# Advanced Topics in Reinforcement Learning

Lecture 12: Function Approximation for On-policy Prediction

Josiah Hanna University of Wisconsin — Madison

#### Announcements

- Homework released. Due: October 21 at 9:30AM (minute class starts)
- Read 9.7 and 16.5 for next week. Deep RL!
- Upcoming dates:
  - Literature survey due: October 30
  - Exam: November 5

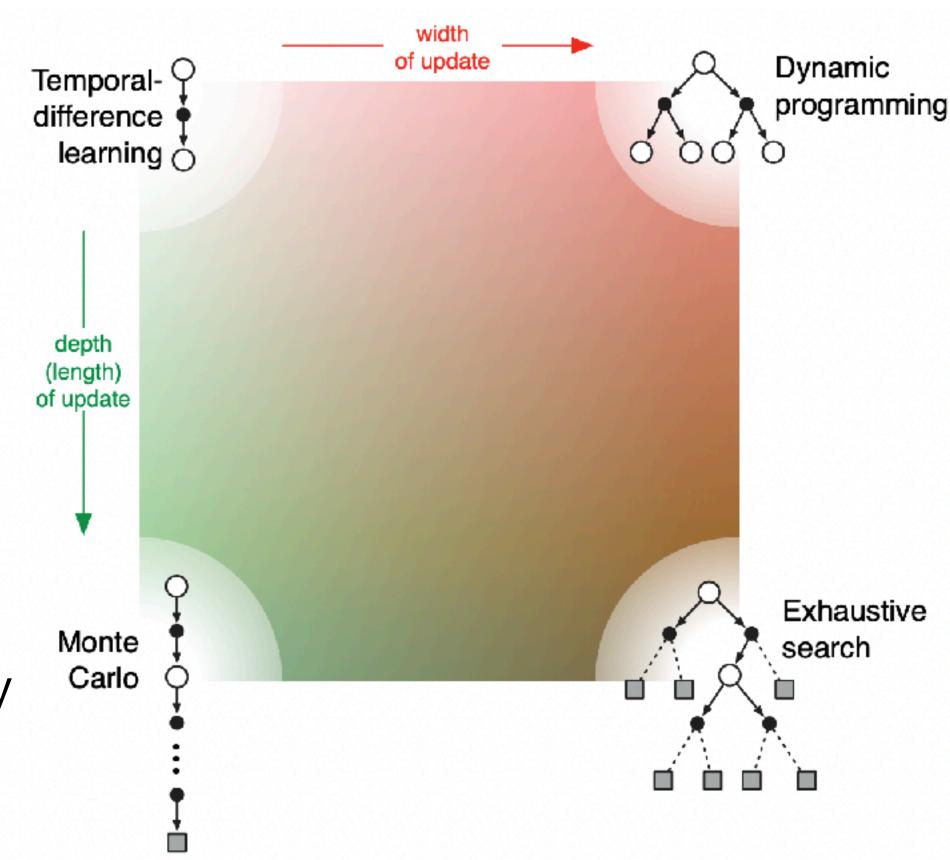
# Learning Outcomes

After this week, you will be able to:

- 1. Generalize model-free RL algorithms from the tabular to the function approximation setting.
- 2. Identify challenges and opportunities with using function approximation in RL.
- 3. Compare and contrast convergence of different algorithms under either function approximation or off-policy learning.

# Part I Summary

- Functions (policies, value functions, and models) have been represented as look-up tables.
- We have seen 4 types of algorithms:
  - Dynamic programming methods.
  - Model-free Monte Carlo methods.
  - Model-free temporal difference learning methods.
  - Model-based learning and planning methods.
- All algorithms we have seen are instances of generalized policy iteration:
  - $\pi_0 \to q_0 \to \cdots \to \pi_k \to q_k \to \pi_{k+1} \to \cdots \to q_\star \to \pi_\star$



# Part I Summary

- Much intuition and understanding carries forward as we move into Part II.
  - Returns and values defined similarly.
  - On-policy and off-policy methods.
  - Exploration vs. Exploitation trade-off.
- Looking ahead:
  - The learning agent has limited capacity to model  $v_{\pi}(s)$  for all s.
  - The learning agent may never visit the same state twice.

#### This Week

- Today: function approximation for on-policy prediction.
- Thursday: function approximation for off-policy prediction.

# Function Approximation in RL

- How different from the tabular case?
  - Generalize value estimates across similar states.
- What is the benefit?
  - May only visit any given state once.
  - Too many states to store an individual value estimate for each.
- What do we lose?
  - Accurate approximation everywhere.
  - The policy improvement theorem.

See: The Big World Hypothesis and its Ramifications for Artificial Intelligence. Javed and Sutton 2024.

## Function Approximation in RL

Form of the value estimate:

$$\hat{v}(s, \mathbf{w}) \approx v_{\pi}(s)$$

- $\mathbf{w} \in \mathbb{R}^d$  with  $d \ll |\mathcal{S}|$ .
- Changing w changes the value estimate at multiple states.
- (Tabular methods are a special case with  $d = |\mathcal{S}|$ ).

# Linear Function Approximation

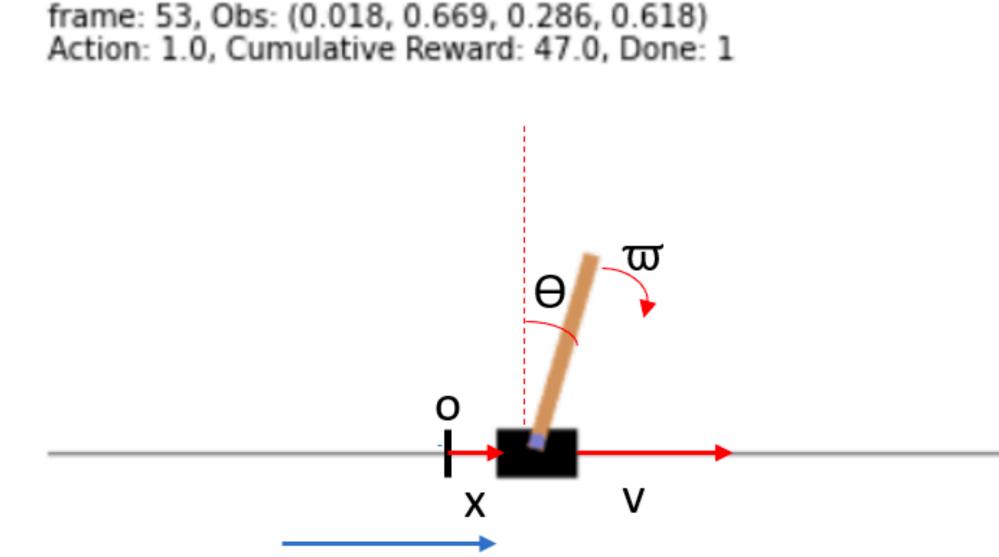
Assume value estimate is a linear function of state features.

$$\hat{v}(s, \mathbf{w}) = \mathbf{w}^{\mathsf{T}} x(s) = \sum_{i=1}^{d} w_i x_i(s)$$

- The features,  $x_i(s)$ , can be non-linear functions of state variables.
  - Expressive choices for  $\mathbf{x}(s)$  make linear methods more powerful than they first appear.

# Linear FA Example

- What is  $\mathbf{x}(s)$ ?
  - List of state variables:  $(x, v, \theta, \omega)$
  - Any static function of the state variables.
- Suppose  $\mathbf{x}(s) = (x, v, \theta, \omega)$ .
  - What can you say about the value estimates as  $w_1$  increases?



Action=1

# The Prediction Objective

As you saw in the reading, we have the following objective:

$$\overline{VE}(\mathbf{w}) = \sum_{s \in \mathcal{S}} \mu(s) \left[ v_{\pi}(s) - \hat{v}(s, \mathbf{w}) \right]^{2}$$

 $\mu(s)$ : probability of visiting s under  $\pi$ 

- Note: the policy is fixed because we are just considering prediction.
- Why this objective?
- Do we ever know how well we are doing?
  - $\mu$  and  $\nu_{\pi}$  are unknowns.

# (Stochastic) Gradient Descent

- So far we have seen how to represent value estimates when  $d \ll |\mathcal{S}|$  and how to evaluate different choices of **w**.
- Now, how to select w that minimizes prediction error.
- Assuming we visit states in proportion to  $\mu$ , the following update moves us towards minimal prediction error:

• 
$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \alpha(v_{\pi}(S_t) - \hat{v}(s, \mathbf{w}_t)) \nabla \hat{v}(S_t, \mathbf{w}_t)$$

• This is the same update used for gradient-based linear regression — it's just supervised learning!

# (Stochastic) Gradient Descent

- Unlike supervised learning, we don't know the targets,  $v_{\pi}(s)$ .
- Instead, we use a noisy target,  $U_t$ :
  - $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \alpha(U_t \hat{v}(s, \mathbf{w}_t)) \nabla \hat{v}(S_t, \mathbf{w}_t)$
- Monte Carlo:  $U_t \leftarrow G_t$
- TD(0):  $U_t \leftarrow R_t + \gamma \hat{v}(s, \mathbf{w})$

# Example 9.1

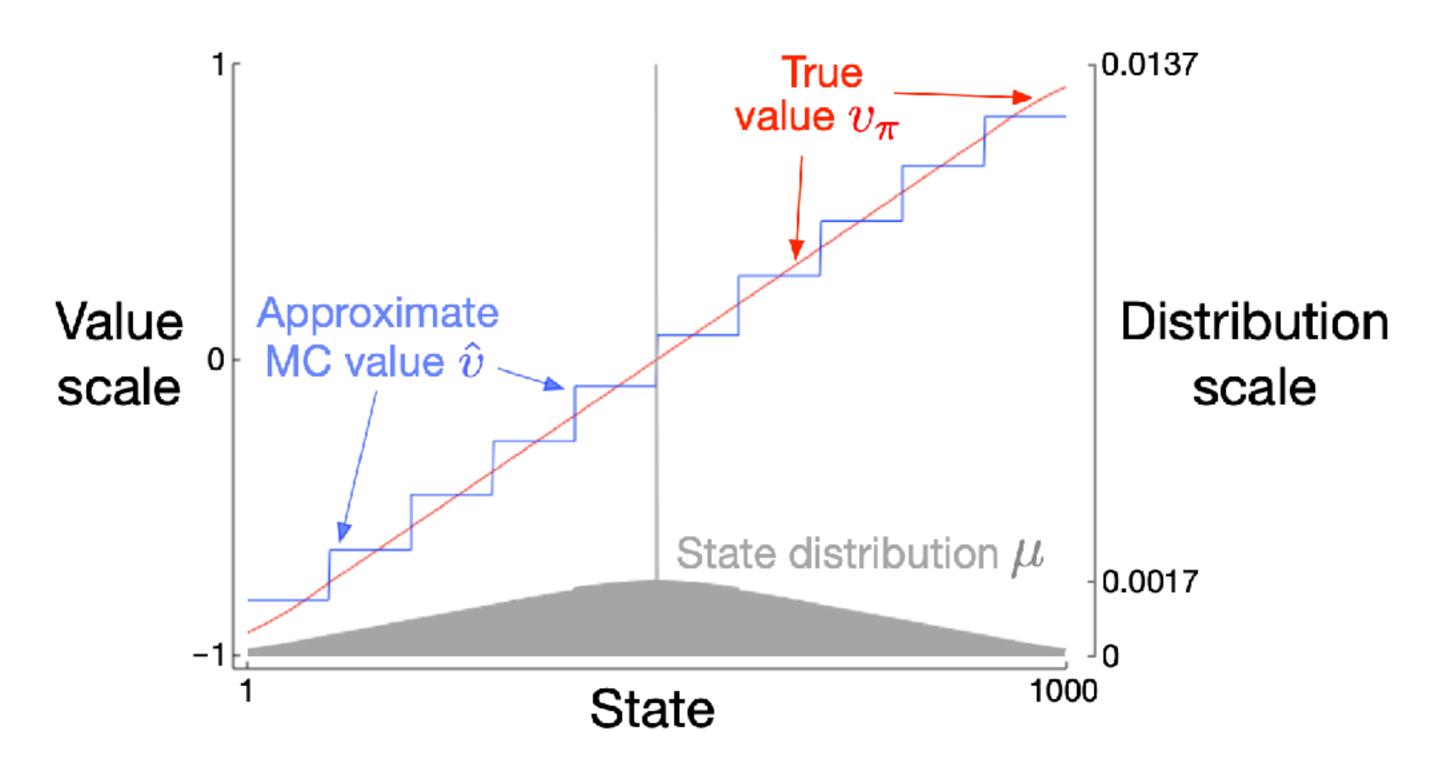


Figure 9.1: Function approximation by state aggregation on the 1000-state random walk task, using the gradient Monte Carlo algorithm (page 202).

# Semi-Gradient TD(0)

• 
$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \alpha(R_t + \gamma \hat{v}(S_{t+1}, \mathbf{w}_t) - \hat{v}(S_t, \mathbf{w}_t)) \nabla \hat{v}(S_t, \mathbf{w}_t)$$

- Why semi-gradient?
- Why not full-gradient? (See 11.5)
- In the linear case,  $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \alpha(R_t + \gamma \hat{v}(S_{t+1}, \mathbf{w}_t) \hat{v}(S_t, \mathbf{w}_t))\mathbf{x}(S_t)$
- Converges! Minimizes the mean-squared projected Bellman error instead of value error.

# Linear Function Approximation

Assume value estimate is a linear function of state features.

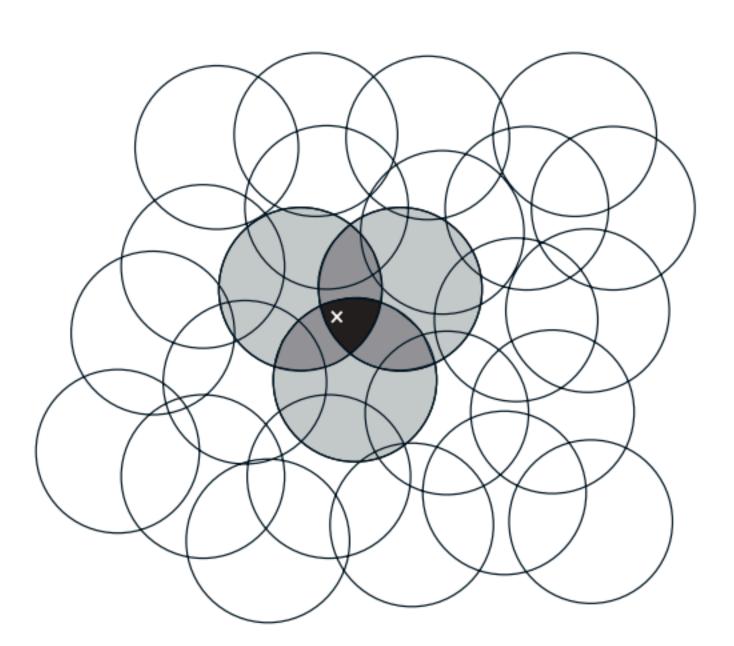
$$\hat{v}(s, \mathbf{w}) = \mathbf{w}^{\mathsf{T}} x(s) = \sum_{i=1}^{d} w_i x_i(s)$$

- The features,  $x_i(s)$ , can be non-linear functions of state variables.
  - Expressive choices for  $\mathbf{x}(s)$  make linear methods more powerful than they first appear.

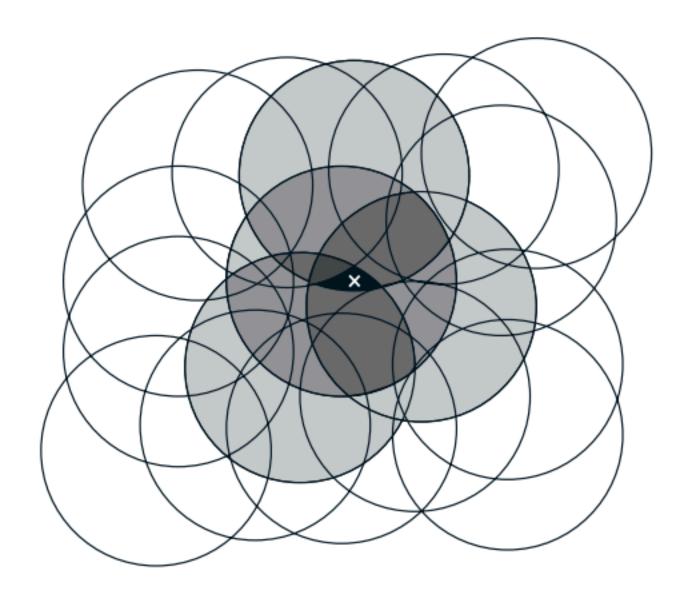
## 1-Hot Features / State Aggregation

- For a finite state-space, partition state-space into d mutually exclusive groups.
- Let i be the group to which state s belongs.
- The 1-Hot feature encoding sets  $x_i(s) = 1$  and  $x_j(s) = 0$  for  $j \neq i$ .
- What does generalization look like?
- Special case is  $d = |\mathcal{S}|$  in which case we recover the tabular setting.
  - Useful tip for debugging RL implementations!
  - Easily switch between easy to understand tabular experiments and more complex function approximation within same implementation.

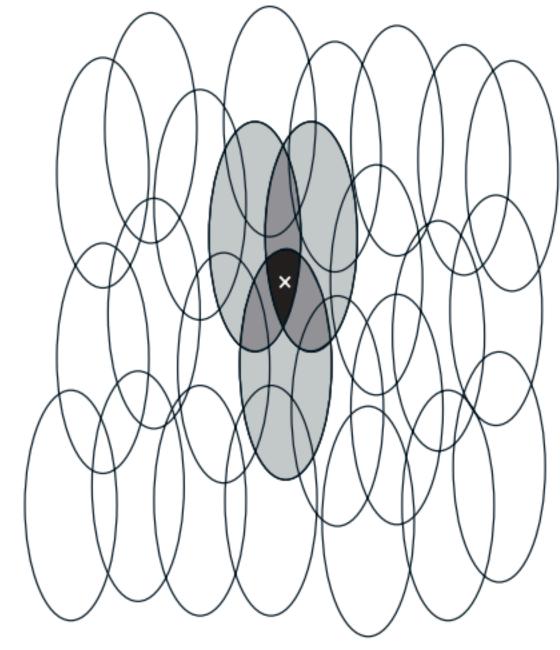
# Coarse Coding



Narrow generalization



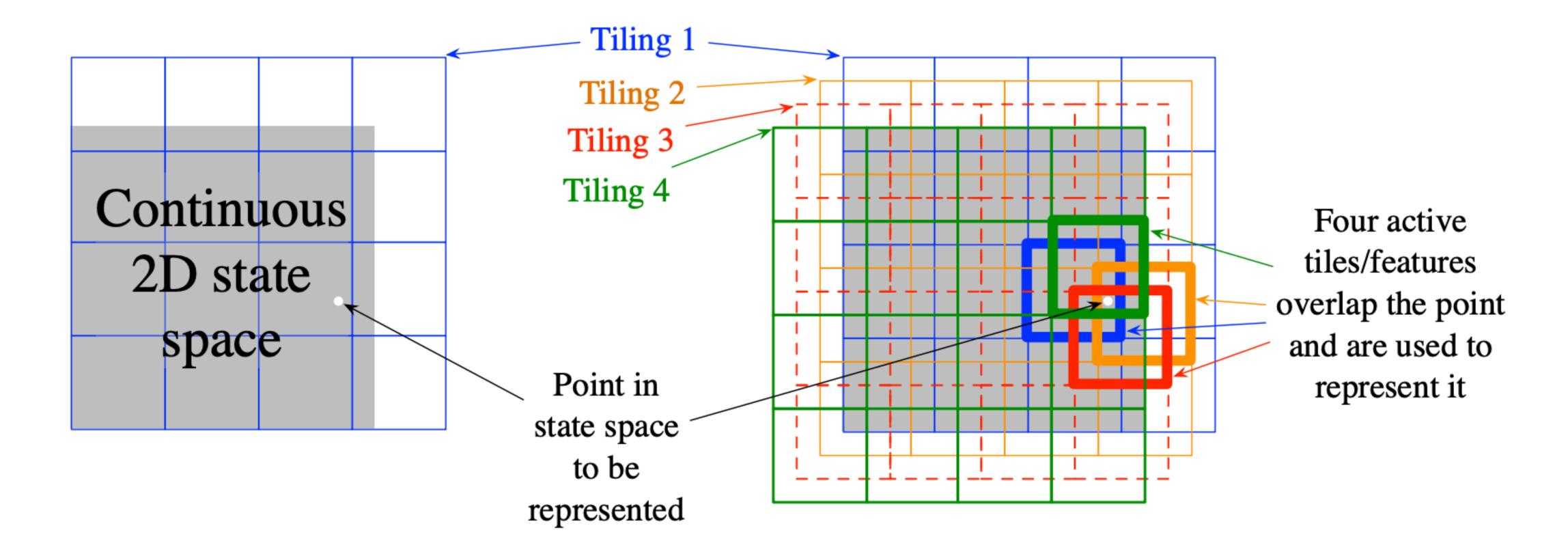
Broad generalization



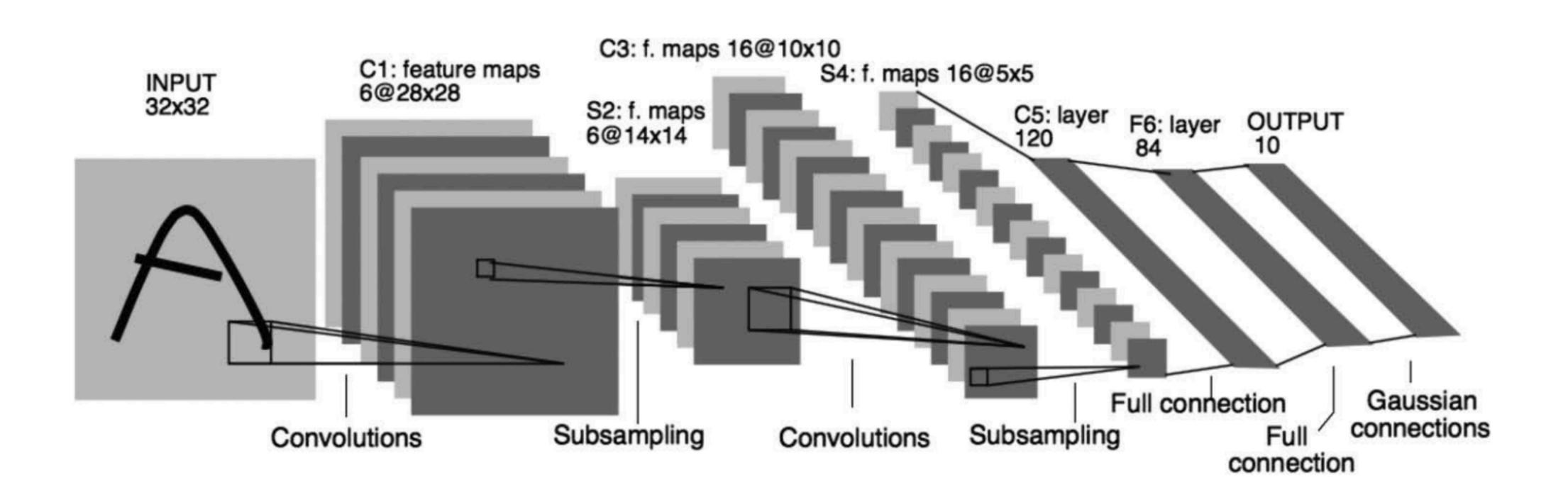
Asymmetric generalization

# Tile Coding

Intuitively, multiple state aggregation mappings at the same time.



#### Neural Networks



#### Step-size Selection

- The step-size is an important parameter in any SGD algorithm.
- Book gives rule of thumb:

$$\alpha = (\tau E[x^{\mathsf{T}}x])^{-1}$$

- Why does this make sense?
- Not often used in practice.

# LSTD(0)

- Convergence analysis shows that Linear TD(0) converges to  $\mathbf{w}_{\text{TD}} = \mathbf{A}^{-1}\mathbf{b}$ .
  - $A = \mathbf{E}[\mathbf{x}_t(\mathbf{x}_t \gamma \mathbf{x}_{t+1})^{\mathsf{T}}]$  and  $\mathbf{b} = \mathbf{E}[R_{t+1}\mathbf{x}_t]$ .
- LSTD(0) estimates A and b and then directly computes the fixed point.
  - (+) More data efficient than semi-gradient linear TD(0)
  - (-) More computation (after optimizations  $O(d^2)$  vs O(d) for TD(0))
- Harder to extend to deep reinforcement learning.

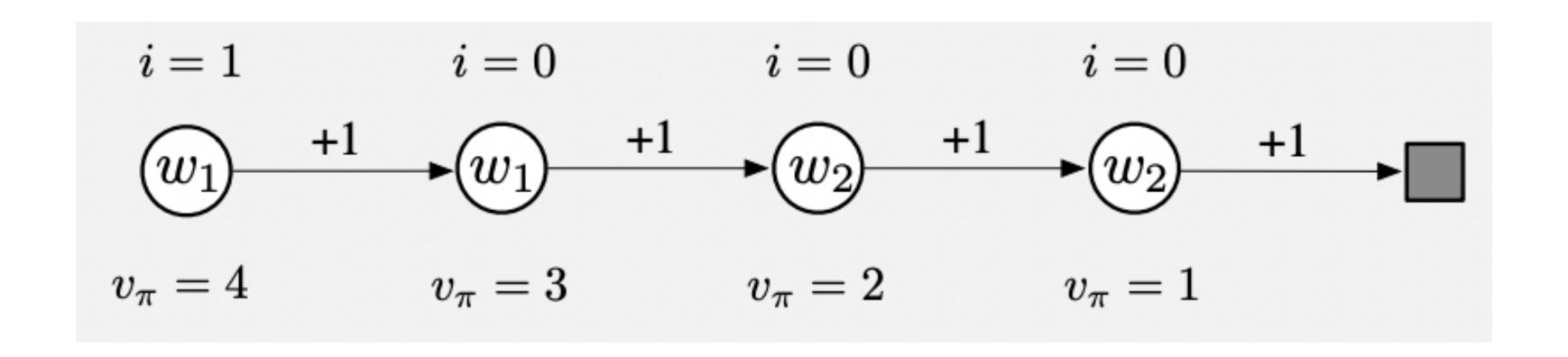
# Interest and Emphasis

- So far, assumed we are updating states equally (same learning rate) but according to the on-policy state distribution,  $\mu$ .
- We may wish to emphasize some states more.
- State interest,  $I_t$ , represents how much we care about accurate estimation in state  $S_t$ .
- Emphasis is a learned multiplier on the learning rate.

• 
$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \alpha M_t[R_t - \hat{v}(S_{t+1}, \mathbf{w}) - \hat{v}(S_t, \mathbf{w})] \nabla \hat{v}(S_t, \mathbf{w})$$

• 
$$M_t \leftarrow I_t + \gamma M_{t-1}$$

# Interest and Emphasis



- Interest is (1, 0, 1, 0)
- Semi-gradient 2-step TD converges to weight vector (3.5, 1.5)
- Emphatic 2-step TD converges to weight vector (4, 2)

# On-Policy Control

- As usual, for control we will estimate action-values,  $\hat{q}(s, a, \mathbf{w})$ .
- For linear function approximation, features are now a function of (s,a) pairs,  $\mathbf{x}(s,a)$ .
- Function approximation often inherently means that making  $\hat{q}(s, a, \mathbf{w})$  more accurate at one state will make it less accurate at another state.
- Now making  $\pi$  greedy w.r.t.  $\hat{q}(s, a, \mathbf{w})$  is no longer guaranteed to improve  $\pi$  no more policy improvement theorem.

## Summary

- Function approximation allows us to represent state values when there are too many states for a look-up table.
- Approximation allows generalization but forces us to choose which states to approximate best.
- Linear function approximation is well understood theoretically and can be powerful with the right set of non-linear features.

#### Action Items

- Complete homework.
- Begin literature review.
- Begin reading Chapter 9.7 and 16.5.