
CS 540 Introduction to Artificial Intelligence
Linear Algebra & PCA

University of Wisconsin-Madison
Spring 2023

1



Linear Algebra: What is it good for?

• Almost everything is a function
– Multiple inputs and outputs

• Linear functions
– Simple, tractable

• Study of linear functions
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In AI/ML Context

Building blocks for all models
- E.g., linear regression; part of neural networks 

Stanford CS231nHieu Tran
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Outline

• Basics: vectors, matrices, operations

• Dimensionality reduction

• Principal Components Analysis (PCA)
Lior Pachter

4



Basics: Vectors

Vectors
• Many interpretations 

– Physics: magnitude + direction

– Point in a space

– List of values (represents information)
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• Dimension
– Number of values
– Higher dimensions: richer but more complex

• AI/ML: often use very high dimensions: 
– Ex: images!

Basics: Vectors

Cezanne Camacho 6



Basics: Matrices

• Again, many interpretations
– Represent linear transformations
– Apply to a vector, get another vector
– Also, list of vectors

• Not necessarily square
– Indexing!
– Dimensions: #rows x #columns
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Basics: Transposition

• Transposes: flip rows and columns
– Vector: standard is a column. Transpose: row
– Matrix: go from m x n to n x m
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Matrix & Vector Operations

• Vectors
– Addition: component-wise

• Commutative
• Associative

– Scalar Multiplication
• Uniform stretch / scaling
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Matrix & Vector Operations

• Vector products.
– Inner product (e.g., dot product)

– Outer product
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• Inner product defines “orthogonality”
– If 

• Vector norms: “length”

Matrix & Vector Operations
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Matrix & Vector Operations

• Matrices:
– Addition: Component-wise
– Commutative, Associative

– Scalar Multiplication
– “Stretching” the linear transformation 
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Matrix & Vector Operations

• Matrix-Vector multiply
– I.e., linear transformation; plug in vector, get another 

vector
– Each entry in Ax is the inner product of a row of A with x
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Matrix & Vector Operations

Ex: feedforward neural networks. Input x. 
• Output of layer k is 

Output of layer k-1: vector

Weight matrix for layer k: 
Note: linear transformation!

Output of layer k: vector

nonlinearity

Wikipedia
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Matrix & Vector Operations

• Matrix multiplication
– “Composition” of linear transformations
– Not commutative (in general)!

– Lots of interpretations

Wikipedia
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More on Matrix Operations

• Identity matrix:
– Like “1”
– Multiplying by it gets back the 

same matrix or vector

– Rows & columns are the 
“standard basis vectors” 
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Break & Quiz

• Q 1.1: What is                               ? 

• A. [-1 1 1]T
• B. [2 1 1]T
• C. [1 3 1]T
• D. [1.5 2 1]T
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Break & Quiz

• Q 1.1: What is                               ? 

• A. [-1 1 1]T
• B. [2 1 1]T
• C. [1 3 1]T
• D. [1.5 2 1]T
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Check dimensions: answer 
must be 3 x 1 matrix (i.e., 
column vector).

1 2
3 1
1 1

× 01 =
0 ∗ 1 + 1 ∗ 2
0 ∗ 3 + 1 ∗ 1
0 ∗ 1 + 1 ∗ 1

=
2
1
1



Break & Quiz
• Q 1.2: Given matrices
What are the dimensions of 

• A. n x p
• B. d x p
• C. d x n
• D. Undefined
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Break & Quiz
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To rule out (D), check 
that for each pair of 
adjacent matrices XY, 
the # of columns of X = 
# of rows of Y

Then, B has d rows so 
solution must have d 
rows. C^T has p 
columns so solution has 
p columns. 



Break & Quiz

• Q 1.3: A and B are matrices, neither of which is the 
identity. Is AB = BA?

• A. Never
• B. Always
• C. Sometimes
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Break & Quiz
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Matrix multiplication is 
not necessarily 
commutative.



More on Matrices: Inverses

• If for A there is a B such that
– Then A is invertible/nonsingular, B is its inverse
– Some matrices are not invertible!

– Usual notation: 
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Eigenvalues & Eigenvectors

• For a square matrix A, solutions to
– v (nonzero) is a vector: eigenvector
– is a scalar: eigenvalue

– Intuition: A is a linear transformation;
– Can stretch/rotate vectors;
– E-vectors: only stretched (by e-vals)

Wikipedia 27



Dimensionality Reduction

• Vectors used to store features
– Lots of data -> lots of features!

• Document classification
– Each doc: thousands of words/millions of bigrams, etc

• Netflix surveys: 480189 users x 17770 movies
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Dimensionality Reduction

Ex: MEG Brain Imaging: 120 locations x 500 time points 
x 20 objects
• Or any image
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Dimensionality Reduction

Reduce dimensions
• Why? 

– Lots of features redundant 
– Storage & computation costs

• Goal: take                                          for   
– But, minimize information loss

CreativeBloq
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Compression

Examples: 3D to 2D

Andrew Ng
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Break & Quiz
Q 2.1: What is the inverse of 

A:

B:

C: Undefined / A is not invertible
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Break & Quiz
Q 2.1: What is the inverse of 

A:

B:

C: Undefined / A is not invertible
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𝐴𝐴!" = 0 2
3 0

𝑎 𝑏
𝑐 𝑑 = 0 ∗ 𝑎 + 𝑐 ∗ 2 0 ∗ 𝑏 + 2 ∗ 𝑑

3 ∗ 𝑎 + 𝑐 ∗ 0 3 ∗ 𝑏 + 0 ∗ 𝑑 = 1 0
0 1

2𝑐 = 1
3𝑎 = 0
2𝑑 = 0
3𝑏 = 1

𝑎 𝑏
𝑐 𝑑 =

0 1/3
1/2 0



Break & Quiz
Q 2.2: What are the eigenvalues of 

A. -1, 2, 4
B. 0.5, 0.2, 1.0
C. 0, 2, 5
D. 2, 5, 1
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Break & Quiz
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Solution #1: You may recall from a linear algebra 
course that the eigenvalues of a diagonal matrix (in 
which only diagonal entries are non-zero) are just the 
entries along the diagonal. Hence D is the correct 
answer.



Break & Quiz
Q 2.2: What are the eigenvalues of 

A. -1, 2, 4
B. 0.5, 0.2, 1.0
C. 0, 2, 5
D. 2, 5, 1
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Solution #2: Use the definition of 
eigenvectors and values: 𝐴𝑣 = 𝜆𝑣

2 0 0
0 5 0
0 0 1

𝑣"
𝑣#
𝑣$
=

2𝑣" + 0𝑣# + 0𝑣$
0𝑣" + 5𝑣# + 0𝑣$
0𝑣" + 0𝑣# + 1𝑣$

=
2𝑣"
5𝑣#
𝑣$

=
𝜆𝑣"
𝜆𝑣#
𝜆𝑣$

Since A is a 3x3 matrix, A has 3 eigenvalues 
and so there are 3 combinations of values for 
𝜆 and v that will satisfy the above equation. 
The simple form of the equations suggests 
starting by checking each of the standard 
basis vectors* as v and then solving for 𝜆. 
Doing so gives D as the correct answer.

*Each standard basis vector 𝑒! ∈ ℝ" is the vector in which all components are zero except component 𝑖 is 1.



Break & Quiz
Q 2.3: Suppose we are given a dataset with n=10000 
samples with 100-dimensional binary feature vectors. 
Our storage device has a capacity of 50000 bits. What’s 
the lower compression ratio we can use?
A. 20X
B. 100X
C. 5X
D. 1X
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samples with 100-dimensional binary feature vectors. 
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the lower compression ratio we can use?
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50,000 bits / 10,000 samples 
means compressed version must 
have 5 bits / sample.

Dataset has 100 bits / sample.

Must compress 20x smaller to fit on 
device.



Principal Components Analysis (PCA)

• A type of dimensionality reduction approach
– For when data is approximately lower dimensional
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Principal Components Analysis (PCA)

• Goal: find axes of a subspace
– Will project to this subspace; want to preserve data

42



Principal Components Analysis (PCA)

• From 2D to 1D:
– Find a                       so that we maximize “variability”
– IE, 

– New representations are along this vector (1D!)
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Principal Components Analysis (PCA)

• From d dimensions to r dimensions:
– Sequentially get
– Orthogonal!
– Still minimize the projection error

• Equivalent to “maximizing variability”

– The vectors are the principal 
components

Victor Powell
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PCA Setup

• Inputs
– Data: 
– Can arrange into 

– Centered!

• Outputs
– Principal components 
– Orthogonal!

Victor Powell
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PCA Goals

• Want directions/components (unit vectors) so that
– Projecting data maximizes variance
– What’s projection? 

46

Let’s look at an example!



Projection: An Example

47
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Projection: An Example
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2

A random line that goes 
through the origin



Projection: An Example
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2

To quantify how good the 
line fits the data, PCA 
project data onto it…



Projection: An Example
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Goal of PCA: finding a line that 
maximizes the squared distance 
from the projected points to the 
origin (sum over all points)



Projection: An Example

51

2

For a fixed point, this distance gets 
larger as the line fits better 
(why? Pythagorean Theorem)

This orange line is called Principal 
Component 1



PCA First Step

• First component,

• Same as getting
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PCA Goals

• Want directions/components (unit vectors) so that
– Projecting data maximizes variance
– What’s projection? 

• Do this recursively
– Get orthogonal directions
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PCA Recursion

• Once we have k-1 components, next?

• Then do the same thing Deflation
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𝑣! = argmax
" #$

(𝑋!𝑣
%



PCA Interpretations

• The v’s are eigenvectors of XTX (Gram matrix)
– Show via Rayleigh quotient

• XTX (proportional to) sample covariance matrix
– When data is 0 mean!
– I.e., PCA is eigendecomposition of sample covariance

• Nested subspaces span(v1), span(v1,v2),…,
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Lots of Variations

• PCA, Kernel PCA, ICA, CCA
– Unsupervised techniques to extract structure from high 

dimensional dataset

• Uses:
– Visualization
– Efficiency
– Noise removal
– Downstream machine learning use

STHDA 56



Application: Image Compression

• Start with image; divide into 12x12 patches

– I.E., 144-D vector

– Original image:
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Application: Image Compression

• 6 most important components (as an image)
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Application: Image Compression

• Project to 6D, 

Compressed Original
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Application: Exploratory Data Analysis
• [Novembre et al. ’08]: Take top two singular vectors of 

people x SNP matrix (POPRES) 

60“Genes Mirror Geography in Europe” 



Readings
• Vast literature on linear algebra.
• Local class: Math 341.

• Suggested reading: 
– Lecture notes on PCA by Roughgarden and Valiant

https://web.stanford.edu/class/cs168/l/l7.pdf
– 760 notes by Zhu https://pages.cs.wisc.edu/~jerryzhu/cs760/PCA.pdf
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https://web.stanford.edu/class/cs168/l/l7.pdf
https://pages.cs.wisc.edu/~jerryzhu/cs760/PCA.pdf

