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Announcements

 Thanks for completing the background survey!

e Sign-up for a presentation:https://docs.google.com/spreadsheets/d/
1PMI8XO9IP84GWS|YFJi1gPo6E19ZKacwSnRKXxY 7Y Tu8/edit?
gid=0#q9id=0

 Many of the latter slots have been taken

* Final reminder: join Piazza to stay in-the-know on key class information.
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Learning Outcomes

After today’s class, you will be able to:

1. Be able to define and explain the relationship between state-values,
action-values, and optimal policies.

2. Be able to translate Bellman equations into dynamic programming
methods for computing value functions.
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Value functions

e State transitions and rewards are stochastic so we must maximize
expected return.

 Expected return is only well-defined with respect to a particular policy.
(Why?)

e State-value and action-value functions are always defined in terms of some
policy.

v.(s) = EG,|S, =s] =L [Z?’th+k+1‘S = 5]

qg.(s,a)=LE_[G,|S, =s5,A =a] =L [ZykR 1S, =8,A =al
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Recursive Relationship of State Values

V]Z'(S) L= _n[Gt‘St — S]

Definition of return — _ﬂ[Rt-I-l + 7Gt+1 ‘ SZ‘ — S]

Definition of expectation — Z 7Z'(Cl ‘ S) Z ZP(S/, I"S, Cl)[l" + }/ ]Z'[Gt | ‘St | — S,]]
a s r

Definition of state-value — Z 71'(61 ‘ S) Z ZP(S/’ s ‘ s, Cl)[l” 4 }/Vﬂ(S/)]
a s r

Page 59 of the course textbook.



Action Values

Write action-values in terms of environment dynamics and state-values:

q.(s,a) =L |G|S,=sA =da]
Definition of return — _7Z'[Rl‘-|-1 + }/Gt+1 |St = s, At — Cl]
Definition of expectation — Z ZP(S,, r ‘ A Cl)[l" + 4 _E[Gt+1 ‘ St+1 — S/]]
s r

Definition of state-value — Z ZP(S,’ 2 ‘ S, Cl)[l/' 4 }/Vﬂ(S,)]
s r

Exercise 3.13, page 58. | o | | |
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Practice: Action Values

Write state-values in terms of action-values:

45, @) = )

/

\)

N (s, rls,a)r + yv(s)]

v.(s) ="

Exercise 3.12, page 58.
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Bellman Equation

 The book uses the concept of a back-up diagram to illustrate value
function computations:

ve(s) = ) mals) Y, ) p(s,rls, a)lr+ yv(s)]
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Optimality

Agent’s objective: find policy that maximizes v_(s) for all s.

The optimal policy — policy that has maximal value in all states. 7% > zif v_. > v_(s) for all
states and possible policies.

* Does this policy always exist?
e |s it unique?
Possibly multiple, but always at least one optimal policies in a finite MDP.

* Also, deterministic and Markovian, I.e., action selection only depends on current state.

]Z'*(S) = arg max qﬂ*(s’ a) qﬂ*(S, Cl) — _[Rt+1 + an*(StH) ‘ St = S, At — Cl]

a
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Approximation

The optimal policy exists but, in practice, it may not be possible to
compute.

In real world problems, we must settle for approximate optimality.

This i1s an opportunity — no need to waste time finding optimal actions In
states the agent rarely visits.

Need to generalize knowledge across states — more on this in October!
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Michael’s Presentation

e | Ink to slides.



https://docs.google.com/presentation/d/1HKpfN04dxmQmPtDQo1CjW9W4GfblCHZRI86eqzHe8b4/edit?usp=sharing

Optimal Value Functions

* Like all policies, the optimal policy has value functions:

* ﬂ*(S) — _[Rt+1 T ]/Vﬂ*(SH_l) ‘ St — S]

° qﬂ*(sa Cl) — _[Rt+1 T an*(StH) ‘ St — S,At — Cl]

 The optimal policy is greedy with respect to the action-values, i.e.,

7% (s) = argmax g_.(s, a)
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Bellman Optimality

V*(S) — Eﬂ*[q *(S, A)] From last time: state-value is expected action-value.
— 2 71'*(61 ‘ S)q*(S, Cl) Definition of expectation.
— HciaX q*( s, a) Optimal policy is greedy w.rt g,
— maax E]Z G t ‘ St = s, At = a| Definition of action-value .
— mgx Eﬂ*[Rt+1 -+ }/Gt+1 ‘ St — S,At = a| Recursive definition of return.
= mgx E_ R .{+yv,(S,. ]S =5,A =d] Definition of state-value.
a
= mj‘X Z p(s,rls,a)lr +yv,(s)] Definition of expectation.
s,
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Dynamic Programming in RL

Dynamic programming is a general class of algorithm that builds a solution to a problem by recursively
solving sub-problems.

In RL, dynamic programming refers to algorithms that compute values at one state using values
(partially) computed for other states.

 Not learning methods!
“Bootstrapping”
* | earning a guess from a guess.
 Methods that use initial value estimates to compute new, improved value estimates.
 From the expression “pull oneself up by your own bootstraps.”

 Not to be confused with bootstrapping in statistics.
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Dynamic Programming in RL

Use value functions to find improved policies.
Turn Bellman equations into value function updates.

Bellman equation for policy value becomes policy evaluation:
Vi q(8) < 2 m(als) Z Zp(s’, r|s,a)lr +yv(s)]
a s r

Bellman optimality equation becomes value iteration:

Vie1(8) < max Z Zp(s r|s,a)lr +yv(s)]

s’
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Limitations of Dynamic Programming

Require full knowledge of the environment
e Know transitions and rewards.

May have high computational requirements; linear in actions, states, and rewards per-
update.

We will discuss relaxing these limitations when we discuss model-based learning in a few
weeks.

 \WWhat is done in practice?
 Dynamic programming methods are applied for solving MDPs in practice.

* Not for full RL problems; but key ideas are important!
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Policy Evaluation (Prediction)

* Given a policy, compute its state- or action-value function.

Vk+1(S) < Zﬂ'(d‘S)Z ZP(S/,V‘S, Cl)[l/'+ yvk(sl)]

Gs1(5:0) <= ). Y p(srls,@)lr+y ) qls,a)]

 \When to stop making updates?
Do these updates converge?

 Yes, updates are a contraction mapping with respective fixed points v_, g..
» (Convergence proof for value-iteration. Can you generalize it?
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http://users.isr.ist.utl.pt/~mtjspaan/readingGroup/ProofQlearning.pdf

Policy Evaluation Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld dp.htmi
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Policy lteration

» We have v_(s) for the current policy 7. How can we improve 7?

e Alternate:

» Run policy evaluation updates to find v_.

_ Set 7'(s) « arg max Z p(s,rl|s,a)lr+yv (s')]

s’y

 Why does this work"?
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Policy Improvement Iheorem

Suppose for z that ds, a such that g_(s,a) > v_(s).
Let 7'(s) = a and 7'(§) = z(5) for all other states 5.
What is true about z'? Why?
» As good as or better than x, i.e., v_(s) > v_(s), Vs
If 7 is sub-optimal, does there exist s, a such that g (s, a) > v_(s)?

* Yes, this follows from Bellman Optimality. Must be at least one state where 7 is not greedy w.r.t.
its action-value function.

. Optimal value function: v_(s) = max g, (s, a) Vs
da
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Policy Iteration Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld dp.htmi
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Summary

Learning value functions allow us to compute optimal policies.
Policy Evaluation: find value function for a fixed policy.

Policy Iteration: compute optimal policy by iterating 1) policy evaluation
and 2) greedy policy improvement.

Value lteration: directly learn optimal value function.

Dynamic programming methods don’t solve the full RL problem but they
are the basis for most of the methods we will see In this class.
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Action ltems

 Read Chapter 5 of course textbook.

e Send a reading response by 12pm on Monday.

e Sign-up for a presentation: https://docs.google.com/spreadsheets/d/
1PMI8XO9IP84GWS5jYFJi1gPo6E19ZKacw5SnRKXxY 7Y Tu8/edit?

usp=sharing
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