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Announcements

Waiting list is starting to clear; talk to me if you’re not in yet.
Mostly good job on reading responses

Reading Sign-Ups: https://docs.google.com/spreadsheets/d/
1PMI8XO9IP84GWS5YFJi1gPo6E19ZKacwSnRKXY 7Y Tu8/edit?
usp=sharing

Background survey: https://docs.google.com/forms/d/
1LbSTXT7TS5pkwx0hEjuP4tcwOOEzIWrKIuHfnLUSyVIl/edit#settings
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Learning Outcomes

After today’s lecture, you will;

1. Be able to define the essential aspects of a multi-armed bandit problem.

2. Be able to formalize real-world decision-making applications as multi-
armed bandit problems.

3. Be able to explain the exploration-exploitation trade-off.

4. Be able to explain how to learn in bandits.
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Today’s Outline

Do | have a bandit problem?
Estimating action-values.
Exploration vs. Exploitation.

Policy-based learning.
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Why Study Bandits”

o Simplest model of sequential decision-making.

* Build intuition for important concepts; many concepts
extend to the more complex decision processes we
focus on in this course.

 Today’s lecture scratches the surface of a deep topic
with extensive research, many applications, and many
variations.

e https://tor-lattimore.com/downloads/book/book.pdf
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General Reinforcement Learning

States: s € &

Actions: a € &

Rewards: R ~ r(s, a)

State transitions: § ~ p(s, a)

Goal: Find a policy, 7 : & — &, that maximizes cumulative reward.
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Bandit Problems

States: s €& No state (or equivalently | & | = 1)

Actions: a € (also called “arms”)

Rewards-R~+Gs-a) R ~ r(a) with expected value g(a).

State-transitions—d>—~L(s-a) Actions do not affect future decisions.

GoalFind-apoliey, #—& > that maximizes-cumulative rewe

Goal: Find the action with highest expected reward.
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Attractions and Limitations

Bandits are a simple model that requires solving explore-exploit trade-off.
Widely applicable to real world problems.

No state — take an action and immediately faced with the same situation.
* No need for planning or reasoning about delayed rewards.

Immediate pay-off for action choice.

 No need for credit assignment
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Is my application a bandit?

 Hyper-parameter optimization for machine learning.
* Recommend ads and web content.
« Recommend medical treatments.

* Sending push notifications to promote app engagement.

Questions:

1. What are the actions and rewards?

2. Are rewards stochastic or deterministic?

3. Do you see any issues treating the application as a MAB (without context or state)?
4. How might we address any such problem without modeling state?

5. What trade-offs might there be between different algorithms in these applications?
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Action-Values

Need to estimate expected rewards for each arm. Denote the estimate as Q,(a).

Each time we pull an arm, we update Q (a).

> o R-I{A =a)

Qt(a) — Nt (a)

Qt(a) IS the estimated action-value for action a at time t.

A, | < argmax Q(a)
aced
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Action-Values

 What is time and memory complexity of action-value updates?

O(1)

> R-I{A =a) 1

. Ofa) = T = Q,_(a) + N ()

(Rt T Qt—l(a))

 New Estimate <— Old Estimate + Step Size * (Target - Old Estimate)
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Step-Size Selection

 How does the choice of step-size affect algorithm behavior?
 New Estimate <— Old Estimate + Step Size * (Target - Old Estimate)

 When might you want a big step size? Small step-size”?
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Exploration vs Exploitation

“..the problem [exploration-exploitation] was proposed
[by British scientist] to be dropped over Germany so that
German scientists could also waste their time on it.”

- Peter Whittle




Nalve Exploration

Greedy action selection: A,,; < arg ng; Q. (a)
ae
What might go wrong?

Simple Solution: pull the arm with the best estimated reward with
probability 1 — €, otherwise pull a random arm.

The value of € controls how much exploration we do.
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Nalve Exploration
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Figure 2.2: Average performance of e-greedy action-value methods on the 10-armed testbed.
These data are averages over 2000 runs with different bandit problems. All methods used sample
averages as their action-value estimates.
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UCB: Advanced Exploration

Epsilon-greedy never stops exploring arms even after clearly sub-
optimal.

The upper confidence bound algorithm only explores actions that could
have the highest expected reward.

— |
ln (t) Average ‘ V

N{a) \

A, 1 =argmax Q(a) + c\

The parameter c controls exploration vs. exploitation.
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Policy-based Learning

Ultimately, we just want action selection!

Instead of estimating action-values, maintain action preferences.

Let H,(a) be the preference for action a at time t.

exp Hy(a)

Select action with softmax probability: Pr(A, ; = a) := = n(a)
10N Wi XP Ty t+1 Zb exp H/(b)

Update preferences: _
pUdte b H.(A) < H(A) + aR — R)(1 - z(A))

H_,(a) < H(a) — a(R,— R)x(a) a F A,
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Learning with a baseline

Follow the book’s derivation but
don’t include the baseline B or
equivalently set it to zero!

Basic update rule; H,,(A) < H(A) + aR(1 — n(A)))

How does this update change the preferences? What happens
when all rewards are positive? All negative?

With a baseline: H. ,(A) < H(A)+aR —R)1 —rz(A))

Update in proportion to how much better than average instead of how much above zero.

Value of R, doesn’t change expected update as long as

independent of A..

hd ‘b‘
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Contextual Bandit Problems

States: s € & Now we have multiple states.
Actions: a € (still called “arms”)
Rewards: R ~ r(s, a) with expected value ¢g(s, a).

State-transitions:d>——~L(s-a) Actions do not affect future state probability.

Goal: Find a policy, 7 : & — &/, that maximizes cumulative reward.
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Summary

Multi-armed bandits provide a simplified setting for studying sequential
decision-making.

Estimating action-values provides a means to optimal action selection.
Must sufficiently explore to find maximum reward action.

Key Ideas: action-values, incremental updates, step-sizes, epsilon-greedy
exploration, gradient-based learning.
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Action ltems

Join Piazza!
Join Gradescope!

Background survey: https://docs.google.com/forms/d/
1LbSTXT/T5pkwx0hEjuP4tcwOOEzZIWrKIuHfnLUSyVII/edit#settings

Read Chapter 4 of course textbook.
Send a reading response by 12pm on Monday.

Sign-up for a presentation (link on Piazza).
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