

# CS 540 Introduction to Artificial Intelligence Unsupervised Learning II University of Wisconsin-Madison

Spring 2023

### Announcements

- Homeworks:
  - HW4 due Thursday!
- Class roadmap:

| Tuesday, Feb 21  | ML Unsupervised II                            |
|------------------|-----------------------------------------------|
| Thursday, Feb 23 | ML Linear Regression                          |
| Tuesday, Feb 28  | ML: K - Nearest<br>Neighbors & Naive<br>Bayes |
| Thursday, Mar 2  | ML: Neural Networks I                         |
| Tuesday, Mar 7   | ML: Neural Networks II                        |

Last topic included on midterm!



## Unsupervised Learning II Outline

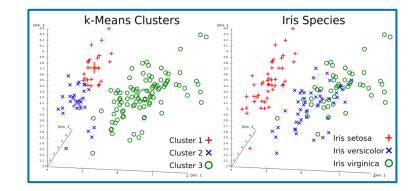
- Finish up Other Clustering Types
  - Graph-based clustering, graph cuts, spectral clustering
- Unsupervised Learning: Visualization
  - t-SNE: algorithm, examples, vs. PCA
- Unsupervised Learning: Density Estimation
  - Kernel density estimation: high-level intro

# After today's lecture, you'll be able to..

- Understand graph-based clustering and the steps of the spectral clustering algorithm.
- Describe the purpose of the t-SNE algorithm for data visualization, contrast t-SNE with PCA, and understand the steps of t-SNE.
- Understand the problem of and basic techniques for density estimation.

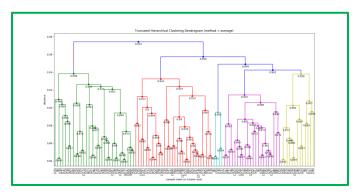
# **Review: Clustering**

- K-means Algorithm:
  - Input: data points, x<sub>1</sub>, x<sub>2</sub>, ... x<sub>n</sub>, and desired number of clusters, k.
  - Output: a grouping of the points into k clusters.



# **Review: Clustering**

- Hierarchical Clustering:
  - Input: data points  $x_1, x_2, \ldots x_n$ .
  - Output: a tree that progressively divides data points into smaller and smaller groups.



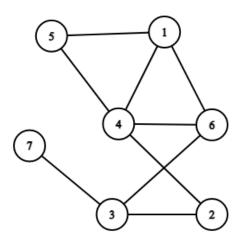
# Other Types of Clustering

### Graph-based/proximity-based

- Recall: Graph G = (V,E) has vertex set V, edge set E.
  - Edges can be weighted or unweighted
  - Edges encode similarity between vertices:

 $w_{ij} = \sin(v_i, v_j)$ 

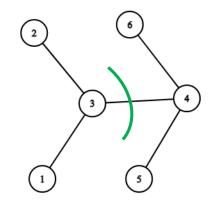
- Don't need to KEEP vectors for each v.
  - Only keep the edges (possibly weighted)



### **Graph-Based Clustering**

**Want:** partition V into  $V_1$  and  $V_2$ 

- Implies a graph "cut"
- One idea: minimize the **weight** of the cut



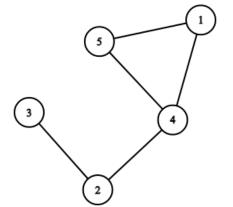
$$W(A,B) = \sum_{i \in A, j \in B} w_{ij}$$
 $\operatorname{cut}(A_1,\ldots,A_k) := rac{1}{2} \sum_{i=1}^k W(A_i,\overline{A}_i).$ 

# **Partition-Based Clustering**

### How do we compute these?

- Hard problem  $\rightarrow$  heuristics
  - Greedy algorithm
  - "Spectral" approaches
- Spectral clustering approach:

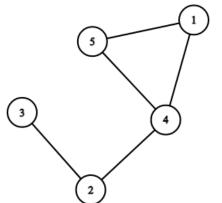
– Adjacency matrix



 $A = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$ 

### **Partition-Based Clustering**

- Spectral clustering approach:
  - Adjacency matrix
  - **Degree** matrix

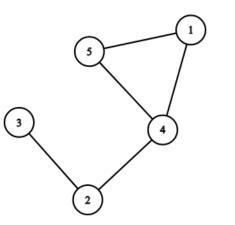


$$D = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix} \quad A = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

## **Spectral Clustering**

• Spectral clustering approach:

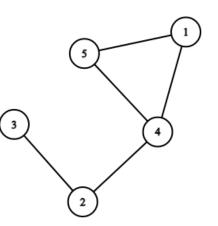
- 1. Compute Laplacian L = D - A(Important tool in graph theory)



$$L = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 & -1 & -1 \\ 0 & 2 & -1 & -1 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 3 & -1 \\ -1 & 0 & 0 & -1 & 2 \end{bmatrix}$$
Degree Matrix
Adjacency Matrix
Laplacian

# **Spectral Clustering**

- Spectral clustering approach:
  - -1. Compute Laplacian L = D -A
  - 1a (optional): compute normalized Laplacian:  $L = I - D^{-1/2}AD^{-1/2}$ , or  $L = I - D^{-1}A$

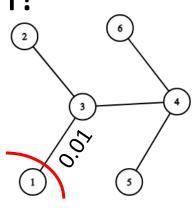


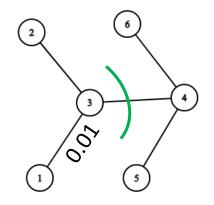
- 2. Compute *j* smallest eigenvectors of L
- 3. Set U to be the n x j matrix with u<sub>1</sub>, ..., u<sub>j</sub> as columns. Take the n rows formed as points.
  4. Run k-means on the representations.

# Why normalized Laplacian?

**Want:** partition V into  $V_1$  and  $V_2$ 

- Implies a graph "cut"
- One idea: minimize the weight of the cut
  - Downside: might only get cut of one node
  - Need: "balanced" cut





## Why Normalized Laplacian?

**Want:** partition V into  $V_1$  and  $V_2$ 

- Just minimizing weight is not always a good idea.
- We want **balance!**

$$\operatorname{Ncut}(A_1, \dots, A_k) := \frac{1}{2} \sum_{i=1}^k \frac{W(A_i, \overline{A}_i)}{\operatorname{vol}(A_i)}$$

$$\mathrm{vol}(A) = \sum_{i \in A} \mathrm{degree}(i)$$

# **Spectral Clustering**

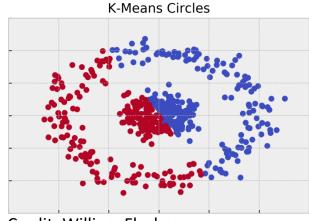
• Compare/contrast to **PCA**:

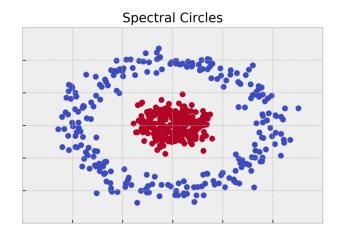
Use an eigendecomposition / dimensionality reduction

- But, run on Laplacian (not covariance); use smallest eigenvectors, not largest
- Intuition: Laplacian encodes structure information
  - "Lower" eigenvectors give partitioning information

# **Spectral Clustering**

- **Q**: Why do this?
  - 1. No need for points or distances as input
  - 2. Can handle intuitive separation (k-means can't!)





Credit: William Fleshman

**Q 1.1**: We have two datasets: a social network dataset  $S_1$  which shows which individuals are friends with each other along with image dataset  $S_2$ .

What kind of clustering can we do? Assume we do not make additional data transformations.

- A. k-means on both  $S_1$  and  $S_2$
- B. graph-based on S<sub>1</sub> and k-means on S<sub>2</sub>
- C. k-means on S<sub>1</sub> and graph-based on S<sub>2</sub>
- D. hierarchical on S<sub>1</sub> and graph-based on S<sub>2</sub>

**Q 1.1**: We have two datasets: a social network dataset  $S_1$  which shows which individuals are friends with each other along with image dataset  $S_2$ .

What kind of clustering can we do? Assume we do not make additional data transformations.

- A. k-means on both  $S_1$  and  $S_2$
- B. graph-based on S<sub>1</sub> and k-means on S<sub>2</sub>
- C. k-means on S<sub>1</sub> and graph-based on S<sub>2</sub>
- D. hierarchical on S<sub>1</sub> and graph-based on S<sub>2</sub>

**Q 1.1**: We have two datasets: a social network dataset  $S_1$  which shows which individuals are friends with each other along with image dataset  $S_2$ .

What kind of clustering can we do? Assume we do not make additional data transformations.

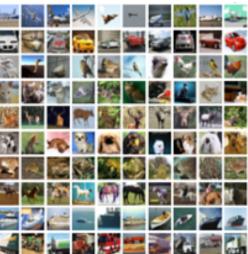
- A. k-means on both S<sub>1</sub> and S<sub>2</sub> (No: can't do k-means on graph)
- B. graph-based on S<sub>1</sub> and k-means on S<sub>2</sub>
- C. k-means on S<sub>1</sub> and graph-based on S (Same as A)
- D. hierarchical on S<sub>1</sub> and graph-based on S<sub>2</sub> (No: S<sub>2</sub> is not a graph)

**Q 1.2**: The CIFAR-10 dataset contains 32x32 images labeled with one of 10 classes. What could we use it for?

(i) Supervised learning (ii) PCA (iii) k-means clustering

- A. Only (i)
- B. Only (ii) and (iii)
- C. Only (i) and (ii)
- D. All of them

| airplane   | 1 |
|------------|---|
| automobile |   |
| bird       | 1 |
| cat        |   |
| deer       | l |
| dog        |   |
| frog       |   |
| horse      |   |
| ship       |   |
| truck      | - |
|            |   |



Q 1.2: The CIFAR-10 dataset contains 32x32 images labeled with one of 10 classes. What could we use it for?(i) Supervised learning (ii) PCA (iii) k-means clustering

- A. Only (i)
- B. Only (ii) and (iii)
- C. Only (i) and (ii)
- D. All of them

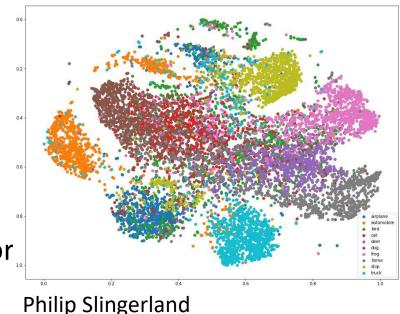
Q 1.2: The CIFAR-10 dataset contains 32x32 images labeled with one of 10 classes. What could we use it for?(i) Supervised learning (ii) PCA (iii) k-means clustering

- (i) Yes: train an image classifier; have labels)
- (ii) Yes: run PCA on image vectors to reduce dimensionality
- (iii) Yes: can cluster image vectors with k-means
- D. All of them

# Unsupervised Learning Beyond Clustering

Data analysis, dimensionality reduction, etc

- Already talked about PCA.
- Note: PCA can be used for visualization, but not specifically designed for it.
- Some algorithms are specifically for visualization.



# **Dimensionality Reduction & Visualization**

#### Typical dataset: MNIST

- Handwritten digits 0-9
  - 60,000 images (small by ML standards)
  - 28×28 pixel (784 dimensions)
  - Standard for image

experiments

- Dimensionality reduction?
  - Reducing dimensionality to 2-3 4 dimensions allows people to visualize 5 data points and their relationships. 6

0000000000000000 1 1 1 1 2222222222222222 3**333333**333333333333 5 5 555 55555555 5 66666666666666 66  $\eta$ 77277 777 8 B 8 88 8 8 8 8

# **Dimensionality Reduction & Visualization**

**Run PCA on MNIST** 

 PCA is a linear mapping, (can be restrictive)

1560 238073857 0146460243 7128169861

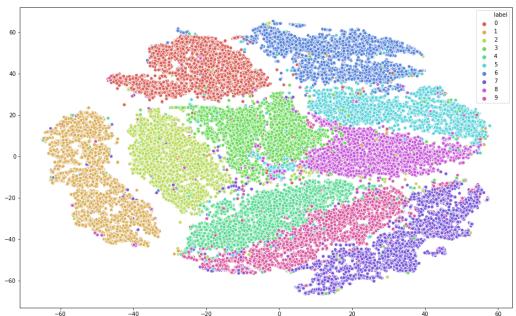
Image source:

http://deeplearning.csail.mit.edu/slide\_cvpr2018/laurens\_cvpr18tutorial.pdf

# Visualization: T-SNE

### Typical dataset: MNIST

- T-SNE: project data into just 2 dimensions
- Try to maintain structure
- MNIST Example
- Input: x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub>
- **Output**: 2D/3D y<sub>1</sub>, y<sub>2</sub>, ..., y<sub>n</sub>



# T-SNE Algorithm: Step 1

How does it work? Two steps

- 1. Turn vectors into probability pairs
- **2**. Turn pairs back into **(lower-dim)** vectors Step 1:

$$p_{j|i} = \frac{\exp(-\|x_i - x_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|x_i - x_k\|^2 / 2\sigma_i^2)} \quad p_{ij} = \frac{1}{2n} (p_{j|i} + p_{i|j})$$

**X**<sub>4</sub>

Xa

**x**<sub>1</sub>

 $X_2$ 

**Intuition**: probability that  $x_i$  would pick  $x_j$  as its neighbor under a Gaussian probability

# **T-SNE** Algorithm: Step 2

How does it work? Two steps

- 1. Turn vectors into probability pairs
- 2. Turn pairs back into (lower-dim) vectors

$$q_{ij} = \frac{(1 + \|y_i - y_j\|^2)^{-1}}{\sum_{k \neq \ell} (1 + \|y_k - y_\ell\|^2)^{-1}}$$
 78

and minimize

Step 2: set

$$\sum_{i,j} p_{ij} \log rac{p_{ij}}{q_{ij}}$$
 KL Divergence  
between p and q  
(Measures dissimilarity between  
probability distributions)

Х<sub>4</sub>

)X<sub>2</sub>

 $X_1$ 

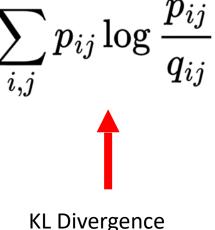
 $X_2$ 

# **T-SNE** Algorithm: Step 2

### More on step 2:

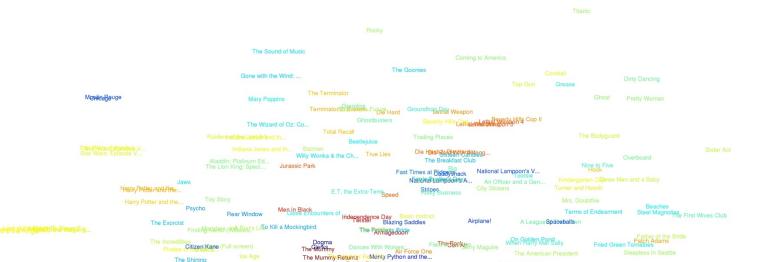
- We have two distributions *p*, *q*. *p* is fixed
- q is a function of the  $y_i$  which we move around
- Move y<sub>i</sub> around until the KL divergence is small
  - So we have a good representation!

- KL Divergence between p and q
- **Optimizing a loss function**---we'll see more in supervised learning lectures.



### **T-SNE** Examples

- Examples: (from Laurens van der Maaten)
- Movies: https://lvdmaaten.github.io/tsne/examples/ netflix\_tsne.jpg



### **T-SNE** Examples

- Examples: (from Laurens van der Maaten)
- NORB: https://lvdmaaten.github.io/tsne/examples/ norb\_tsne.jpg



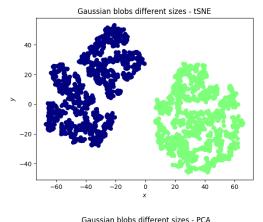
# Visualization: T-SNE

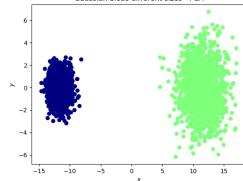
### t-SNE vs PCA?

- "Local" vs "Global"
- Lose information in t-SNE
   not a bad thing necessarily
- Downstream use

Good resource/credit:

https://www.thekerneltrip.com/statistics/tsne-vs-pca/





Q 2.1: Can we do t-SNE on NLP (words) or graph datasets?

- A. Never
- B. Yes, after running PCA on them
- C. Yes, after mapping them into R<sup>d</sup> (ie, embedding)
- D. Yes, after running hierarchical clustering on them

Q 2.1: Can we do t-SNE on NLP (words) or graph datasets?

- A. Never
- B. Yes, after running PCA on them
- C. Yes, after mapping them into R<sup>d</sup> (ie, embedding)
- D. Yes, after running hierarchical clustering on them

**Q 2.1**: Can we do t-SNE on NLP (words) or graph datasets?

- A. Never (No: too strong)
- B. Yes, after running PCA on them (No: can't run PCA on words or graphs directly. Need vectors)
- C. Yes, after mapping them into R<sup>d</sup> (ie, embedding)
- D. Yes, after running hierarchical clustering on them (No: hierarchical clustering gives us a graph)

### Short Intro to Density Estimation

Goal: given samples  $x_1, ..., x_n$  from some distribution *P*, estimate P.

- Compute statistics (mean, variance)
- Generate samples from P
- Run inference

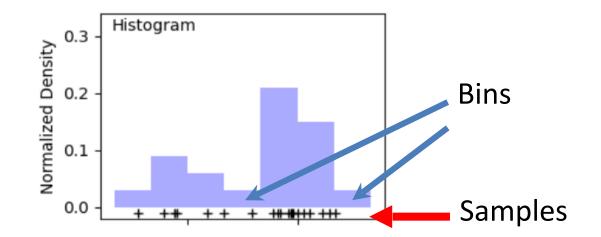


Zach Monge

### Simplest Idea: Histograms

# Goal: given samples $x_1, ..., x_n$ from some distribution *P*,

estimate P.



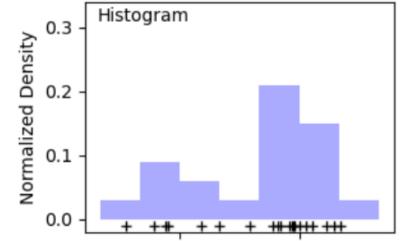
Define bins; count # of samples in each bin, normalize

# Simplest Idea: Histograms

Goal: given samples  $x_1, ..., x_n$  from some distribution *P*, estimate P.

### **Downsides:**

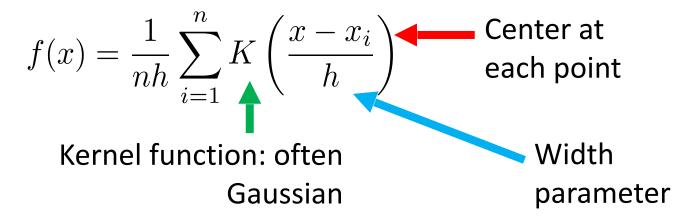
- i) High-dimensions: most bins are empty.
- ii) Not continuous.
- iii) How to choose bins?



### **Kernel Density Estimation**

Goal: given samples  $x_1, ..., x_n$  from some distribution *P*, estimate P.

Idea: represent density as combination of "kernels"



### **Kernel Density Estimation**

### Idea: represent density as combination of kernels

• "Smooth" out the histogram

