CS 540 Introduction to Artificial Intelligence

Unsupervised Learning II

University of Wisconsin-Madison

Spring 2023
Announcements

- **Homeworks:**
 - HW4 due Thursday!

- **Class roadmap:**

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday, Feb 21</td>
<td>ML Unsupervised II</td>
</tr>
<tr>
<td>Thursday, Feb 23</td>
<td>ML Linear Regression</td>
</tr>
<tr>
<td>Tuesday, Feb 28</td>
<td>ML: K - Nearest Neighbors & Naive Bayes</td>
</tr>
<tr>
<td>Thursday, Mar 2</td>
<td>ML: Neural Networks I</td>
</tr>
<tr>
<td>Tuesday, Mar 7</td>
<td>ML: Neural Networks II</td>
</tr>
</tbody>
</table>
Unsupervised Learning II Outline

• Finish up Other Clustering Types
 – Graph-based clustering, graph cuts, spectral clustering
• Unsupervised Learning: Visualization
 – t-SNE: algorithm, examples, vs. PCA
• Unsupervised Learning: Density Estimation
 – Kernel density estimation: high-level intro
After today’s lecture, you’ll be able to...

- Understand graph-based clustering and the steps of the spectral clustering algorithm.
- Describe the purpose of the t-SNE algorithm for data visualization, contrast t-SNE with PCA, and understand the steps of t-SNE.
- Understand the problem of and basic techniques for density estimation.
Review: Clustering

• K-means Algorithm:
 • Input: data points, $x_1, x_2, \ldots x_n$, and desired number of clusters, k.
 • Output: a grouping of the points into k clusters.
Review: Clustering

• Hierarchical Clustering:
 – Input: data points $x_1, x_2, \ldots x_n$.
 – Output: a tree that progressively divides data points into smaller and smaller groups.
Other Types of Clustering

Graph-based/proximity-based

• Recall: Graph $G = (V,E)$ has vertex set V, edge set E.
 – Edges can be weighted or unweighted
 – Edges encode **similarity** between vertices:
 \[w_{ij} = \text{sim}(v_i, v_j) \]

• Don’t need to KEEP vectors for each v.
 – Only keep the edges (possibly weighted)
Graph-Based Clustering

Want: partition V into V_1 and V_2

- Implies a graph “cut”
- One idea: minimize the **weight** of the cut

$$W(A, B) = \sum_{i \in A, j \in B} w_{ij}$$

$$\text{cut}(A_1, \ldots, A_k) := \frac{1}{2} \sum_{i=1}^{k} W(A_i, \overline{A}_i).$$
Partition-Based Clustering

How do we compute these?

• Hard problem → heuristics
 – Greedy algorithm
 – “Spectral” approaches

• Spectral clustering approach:
 – Adjacency matrix

\[A = \begin{bmatrix}
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{bmatrix} \]
Partition-Based Clustering

- Spectral clustering approach:
 - **Adjacency** matrix
 - **Degree** matrix

\[
D = \begin{bmatrix}
2 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 2 \\
\end{bmatrix}
\]

\[
A = \begin{bmatrix}
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 \\
\end{bmatrix}
\]
Spectral Clustering

- Spectral clustering approach:
 - 1. Compute **Laplacian** $L = D - A$

(Important tool in graph theory)

$$L = \begin{bmatrix}
2 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 2
\end{bmatrix} - \begin{bmatrix}
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{bmatrix} = \begin{bmatrix}
2 & 0 & 0 & -1 & -1 \\
0 & 2 & -1 & -1 & 0 \\
0 & -1 & 1 & 0 & 0 \\
-1 & -1 & 0 & 3 & -1 \\
-1 & 0 & 0 & -1 & 2
\end{bmatrix}$$

Degree Matrix

Adjacency Matrix

Laplacian
Spectral Clustering

- Spectral clustering approach:
 - 1. Compute Laplacian $L = D - A$
 - 1a (optional): compute normalized Laplacian:
 $L = I - \frac{1}{2}AD^{-1/2}$, or $L = I - D^{-1}A$
 - 2. Compute j smallest eigenvectors of L
 - 3. Set U to be the $n \times j$ matrix with u_1, ..., u_j as columns. Take the n rows formed as points.
 - 4. Run k-means on the representations.
Why normalized Laplacian?

Want: partition V into V_1 and V_2

- Implies a graph “cut”
- One idea: minimize the **weight** of the cut
 - Downside: might only get cut of one node
 - Need: “balanced” cut
Why Normalized Laplacian?

Want: partition V into V_1 and V_2

- Just minimizing weight is not always a good idea.
- We want **balance**!

$$
Ncut(A_1, \ldots, A_k) := \frac{1}{2} \sum_{i=1}^{k} \frac{W(A_i, \overline{A_i})}{\text{vol}(A_i)}
$$

$$
\text{vol}(A) = \sum_{i \in A} \text{degree}(i)
$$
Spectral Clustering

• Compare/contrast to **PCA**:
 – Use an **eigendecomposition / dimensionality reduction**
 • But, run on Laplacian (not covariance); use smallest eigenvectors, not largest

• Intuition: Laplacian encodes structure information
 – “Lower” eigenvectors give partitioning information
Spectral Clustering

Q: Why do this?
 - 1. No need for points or distances as input
 - 2. Can handle intuitive separation (k-means can’t!)

Credit: William Fleshman
Q 1.1: We have two datasets: a social network dataset S_1 which shows which individuals are friends with each other along with image dataset S_2. What kind of clustering can we do? Assume we do not make additional data transformations.

- A. k-means on both S_1 and S_2
- B. graph-based on S_1 and k-means on S_2
- C. k-means on S_1 and graph-based on S_2
- D. hierarchical on S_1 and graph-based on S_2
Q 1.1: We have two datasets: a social network dataset S_1 which shows which individuals are friends with each other along with image dataset S_2. What kind of clustering can we do? Assume we do not make additional data transformations.

- A. k-means on both S_1 and S_2
- B. graph-based on S_1 and k-means on S_2
- C. k-means on S_1 and graph-based on S_2
- D. hierarchical on S_1 and graph-based on S_2
Q 1.1: We have two datasets: a social network dataset S_1 which shows which individuals are friends with each other along with image dataset S_2. What kind of clustering can we do? Assume we do not make additional data transformations.

- A. k-means on both S_1 and S_2 (No: can’t do k-means on graph)
- B. graph-based on S_1 and k-means on S_2
- C. k-means on S_1 and graph-based on S (Same as A)
- D. hierarchical on S_1 and graph-based on S_2 (No: S_2 is not a graph)
Q 1.2: The CIFAR-10 dataset contains 32x32 images labeled with one of 10 classes. What could we use it for?

(i) Supervised learning (ii) PCA (iii) k-means clustering

- A. Only (i)
- B. Only (ii) and (iii)
- C. Only (i) and (ii)
- D. All of them
Break & Quiz

Q 1.2: The CIFAR-10 dataset contains 32x32 images labeled with one of 10 classes. What could we use it for?

(i) Supervised learning (ii) PCA (iii) k-means clustering

• A. Only (i)
• B. Only (ii) and (iii)
• C. Only (i) and (ii)
• D. All of them
Q 1.2: The CIFAR-10 dataset contains 32x32 images labeled with one of 10 classes. What could we use it for?

(i) Supervised learning (ii) PCA (iii) k-means clustering

- (i) Yes: train an image classifier; have labels)
- (ii) Yes: run PCA on image vectors to reduce dimensionality
- (iii) Yes: can cluster image vectors with k-means
- D. All of them
Unsupervised Learning Beyond Clustering

Data analysis, dimensionality reduction, etc

- Already talked about PCA.
- Note: PCA can be used for visualization, but not specifically designed for it.
- Some algorithms are specifically for visualization.
Dimensionality Reduction & Visualization

Typical dataset: MNIST

- Handwritten digits 0-9
 - 60,000 images (small by ML standards)
 - 28×28 pixel (784 dimensions)
 - Standard for image experiments

- Dimensionality reduction?
 - Reducing dimensionality to 2-3 dimensions allows people to visualize data points and their relationships.
Dimensionality Reduction & Visualization

Run PCA on MNIST

- PCA is a linear mapping, (can be restrictive)

Image source:
Visualization: T-SNE

Typical dataset: MNIST

- **T-SNE**: project data into just 2 dimensions
- Try to maintain structure

- MNIST Example
- **Input**: x_1, x_2, \ldots, x_n
- **Output**: 2D/3D y_1, y_2, \ldots, y_n
The T-SNE Algorithm: Step 1

How does it work? Two steps

1. Turn vectors into probability pairs
2. Turn pairs back into (lower-dim) vectors

Step 1:

\[
p_{j|i} = \frac{\exp\left(-\frac{||x_i - x_j||^2}{2\sigma_i^2}\right)}{\sum_{k \neq i} \exp\left(-\frac{||x_i - x_k||^2}{2\sigma_i^2}\right)} \quad p_{ij} = \frac{1}{2n} (p_{j|i} + p_{i|j})
\]

Intuition: probability that \(x_i\) would pick \(x_j\) as its neighbor under a Gaussian probability
T-SNE Algorithm: Step 2

How does it work? Two steps

1. Turn vectors into probability pairs
2. Turn pairs back into (lower-dim) vectors

Step 2: set

\[q_{ij} = \frac{(1 + \|y_i - y_j\|^2)^{-1}}{\sum_{k \neq \ell} (1 + \|y_k - y_\ell\|^2)^{-1}} \]

and minimize

\[\sum_{i,j} p_{ij} \log \frac{p_{ij}}{q_{ij}} \]

KL Divergence between p and q
(Measures dissimilarity between probability distributions)
T-SNE Algorithm: Step 2

More on step 2:

• We have two distributions p, q. p is fixed
• q is a function of the y_i which we move around
• Move y_i around until the KL divergence is small
 — So we have a good representation!

• Optimizing a loss function---we’ll see more in supervised learning lectures.

KL Divergence between p and q

$$\sum_{i,j} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$
T-SNE Examples

- **Examples:** (from Laurens van der Maaten)
- **Movies:** https://lvdmaaten.github.io/tsne/examples/netflix_tsne.jpg
T-SNE Examples

- Examples: (from Laurens van der Maaten)
- **NORB**: https://lvdmaaten.github.io/tsne/examples/norb_tsne.jpg
Visualization: T-SNE

t-SNE vs PCA?
• “Local” vs “Global”
• Lose information in t-SNE
 – not a bad thing necessarily
• Downstream use

Good resource/credit:
https://www.thekerneltrip.com/statistics/tsne-vs-pca/
Break & Quiz

Q 2.1: Can we do t-SNE on NLP (words) or graph datasets?

• A. Never
• B. Yes, after running PCA on them
• C. Yes, after mapping them into R^d (ie, embedding)
• D. Yes, after running hierarchical clustering on them
Q 2.1: Can we do t-SNE on NLP (words) or graph datasets?

- A. Never
- B. Yes, after running PCA on them
- C. Yes, after mapping them into \mathbb{R}^d (ie, embedding)
- D. Yes, after running hierarchical clustering on them
Q 2.1: Can we do t-SNE on NLP (words) or graph datasets?

- A. Never (No: too strong)
- B. Yes, after running PCA on them (No: can’t run PCA on words or graphs directly. Need vectors)
- C. Yes, after mapping them into R^d (ie, embedding)
- D. Yes, after running hierarchical clustering on them (No: hierarchical clustering gives us a graph)
Short Intro to Density Estimation

Goal: given samples $x_1, ..., x_n$ from some distribution P, estimate P.

- Compute statistics (mean, variance)
- Generate samples from P
- Run inference
Simplest Idea: Histograms

Goal: given samples x_1, \ldots, x_n from some distribution P, estimate P.

Define bins; count # of samples in each bin, normalize.
Simplest Idea: Histograms

Goal: given samples x_1, \ldots, x_n from some distribution P, estimate P.

Downsides:

i) High-dimensions: most bins are empty.

ii) Not continuous.

iii) How to choose bins?
Kernel Density Estimation

Goal: given samples x_1, \ldots, x_n from some distribution P, estimate P.

Idea: represent density as combination of “kernels”

$$ f(x) = \frac{1}{nh} \sum_{i=1}^{n} K \left(\frac{x - x_i}{h} \right) $$

- Center at each point
- Kernel function: often Gaussian
- Width parameter
Kernel Density Estimation

Idea: represent density as combination of kernels

- “Smooth” out the histogram