Goals

e Want directions/components (unit vectors) so that

— Projecting data maximizes variance i(az- v)? = | Xvl?
19 o

— What’s projection? —
1=



Projection: An Example

2
T1,29,...,Tn, T; €R

47



Projection: An Example

2
T1,29,...,Tn, T; €R

A random line that goes

through the origin \ O @
@

48



Projection: An Example

2
T1,29,...,Tn, T; €R

e

‘\.

0\'\;23
Osy
To quantify how good the
line fits the data, PCA

project data onto it...




Projection: An Example

2
T1,29,...,Tn, T; €R

Goal of PCA: finding a line that "
maximizes the squared distance \‘

from the projected points to the 323\0
origin (sum over all points) \.

S

Osy

n

D fwi,v)? = || X0l

1=1




Projection: An Example

2
T1,29,...,Tn, T; €R

For a fixed point, this distance gets
larger as the line fits better

(why? Pythagorean Theorem)

/w\

23
@

n

D (wi,v)? = || Xo||?

1=1

This line is called Principal
Component 1

51



PCA First Step

* First component,
v1 = arg max Yy (v, ;)
* Same as getting

v1 = arg max || Xv||”
|v]|=1



PCA Goals

e Want directions/components (unit vectors) so that
— Projecting data maximizes variance i<x v) _ HXUHQ
— What's projection? 1 ;

* Do this recursively

— Get orthogonal directions v1,v2,...,0, € R



PCA Recursion

* Once we have k-1 components, next?
k—1
Xk = X — Z XU,L'U;-F
i=1
* Then do the same thing

S

Deflation

vy = argmax || S| |

Ivi]=1

54



PCA Interpretations

 The Vv’s are eigenvectors of X’X (Gram matrix)
— Show via Rayleigh quotient

* XX (proportional to) sample covariance matrix
— When data is 0 mean!
— l.e., PCA is eigendecomposition of sample covariance

 Nested subspaces span(vl), span(v1,v2),..., £




Lots of Variations

 PCA, Kernel PCA, ICA, CCA

— Unsupervised techniques to extract structure from high
dimensional dataset

* Uses:
— Visualization / |
— Efﬁciency %zh ......... ,
— Noise removal Q /

— Downstream machine learning use
STHDA



Application: Image Compression

e Start with image; divide into 12x12 patches

— |.E., 144-D vector

— Original image:




Application: Image Compression

* 6 most important components (as an image)

A

2 4 6 8 10 12

] |

2 4 6 8 10 12

2

4

6

8 |
10
12

2 4 6 8 10 12 2 4 6 8 10 12

2 4 6 8 10 12 2 4 6 8 10 12
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Application: Image Compression

* Project to 6D,

Compressed Original

59



Application: Exploratory Data Analysis

- [Novembre et al. ’08]: Take top two singular vectors of
people x SNP matrix (POPRES)

“Genes Mirror Geography in Europe”

60



Readings

Vast literature on linear algebra.
Local class: Math 341.

Suggested reading:
— Lecture notes on PCA by Roughgarden and Valiant

https://web.stanford.edu/class/cs168/1/17.pdf
— 760 notes by Zhu https://pages.cs.wisc.edu/~jerryzhu/cs760/PCA.pdf

61


https://web.stanford.edu/class/cs168/l/l7.pdf
https://pages.cs.wisc.edu/~jerryzhu/cs760/PCA.pdf

