Advanced Topics in Reinforcement Learning

Lecture 10: Models and Planning I

Josiah Hanna
University of Wisconsin — Madison

Announcements

- Homework released. Due: October 21 at 9:30AM (minute class starts)
- Read chapter 9 and 11 for next week. Function approximation!
- Upcoming dates:
 - Literature survey due: October 30
 - Exam: November 5

Project Literature Review

- The next phase of your project is a literature review.
- An essential element to any research project.
 - Minimum expectation is that each survey cites at least 20 relevant references.
 - For each surveyed source, *briefly describe* (1-2 sentences), say why it is relevant to your project, and then say how it is different from your project.
 - Survey should be submitted as a pdf on Gradescope.
- The survey is also a secondary check-in on project direction.
- See https://pages.cs.wisc.edu/~jphanna/teaching/2025fall_cs839/project.html for more details.

Learning Outcomes

After this week, you will be able to:

- 1. Explain the difference between background and decision-time planning in RL.
- 2. Implement Dyna, MCTS, and other model-based RL algorithms.
- 3. Understand how models can be integrated into RL agents.

But first, finish TD learning

Review

- Dynamic Programming Methods
 - Model is given.
- Monte Carlo methods.
 - Model-free but no bootstrapping.
- Temporal Difference Learning.
 - Model-free and bootstrapping.

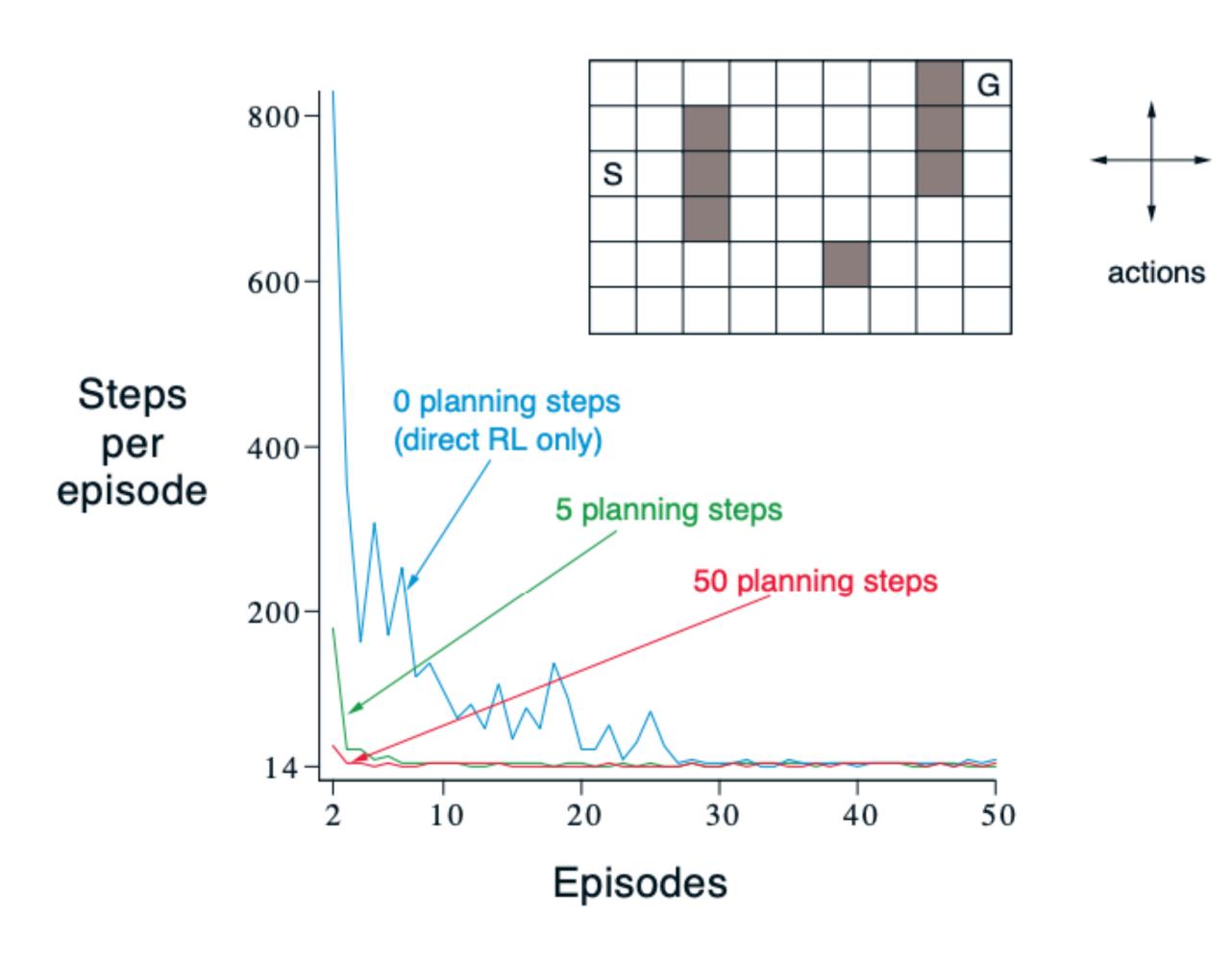
Plan-Space Search

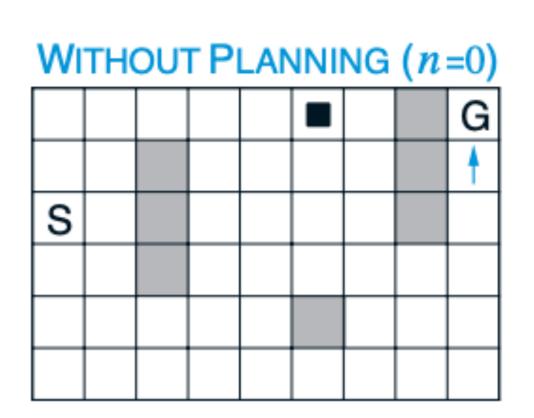
- The RL methods we will learn about in this class all follow the generalized policy iteration scheme.
 - $\pi_k \to q_k \to \pi_{k+1} \to q_{k+1} \to \cdots$
- Alternatively: search directly for a good policy without computing a value function.
 - Genetic algorithms, evolutionary strategies, random search, optimization, etc.
 - Define $f: \pi \to \mathbb{R}$ and then find π with maximal $f(\pi)$.
- (+) Robust to violations of MDP formalism.
- (+) Can be applied to almost any type of policy.
- (-) Size of policy space is exponential in the number of states and actions.
- (-) If interaction time is long and γ large, then learning methods may be preferred to static policies.

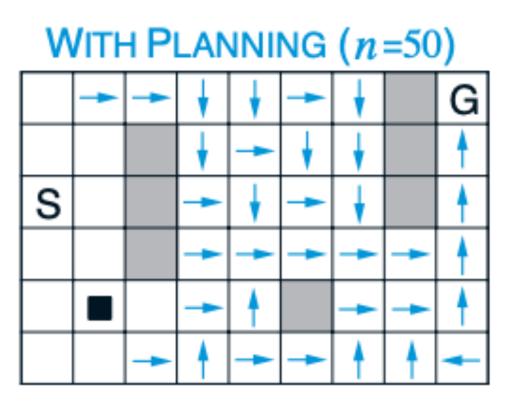
RL with a Learned Model

- Model-based learning and planning.
 - Use experience to model p. Then use planning methods to back-up values.
 - How to model p is a challenging question in practice!
 - Often more data-efficient (better policy with less interaction). Why?
 - Less computationally-efficient per time-step. Why?
- Access to a model provides much flexibility in how we back-up values.

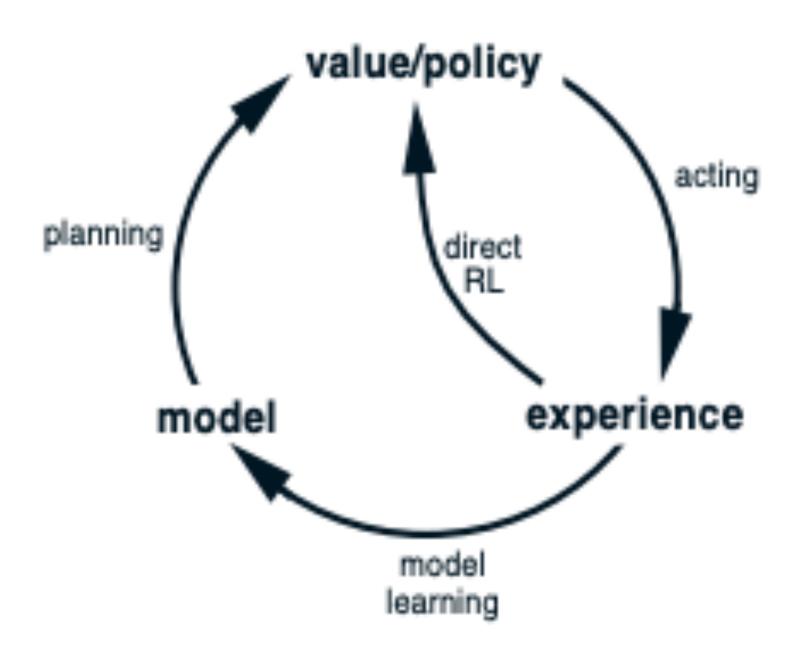
Model-based Data Efficiency







Dyna-style Model-based Learning



Dyna Agents

• In state S, take action A, observe R, and S'.

Real Experience

- Update model: Model(S, A) $\leftarrow R, S'$
- Repeat *n* times:
 - Sample random state-action pair, S, A.
 - $R, S' \leftarrow \text{Model}(S, A)$.
 - Apply q-learning update with S, A, R, S'.

Synthetic / Simulated Experience

Yucheng's Presentation

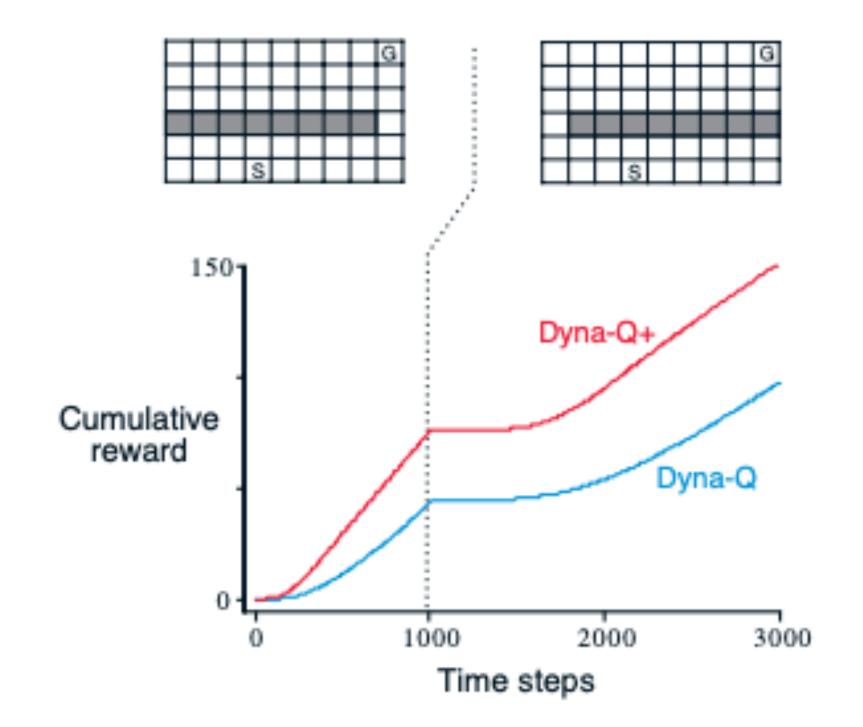
Mastering Diverse Domains through World Models

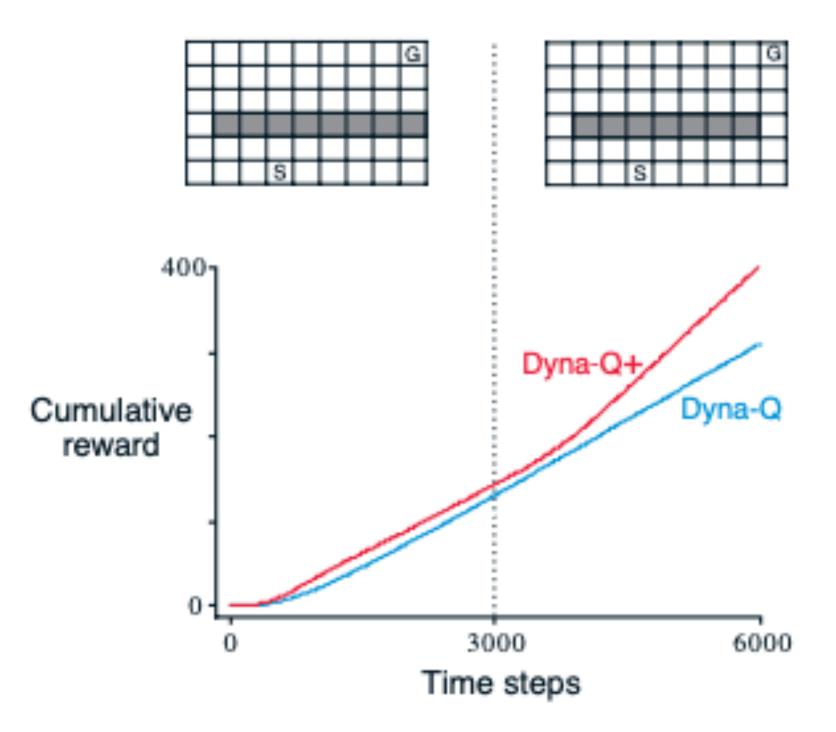
Hafner et al. 2023

Slides

When the Model is Wrong

- "All models are wrong but some are useful." George Box.
- In practice, models can be inaccurate for many reasons.
 - Partial observability, non-stationarity, function approximation, missing data, stochastic environment, etc.



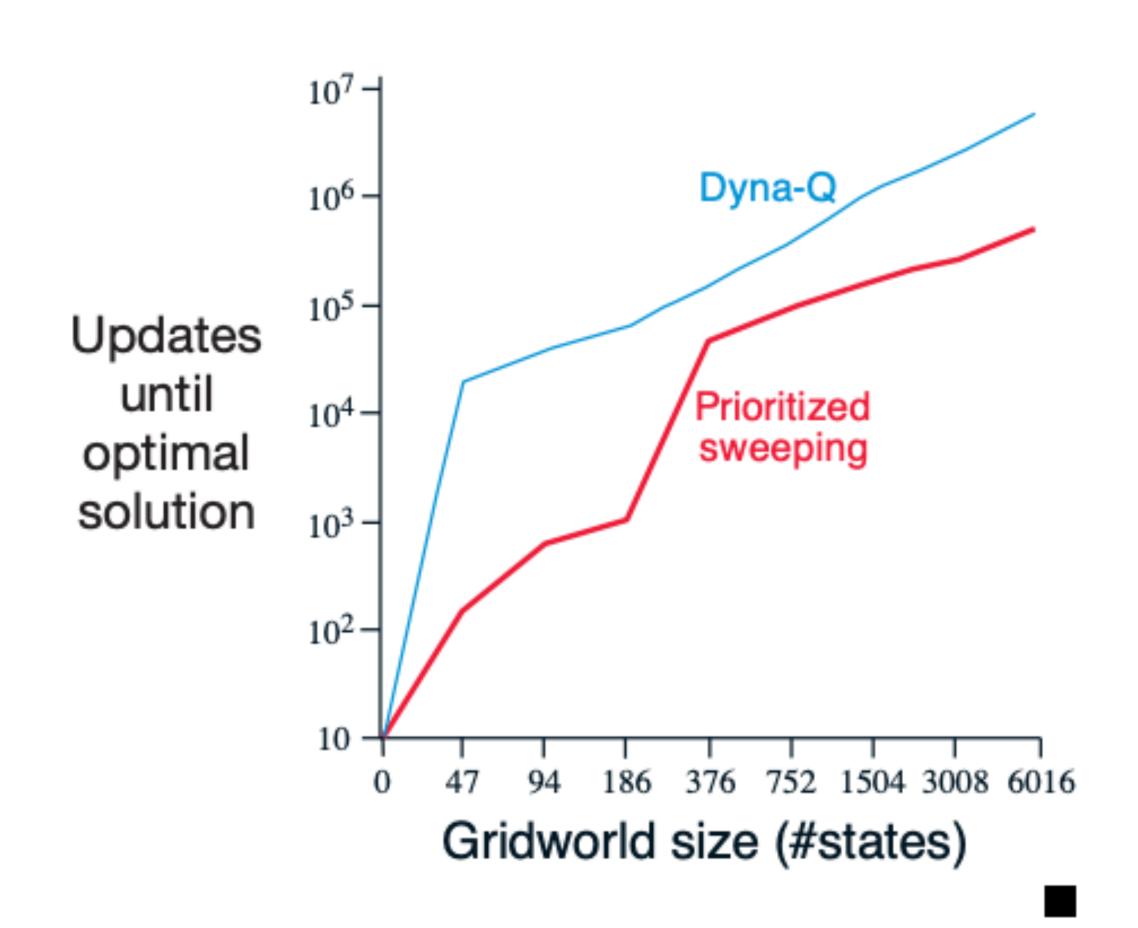


Prioritizing Updates

- Dyna-Q updates a random sub-set of states.
- What is one case where this is inefficient?
 - When many states won't have a value change.
- Prioritized sweeping: keep a priority queue of (S,A) pairs that are likely to have a large value change.
 - Can base this off of change to successor state, S', i.e., priority is:

$$|\bar{R} + \gamma \max_{\alpha} Q(S', \alpha) - Q(S, A)|$$

Prioritizing Updates



To Sample or Not?

• Dynamic programming typically uses expected updates.

$$Q(s,a) \leftarrow \sum_{s',r} \hat{p}(s',r|s,a)[r+\gamma \max_{a'} Q(s',a')]$$

• TD-method methods use *sample* updates.

$$Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma \max_{a'} Q(s',a')]$$

 Can use either with simulated experience. How and which to choose?

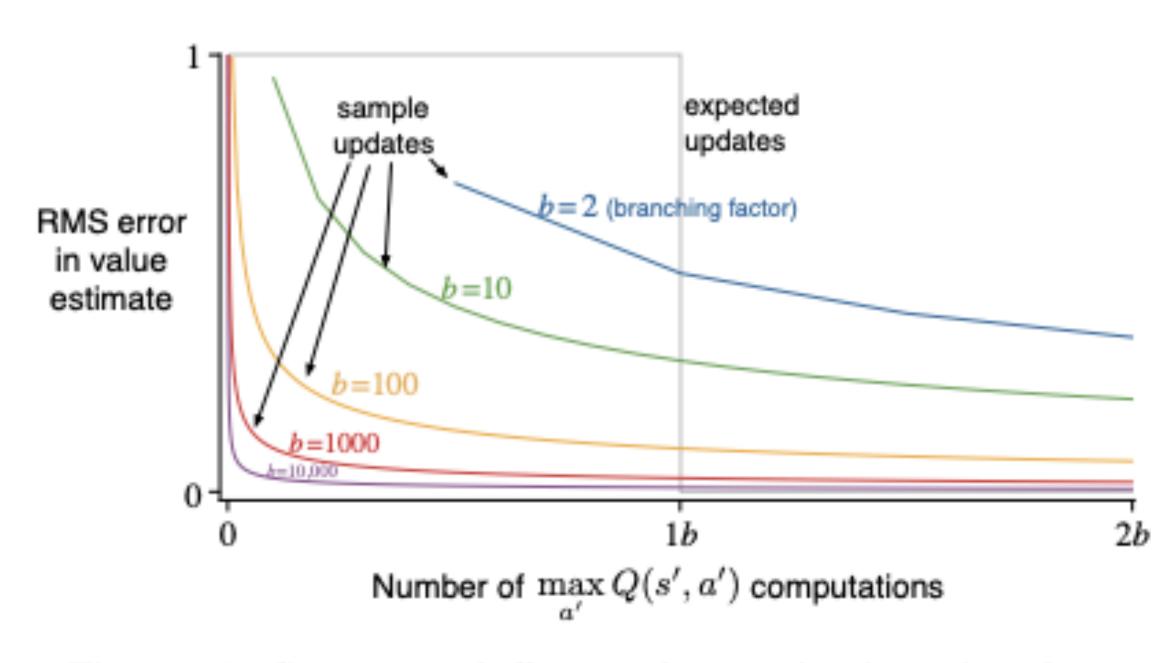


Figure 8.7: Comparison of efficiency of expected and sample updates.

Trajectory Sampling

- Uniform sampling of states can be inefficient.
- It may be more effective to focus value back-ups on states that the agent will visit often.
- How to know what states the agent will visit?
 - Simulate entire trajectories within the model. Back-up these states.
 - Initialize the agent in a start state and follow the current policy from there.

Real-time Dynamic Programming

- Key Idea: perform a value-iteration update on each state as it is visited.
- For n episodes of real experience:
 - Start in initial state, S_0 .
 - Repeat $A_t \sim \pi(A = a \mid S_t)$, S', $R \sim \text{Model}(S_t, A_t)$ where π is ϵ -greedy.
 - At each step, t, apply the value iteration update to $Q(S_t, A_t)$.

Summary

- Building a model from experience can improve the efficiency of RL.
- Models can be used for:
 - Planning, i.e., dynamic programming updates.
 - Learning with synthetic experience.
- When coupling planning and interaction, we need to make efficient use of limited computational resources.

Action Items

- Complete homework.
- Begin literature review.
- Begin reading Chapter 9 and 11.