

CS 540 Introduction to Artificial Intelligence Unsupervised Learning II University of Wisconsin-Madison

Spring 2023

Announcements

- Homeworks:
 - HW4 due Thursday!
- Class roadmap:

Tuesday, Feb 21	ML Unsupervised II
Thursday, Feb 23	ML Linear Regression
Tuesday, Feb 28	ML: K - Nearest Neighbors & Naive Bayes
Thursday, Mar 2	ML: Neural Networks I
Tuesday, Mar 7	ML: Neural Networks II

Last topic included on midterm!

Unsupervised Learning II Outline

- Finish up Other Clustering Types
 - Graph-based clustering, graph cuts, spectral clustering
- Unsupervised Learning: Visualization
 - t-SNE: algorithm, examples, vs. PCA
- Unsupervised Learning: Density Estimation
 - Kernel density estimation: high-level intro

After today's lecture, you'll be able to..

- Understand graph-based clustering and the steps of the spectral clustering algorithm.
- Describe the purpose of the t-SNE algorithm for data visualization, contrast t-SNE with PCA, and understand the steps of t-SNE.
- Understand the problem of and basic techniques for density estimation.

Review: Clustering

- K-means Algorithm:
 - Input: data points, x₁, x₂, ... x_n, and desired number of clusters, k.
 - Output: a grouping of the points into k clusters.

Review: Clustering

- Hierarchical Clustering:
 - Input: data points $x_1, x_2, \ldots x_n$.
 - Output: a tree that progressively divides data points into smaller and smaller groups.

Other Types of Clustering

Graph-based/proximity-based

- Recall: Graph G = (V,E) has vertex set V, edge set E.
 - Edges can be weighted or unweighted
 - Edges encode similarity between vertices:

 $w_{ij} = \sin(v_i, v_j)$

- Don't need to KEEP vectors for each v.
 - Only keep the edges (possibly weighted)

Graph-Based Clustering

Want: partition V into V_1 and V_2

- Implies a graph "cut"
- One idea: minimize the **weight** of the cut

$$W(A,B) = \sum_{i \in A, j \in B} w_{ij}$$
 $\operatorname{cut}(A_1,\ldots,A_k) := rac{1}{2} \sum_{i=1}^k W(A_i,\overline{A}_i).$

Partition-Based Clustering

How do we compute these?

- Hard problem \rightarrow heuristics
 - Greedy algorithm
 - "Spectral" approaches
- Spectral clustering approach:

– Adjacency matrix

 $A = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$

Partition-Based Clustering

- Spectral clustering approach:
 - Adjacency matrix
 - **Degree** matrix

$$D = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix} \quad A = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Spectral Clustering

• Spectral clustering approach:

- 1. Compute Laplacian L = D - A(Important tool in graph theory)

$$L = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 & -1 & -1 \\ 0 & 2 & -1 & -1 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 3 & -1 \\ -1 & 0 & 0 & -1 & 2 \end{bmatrix}$$
Degree Matrix
Adjacency Matrix
Laplacian

Spectral Clustering

- Spectral clustering approach:
 - -1. Compute Laplacian L = D -A
 - 1a (optional): compute normalized Laplacian: $L = I - D^{-1/2}AD^{-1/2}$, or $L = I - D^{-1}A$

- 2. Compute *j* smallest eigenvectors of L
- 3. Set U to be the n x j matrix with u₁, ..., u_j as columns. Take the n rows formed as points.
 4. Run k-means on the representations.

Why normalized Laplacian?

Want: partition V into V_1 and V_2

- Implies a graph "cut"
- One idea: minimize the weight of the cut
 - Downside: might only get cut of one node
 - Need: "balanced" cut

Why Normalized Laplacian?

Want: partition V into V_1 and V_2

- Just minimizing weight is not always a good idea.
- We want **balance!**

$$\operatorname{Ncut}(A_1, \dots, A_k) := \frac{1}{2} \sum_{i=1}^k \frac{W(A_i, \overline{A}_i)}{\operatorname{vol}(A_i)}$$

$$\mathrm{vol}(A) = \sum_{i \in A} \mathrm{degree}(i)$$

Spectral Clustering

• Compare/contrast to **PCA**:

Use an eigendecomposition / dimensionality reduction

- But, run on Laplacian (not covariance); use smallest eigenvectors, not largest
- Intuition: Laplacian encodes structure information
 - "Lower" eigenvectors give partitioning information

Spectral Clustering

- **Q**: Why do this?
 - 1. No need for points or distances as input
 - 2. Can handle intuitive separation (k-means can't!)

Credit: William Fleshman

Q 1.1: We have two datasets: a social network dataset S_1 which shows which individuals are friends with each other along with image dataset S_2 .

What kind of clustering can we do? Assume we do not make additional data transformations.

- A. k-means on both S_1 and S_2
- B. graph-based on S₁ and k-means on S₂
- C. k-means on S₁ and graph-based on S₂
- D. hierarchical on S₁ and graph-based on S₂

Q 1.1: We have two datasets: a social network dataset S_1 which shows which individuals are friends with each other along with image dataset S_2 .

What kind of clustering can we do? Assume we do not make additional data transformations.

- A. k-means on both S_1 and S_2
- B. graph-based on S₁ and k-means on S₂
- C. k-means on S₁ and graph-based on S₂
- D. hierarchical on S₁ and graph-based on S₂

Q 1.1: We have two datasets: a social network dataset S_1 which shows which individuals are friends with each other along with image dataset S_2 .

What kind of clustering can we do? Assume we do not make additional data transformations.

- A. k-means on both S₁ and S₂ (No: can't do k-means on graph)
- B. graph-based on S₁ and k-means on S₂
- C. k-means on S₁ and graph-based on S (Same as A)
- D. hierarchical on S₁ and graph-based on S₂ (No: S₂ is not a graph)

Q 1.2: The CIFAR-10 dataset contains 32x32 images labeled with one of 10 classes. What could we use it for?

(i) Supervised learning (ii) PCA (iii) k-means clustering

- A. Only (i)
- B. Only (ii) and (iii)
- C. Only (i) and (ii)
- D. All of them

airplane	1
automobile	
bird	1
cat	
deer	l
dog	
frog	
horse	
ship	
truck	-

Q 1.2: The CIFAR-10 dataset contains 32x32 images labeled with one of 10 classes. What could we use it for?(i) Supervised learning (ii) PCA (iii) k-means clustering

- A. Only (i)
- B. Only (ii) and (iii)
- C. Only (i) and (ii)
- D. All of them

Q 1.2: The CIFAR-10 dataset contains 32x32 images labeled with one of 10 classes. What could we use it for?(i) Supervised learning (ii) PCA (iii) k-means clustering

- (i) Yes: train an image classifier; have labels)
- (ii) Yes: run PCA on image vectors to reduce dimensionality
- (iii) Yes: can cluster image vectors with k-means
- D. All of them

Unsupervised Learning Beyond Clustering

Data analysis, dimensionality reduction, etc

- Already talked about PCA.
- Note: PCA can be used for visualization, but not specifically designed for it.
- Some algorithms are specifically for visualization.

Dimensionality Reduction & Visualization

Typical dataset: MNIST

- Handwritten digits 0-9
 - 60,000 images (small by ML standards)
 - 28×28 pixel (784 dimensions)
 - Standard for image

experiments

- Dimensionality reduction?
 - Reducing dimensionality to 2-3 4 dimensions allows people to visualize 5 data points and their relationships. 6

0000000000000000 1 1 1 1 2222222222222222 3**333333**333333333333 5 5 555 55555555 5 66666666666666 66 η 77277 777 8 B 8 88 8 8 8 8

Dimensionality Reduction & Visualization

Run PCA on MNIST

 PCA is a linear mapping, (can be restrictive)

1560 238073857 0146460243 7128169861

Image source:

http://deeplearning.csail.mit.edu/slide_cvpr2018/laurens_cvpr18tutorial.pdf

Visualization: T-SNE

Typical dataset: MNIST

- T-SNE: project data into just 2 dimensions
- Try to maintain structure
- MNIST Example
- Input: x₁, x₂, ..., x_n
- **Output**: 2D/3D y₁, y₂, ..., y_n

T-SNE Algorithm: Step 1

How does it work? Two steps

- 1. Turn vectors into probability pairs
- **2**. Turn pairs back into **(lower-dim)** vectors Step 1:

$$p_{j|i} = \frac{\exp(-\|x_i - x_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|x_i - x_k\|^2 / 2\sigma_i^2)} \quad p_{ij} = \frac{1}{2n} (p_{j|i} + p_{i|j})$$

X₄

Xa

x₁

 X_2

Intuition: probability that x_i would pick x_j as its neighbor under a Gaussian probability

T-SNE Algorithm: Step 2

How does it work? Two steps

- 1. Turn vectors into probability pairs
- 2. Turn pairs back into (lower-dim) vectors

$$q_{ij} = \frac{(1 + \|y_i - y_j\|^2)^{-1}}{\sum_{k \neq \ell} (1 + \|y_k - y_\ell\|^2)^{-1}}$$
 78

and minimize

Step 2: set

$$\sum_{i,j} p_{ij} \log rac{p_{ij}}{q_{ij}}$$
 KL Divergence
between p and q
(Measures dissimilarity between
probability distributions)

Х₄

)X₂

 X_1

 X_2

T-SNE Algorithm: Step 2

More on step 2:

- We have two distributions *p*, *q*. *p* is fixed
- q is a function of the y_i which we move around
- Move y_i around until the KL divergence is small
 - So we have a good representation!

- KL Divergence between p and q
- **Optimizing a loss function**---we'll see more in supervised learning lectures.

T-SNE Examples

- Examples: (from Laurens van der Maaten)
- Movies: https://lvdmaaten.github.io/tsne/examples/ netflix_tsne.jpg

T-SNE Examples

- Examples: (from Laurens van der Maaten)
- NORB: https://lvdmaaten.github.io/tsne/examples/ norb_tsne.jpg

Visualization: T-SNE

t-SNE vs PCA?

- "Local" vs "Global"
- Lose information in t-SNE
 not a bad thing necessarily
- Downstream use

Good resource/credit:

https://www.thekerneltrip.com/statistics/tsne-vs-pca/

Q 2.1: Can we do t-SNE on NLP (words) or graph datasets?

- A. Never
- B. Yes, after running PCA on them
- C. Yes, after mapping them into R^d (ie, embedding)
- D. Yes, after running hierarchical clustering on them

Q 2.1: Can we do t-SNE on NLP (words) or graph datasets?

- A. Never
- B. Yes, after running PCA on them
- C. Yes, after mapping them into R^d (ie, embedding)
- D. Yes, after running hierarchical clustering on them

Q 2.1: Can we do t-SNE on NLP (words) or graph datasets?

- A. Never (No: too strong)
- B. Yes, after running PCA on them (No: can't run PCA on words or graphs directly. Need vectors)
- C. Yes, after mapping them into R^d (ie, embedding)
- D. Yes, after running hierarchical clustering on them (No: hierarchical clustering gives us a graph)

Short Intro to Density Estimation

Goal: given samples $x_1, ..., x_n$ from some distribution *P*, estimate P.

- Compute statistics (mean, variance)
- Generate samples from P
- Run inference

Zach Monge

Simplest Idea: Histograms

Goal: given samples $x_1, ..., x_n$ from some distribution *P*,

estimate P.

Define bins; count # of samples in each bin, normalize

Simplest Idea: Histograms

Goal: given samples $x_1, ..., x_n$ from some distribution *P*, estimate P.

Downsides:

- i) High-dimensions: most bins are empty.
- ii) Not continuous.
- iii) How to choose bins?

Kernel Density Estimation

Goal: given samples $x_1, ..., x_n$ from some distribution *P*, estimate P.

Idea: represent density as combination of "kernels"

Kernel Density Estimation

Idea: represent density as combination of kernels

• "Smooth" out the histogram

