
Advanced Topics in
Reinforcement Learning

Lecture 4: Dynamic Programming

Josiah Hanna

University of Wisconsin — Madison

Josiah Hanna, University of Wisconsin — Madison

Announcements

• Thanks for completing the background survey!

• Sign-up for a presentation:https://docs.google.com/spreadsheets/d/
1PMI8XO9lP84GW5jYFJi1qPo6E19ZKacw5nRKxY7YTu8/edit?
gid=0#gid=0

• Many of the latter slots have been taken

• Final reminder: join Piazza to stay in-the-know on key class information.

https://docs.google.com/spreadsheets/d/1PMI8XO9lP84GW5jYFJi1qPo6E19ZKacw5nRKxY7YTu8/edit?gid=0#gid=0
https://docs.google.com/spreadsheets/d/1PMI8XO9lP84GW5jYFJi1qPo6E19ZKacw5nRKxY7YTu8/edit?gid=0#gid=0
https://docs.google.com/spreadsheets/d/1PMI8XO9lP84GW5jYFJi1qPo6E19ZKacw5nRKxY7YTu8/edit?gid=0#gid=0
https://docs.google.com/spreadsheets/d/1PMI8XO9lP84GW5jYFJi1qPo6E19ZKacw5nRKxY7YTu8/edit?gid=0#gid=0

Josiah Hanna, University of Wisconsin — Madison

Learning Outcomes

After today’s class, you will be able to:

1. Be able to define and explain the relationship between state-values,
action-values, and optimal policies.

2. Be able to translate Bellman equations into dynamic programming
methods for computing value functions.

Josiah Hanna, University of Wisconsin — Madison

Value functions
• State transitions and rewards are stochastic so we must maximize

expected return.

• Expected return is only well-defined with respect to a particular policy.
(Why?)

• State-value and action-value functions are always defined in terms of some
policy.

vπ(s) = 𝔼π[Gt |St = s] = 𝔼π[
∞

∑
k=0

γkRt+k+1 |St = s]

qπ(s, a) = 𝔼π[Gt |St = s, At = a] = 𝔼π[
∞

∑
k=0

γkRt+k+1 |St = s, At = a]

Josiah Hanna, University of Wisconsin — Madison

Recursive Relationship of State Values

Page 59 of the course textbook.

vπ(s) := 𝔼π[Gt |St = s]

= 𝔼π[Rt+1 + γGt+1 |St = s]Definition of return

= ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γ𝔼π[Gt+1 |St+1 = s′￼]]Definition of expectation

= ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvπ(s′￼)]Definition of state-value

Josiah Hanna, University of Wisconsin — Madison

Action Values

Exercise 3.13, page 58.

qπ(s, a) := 𝔼π[Gt |St = s, At = a]

= 𝔼π[Rt+1 + γGt+1 |St = s, At = a]Definition of return

= ∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γ𝔼π[Gt+1 |St+1 = s′￼]]Definition of expectation

= ∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvπ(s′￼)]Definition of state-value

Write action-values in terms of environment dynamics and state-values:

Josiah Hanna, University of Wisconsin — Madison

Practice: Action Values

Exercise 3.12, page 58.

Write state-values in terms of action-values:

qπ(s, a) = ∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvπ(s′￼)]Hint:

vπ(s) = ?

Josiah Hanna, University of Wisconsin — Madison

• The book uses the concept of a back-up diagram to illustrate value
function computations:

Bellman Equation

vπ(s) = ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvπ(s′￼)]

s

a
r

s′￼

π

p

Josiah Hanna, University of Wisconsin — Madison

Optimality
• Agent’s objective: find policy that maximizes for all s.

• The optimal policy — policy that has maximal value in all states. if for all
states and possible policies.

• Does this policy always exist?

• Is it unique?

• Possibly multiple, but always at least one optimal policies in a finite MDP.

• Also, deterministic and Markovian, i.e., action selection only depends on current state.

•

vπ(s)

π⋆ ≥ π vπ⋆ ≥ vπ(s)

π⋆(s) = arg max
a

qπ⋆(s, a) qπ⋆(s, a) = 𝔼[Rt+1 + γvπ⋆(St+1) |St = s, At = a]

Josiah Hanna, University of Wisconsin — Madison

Approximation

• The optimal policy exists but, in practice, it may not be possible to
compute.

• In real world problems, we must settle for approximate optimality.

• This is an opportunity — no need to waste time finding optimal actions in
states the agent rarely visits.

• Need to generalize knowledge across states — more on this in October!

Josiah Hanna, University of Wisconsin — Madison

Michael’s Presentation

• Link to slides.

https://docs.google.com/presentation/d/1HKpfN04dxmQmPtDQo1CjW9W4GfblCHZRI86eqzHe8b4/edit?usp=sharing

Josiah Hanna, University of Wisconsin — Madison

Optimal Value Functions

• Like all policies, the optimal policy has value functions:

•

•

• The optimal policy is greedy with respect to the action-values, i.e.,

vπ⋆(s) = 𝔼[Rt+1 + γvπ⋆(St+1) |St = s]

qπ⋆(s, a) = 𝔼[Rt+1 + γvπ⋆(St+1) |St = s, At = a]

π⋆(s) = arg max
a

qπ⋆(s, a)

Josiah Hanna, University of Wisconsin — Madison

Bellman Optimality
v*(s) = Eπ⋆[q⋆(s, A)]

= ∑
a

π⋆(a |s)q⋆(s, a)

= max
a

q⋆(s, a)

= max
a

Eπ⋆[Gt |St = s, At = a]

= max
a

Eπ⋆[Rt+1 + γGt+1 |St = s, At = a]

= max
a

Eπ⋆[Rt+1 + γv⋆(St+1) |St = s, At = a]

= max
a ∑

s′￼,r

p(s′￼, r |s, a)[r + γv⋆(s′￼)]

From last time: state-value is expected action-value.

Definition of expectation.

Optimal policy is greedy w.r.t

Definition of action-value .

Recursive definition of return.

Definition of state-value.

Definition of expectation.

q⋆

Josiah Hanna, University of Wisconsin — Madison

Dynamic Programming in RL
• Dynamic programming is a general class of algorithm that builds a solution to a problem by recursively

solving sub-problems.

• In RL, dynamic programming refers to algorithms that compute values at one state using values
(partially) computed for other states.

• Not learning methods!

• “Bootstrapping”

• Learning a guess from a guess.

• Methods that use initial value estimates to compute new, improved value estimates.

• From the expression “pull oneself up by your own bootstraps.”

• Not to be confused with bootstrapping in statistics.

Josiah Hanna, University of Wisconsin — Madison

Dynamic Programming in RL
• Use value functions to find improved policies.

• Turn Bellman equations into value function updates.

• Bellman equation for policy value becomes policy evaluation:

• Bellman optimality equation becomes value iteration:

vk+1(s) ← ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvk(s′￼)]

vk+1(s) ← max
a ∑

s′￼

∑
r

p(s′￼, r |s, a)[r + γvk(s′￼)]

Josiah Hanna, University of Wisconsin — Madison

Limitations of Dynamic Programming
• Require full knowledge of the environment

• Know transitions and rewards.

• May have high computational requirements; linear in actions, states, and rewards per-
update.

• We will discuss relaxing these limitations when we discuss model-based learning in a few
weeks.

• What is done in practice?

• Dynamic programming methods are applied for solving MDPs in practice.

• Not for full RL problems; but key ideas are important!

Josiah Hanna, University of Wisconsin — Madison

Policy Evaluation (Prediction)
• Given a policy, compute its state- or action-value function.

• When to stop making updates?

• Do these updates converge?

• Yes, updates are a contraction mapping with respective fixed points .

• Convergence proof for value-iteration. Can you generalize it?

vπ, qπ

vk+1(s) ← ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvk(s′￼)]

qk+1(s, a) ← ∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γ∑
a′￼

qk(s′￼, a′￼)]

http://users.isr.ist.utl.pt/~mtjspaan/readingGroup/ProofQlearning.pdf

Josiah Hanna, University of Wisconsin — Madison

Policy Evaluation Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Josiah Hanna, University of Wisconsin — Madison

Policy Iteration
• We have for the current policy . How can we improve ?

• Alternate:

• Run policy evaluation updates to find .

• Set

• Why does this work?

vπ(s) π π

vπ

π′￼(s) ← arg max
a ∑

s′￼,r

p(s′￼, r |s, a)[r + γvπ(s′￼)]

vk+1(s) ← ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvk(s′￼)]

Josiah Hanna, University of Wisconsin — Madison

Policy Improvement Theorem
• Suppose for that such that .

• Let and for all other states .

• What is true about Why?

• As good as or better than , i.e.,

• If is sub-optimal, does there exist such that ?

• Yes, this follows from Bellman Optimality. Must be at least one state where is not greedy w.r.t.
its action-value function.

• Optimal value function:

π ∃s, a qπ(s, a) ≥ vπ(s)

π′￼(s) = a π′￼(s̃) = π(s̃) s̃

π′￼?

π vπ′￼
(s) ≥ vπ(s), ∀s

π s, a qπ(s, a) ≥ vπ(s)

π

v⋆(s) = max
a

q⋆(s, a)∀s

vk+1(s) ← ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvk(s′￼)]

Josiah Hanna, University of Wisconsin — Madison

Policy Iteration Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Josiah Hanna, University of Wisconsin — Madison

Summary
• Learning value functions allow us to compute optimal policies.

• Policy Evaluation: find value function for a fixed policy.

• Policy Iteration: compute optimal policy by iterating 1) policy evaluation
and 2) greedy policy improvement.

• Value Iteration: directly learn optimal value function.

• Dynamic programming methods don’t solve the full RL problem but they
are the basis for most of the methods we will see in this class.

Josiah Hanna, University of Wisconsin — Madison

Action Items

• Read Chapter 5 of course textbook.

• Send a reading response by 12pm on Monday.

• Sign-up for a presentation: https://docs.google.com/spreadsheets/d/
1PMI8XO9lP84GW5jYFJi1qPo6E19ZKacw5nRKxY7YTu8/edit?
usp=sharing

