Advanced lopics In
Reinforcement Learning

Lecture 12: Function Approximation for On-policy Prediction

Josiah Hanna
University of Wisconsin — Madison



Announcements

» Homework released. Due: October 21 at 9:30AM (minute class starts)
» Read 9.7 and 16.5 for next week. Deep RL!
 Upcoming dates:

» Literature survey due: October 30

e Exam: November 5
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Learning Outcomes

After this week, you will be able to:

1. Generalize model-free RL algorithms from the tabular to the function
approximation setting.

2. ldentify challenges and opportunities with using function approximation
in RL.

3. Compare and contrast convergence of different algorithms under either
function approximation or off-policy learning.
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Part | Summary

* Functions (policies, value functions, and models) have been

represented as look-up tables.
* We have seen 4 types of algorithms:
* Dynamic programming methods.

e Model-free Monte Carlo methods.

* Model-free temporal difference learning methods.
* Model-based learning and planning methods.

* All algorithms we have seen are instances of generalized policy

iteration:
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Part | Summary

* Much intuition and understanding carries forward as we move into Part Il.
* Returns and values defined similarly.
* On-policy and off-policy methods.
 Exploration vs. Exploitation trade-off.

* Looking ahead:

» The learning agent has limited capacity to model v_(s) for all s.

* The learning agent may never visit the same state twice.
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This Week

* Today: function approximation for on-policy prediction.

 Thursday: function approximation for off-policy prediction.
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Function Approximation in RL

 How different from the tabular case?

* (Generalize value estimates across similar states.
 What is the benefit?

 May only visit any given state once.

 Too many states to store an individual value estimate for each.
 What do we lose?

* Accurate approximation everywhere.

* The policy improvement theorem.

See: The Big World Hypothesis and 1ts Ramifications for Artificial Intelligence. Javed and Sutton 2024.
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Function Approximation in RL

Form of the value estimate:

V(s, W) & v_(s)

we RYwithd < | S].
Changing w changes the value estimate at multiple states.

(Tabular methods are a special case withd = | &' |).
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Linear Function Approximation

e Assume value estimate is a linear function of state features.
d
, V(s W) = W' x(s) = Z Wix(s)
i=1

» The features, x.(s), can be non-linear functions of state variables.

» Expressive choices for X(s) make linear methods more powerful than
they first appear.
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Linear FA Example

frame: 53, Obs: (0.018, 0.669, 0.286, 0.618)
Action: 1.0, Cumulative Reward: 47 .0, Done: 1

» What is X(s5)?

» List of state variables: (x, v, 0, ) o=
e Any static function of the state variables. 0
y -
X
» Suppose X(5) = (x, v, 0, w). Action=1"

» What can you say about the value estimates as w, increases®

https://towardsdatascience.com/how-to-beat-the-cartpole-game-in-5-lines-5ab4e738c93f Josi o . . .
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The Prediction Objective

As you saw In the reading, we have the following objective:

VEW) = Y u(s)[v(s) — (s, )|

sES
u(s): probability of visiting s under &
Note: the policy is fixed because we are just considering prediction.
Why this objective?

Do we ever know how well we are doing?

e 4 and v_are unknowns.
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(Stochastic) Gradient Descent

So far we have seen how to represent value estimates when d << | &’ | and
how to evaluate different choices of w.

Now, how to select w that minimizes prediction error.

Assuming we visit states in proportion to i, the following update moves us
towards minimal prediction error:

¢ W, 1 < W, +a(v,(S,) —v(s,w,)) Vv(S, w,)

This is the same update used for gradient-based linear regression — it’s just
supervised learning!
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(Stochastic) Gradient Descent

Unlike supervised learning, we don’t know the targets, v_(ss).
Instead, we use a noisy target, U

e W, < W, +a(U,—v(s,w,)) VV(S,, w,)

Monte Carlo: U, « G,

TD(0): U, < R, + yi(s, W)
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Figure 9.1: Function approximation by state aggregation on the 1000-state random walk task,
using the gradient Monte Carlo algorithm (page 202).
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Semi-Gradient TD(0)

¢ W, <= W, +a(R,+yv(S,. (1, W,) —V(s,W,) VV(S,, W)
 Why semi-gradient??
 Why not full-gradient? (See 11.5)
e Inthe linear case, W, | < W, + a(R, + yv(S,. {, W,) — V(s, W,))X(S,)

 Converges! Minimizes the mean-squared projected Bellman error instead
of value error.
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Linear Function Approximation

e Assume value estimate is a linear function of state features.
d
, V(s W) = W' x(s) = Z Wix(s)
i=1

» The features, x.(s), can be non-linear functions of state variables.

» Expressive choices for X(s) make linear methods more powerful than
they first appear.
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1-Hot Features / State Aggregation

For a finite state-space, partition state-space into d mutually exclusive groups.
Let 1 be the group to which state s belongs.
The 1-Hot feature encoding sets x,(s) = 1 and x,(s) = 0 for j # i.

What does generalization look like?

Special caseisd = | &’ | in which case we recover the tabular setting.
o Useful tip for debugging RL implementations!

* Easily switch between easy to understand tabular experiments and more complex
function approximation within same implementation.
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Coarse Coding




Tile Coding

* Intuitively, multiple state aggregation mappings at the same time.
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Neural Networks
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Step-size Selection

The step-size is an important parameter in any SGD algorithm.

Book gives rule of thumb:
a = (tE[x"x])~!

Why does this make sense?

Not often used in practice.
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 STD(0)

» Convergence analysis shows that Linear TD(0) converges to Wrp = A~'b.

- A=EIx(X,—yX,.) land b = E[R,_ X,].

« LSTD(0) estimates A and b and then directly computes the fixed point.

* (+) More data efficient than semi-gradient linear TD(0)

 (-) More computation (after optimizations O(dz) vs O(d) for TD(0))

 Harder to extend to deep reinforcement learning.
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Interest and Emphasis

So far, assumed we are updating states equally (same learning rate) but according to
the on-policy state distribution, /.

We may wish to emphasize some states more.

State interest, [, represents how much we care about accurate estimation in state ..

Emphasis is a learned multiplier on the learning rate.
¢ W, 1 < W, +aMJ[R, —V(S,,{, W) —V(S,wW)] VV(S,, W)

e M, < I, +yM,_,
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Interest and Emphasis

@ Ot Connn
= e — 3 g — = 1l

* Interestis (1, 0O, 1, 0)
 Semi-gradient 2-step TD converges to weight vector (3.5, 1.5)

 Emphatic 2-step TD converges to weight vector (4, 2)
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On-Policy Control

As usual, for control we will estimate action-values, g(s, a, w).

For linear function approximation, features are now a function of (s,a)
pairs, X(S, a).

Function approximation often inherently means that making g(s, a, w)
more accurate at one state will make it less accurate at another state.

Now making 7 greedy w.r.t. g(s, a, w) is no longer guaranteed to improve
7T — no more policy improvement theorem.
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Summary

* Function approximation allows us to represent state values when there are
too many states for a look-up table.

* Approximation allows generalization but forces us to choose which states
to approximate best.

* Linear function approximation is well understood theoretically and can be
powerful with the right set of non-linear features.
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Action ltems

 Complete homework.
* Begin literature review.

* Begin reading Chapter 9.7 and 16.5.
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