Advanced lopics In
Reinforcement Learning

Lecture 4: Dynamic Programming

Josiah Hanna
University of Wisconsin — Madison

Announcements

 Thanks for completing the background survey!

e Sign-up for a presentation:https://docs.google.com/spreadsheets/d/
1PMI8XO9IP84GWS|YFJi1gPo6E19ZKacwSnRKXxY 7Y Tu8/edit?
gid=0#q9id=0

 Many of the latter slots have been taken

* Final reminder: join Piazza to stay in-the-know on key class information.

Josiah Hanna, University of Wisconsin — Madison

https://docs.google.com/spreadsheets/d/1PMI8XO9lP84GW5jYFJi1qPo6E19ZKacw5nRKxY7YTu8/edit?gid=0#gid=0
https://docs.google.com/spreadsheets/d/1PMI8XO9lP84GW5jYFJi1qPo6E19ZKacw5nRKxY7YTu8/edit?gid=0#gid=0
https://docs.google.com/spreadsheets/d/1PMI8XO9lP84GW5jYFJi1qPo6E19ZKacw5nRKxY7YTu8/edit?gid=0#gid=0
https://docs.google.com/spreadsheets/d/1PMI8XO9lP84GW5jYFJi1qPo6E19ZKacw5nRKxY7YTu8/edit?gid=0#gid=0

Learning Outcomes

After today’s class, you will be able to:

1. Be able to define and explain the relationship between state-values,
action-values, and optimal policies.

2. Be able to translate Bellman equations into dynamic programming
methods for computing value functions.

Josiah Hanna, University of Wisconsin — Madison

Value functions

e State transitions and rewards are stochastic so we must maximize
expected return.

 Expected return is only well-defined with respect to a particular policy.
(Why?)

e State-value and action-value functions are always defined in terms of some
policy.

v.(s) = EG,|S, =s] =L [Z?’th+k+1‘S = 5]

qg.(s,a)=LE_[G,|S, =s5,A =a] =L [ZykR 1S, =8,A =al

Josiah Hanna, University of Wisconsin — Madison

Recursive Relationship of State Values

V]Z'(S) L= _n[Gt‘St — S]

Definition of return — _ﬂ[Rt-I-l + 7Gt+1 ‘ SZ‘ — S]

Definition of expectation — Z 7Z'(Cl ‘ S) Z ZP(S/, I"S, Cl)[l" + }/]Z'[Gt | ‘St | — S,]]
a s r

Definition of state-value — Z 71'(61 ‘ S) Z ZP(S/’ s ‘ s, Cl)[l” 4 }/Vﬂ(S/)]
a s r

Page 59 of the course textbook.

Action Values

Write action-values in terms of environment dynamics and state-values:

q.(s,a) =L |G|S,=sA =da]
Definition of return — _7Z'[Rl‘-|-1 + }/Gt+1 |St = s, At — Cl]
Definition of expectation — Z ZP(S,, r ‘ A Cl)[l" + 4 _E[Gt+1 ‘ St+1 — S/]]
s r

Definition of state-value — Z ZP(S,’ 2 ‘ S, Cl)[l/' 4 }/Vﬂ(S,)]
s r

Exercise 3.13, page 58. | o | | |
Josiah Hanna, University of Wisconsin — Madison

Practice: Action Values

Write state-values in terms of action-values:

45, @) =)

/

\)

N (s, rls,a)r + yv(s)]

v.(s) ="

Exercise 3.12, page 58.

Josiah Hanna, University of Wisconsin — Madison

Bellman Equation

 The book uses the concept of a back-up diagram to illustrate value
function computations:

ve(s) =) mals) Y,) p(s,rls, a)lr+ yv(s)]

N
N\

0000

/]
i\

Josiah Hanna, University of Wisconsin — Madison

Optimality

Agent’s objective: find policy that maximizes v_(s) for all s.

The optimal policy — policy that has maximal value in all states. 7% > zif v_. > v_(s) for all
states and possible policies.

* Does this policy always exist?
e |s it unique?
Possibly multiple, but always at least one optimal policies in a finite MDP.

* Also, deterministic and Markovian, I.e., action selection only depends on current state.

]Z'*(S) = arg max qﬂ*(s’ a) qﬂ*(S, Cl) — _[Rt+1 + an*(StH) ‘ St = S, At — Cl]

a

Josiah Hanna, University of Wisconsin — Madison

Approximation

The optimal policy exists but, in practice, it may not be possible to
compute.

In real world problems, we must settle for approximate optimality.

This i1s an opportunity — no need to waste time finding optimal actions In
states the agent rarely visits.

Need to generalize knowledge across states — more on this in October!

Josiah Hanna, University of Wisconsin — Madison

Michael’s Presentation

e | Ink to slides.

https://docs.google.com/presentation/d/1HKpfN04dxmQmPtDQo1CjW9W4GfblCHZRI86eqzHe8b4/edit?usp=sharing

Optimal Value Functions

* Like all policies, the optimal policy has value functions:

* ﬂ*(S) — _[Rt+1 T]/Vﬂ*(SH_l) ‘ St — S]

° qﬂ*(sa Cl) — _[Rt+1 T an*(StH) ‘ St — S,At — Cl]

 The optimal policy is greedy with respect to the action-values, i.e.,

7% (s) = argmax g_.(s, a)

Josiah Hanna, University of Wisconsin — Madison

Bellman Optimality

V*(S) — Eﬂ*[q *(S, A)] From last time: state-value is expected action-value.
— 2 71'*(61 ‘ S)q*(S, Cl) Definition of expectation.
— HciaX q*(s, a) Optimal policy is greedy w.rt g,
— maax E]Z G t ‘ St = s, At = a| Definition of action-value .
— mgx Eﬂ*[Rt+1 -+ }/Gt+1 ‘ St — S,At = a| Recursive definition of return.
= mgx E_ R .{+yv,(S,.]S =5,A =d] Definition of state-value.
a
= mj‘X Z p(s,rls,a)lr +yv,(s)] Definition of expectation.
s,

Josiah Hanna, University of Wisconsin — Madison

Dynamic Programming in RL

Dynamic programming is a general class of algorithm that builds a solution to a problem by recursively
solving sub-problems.

In RL, dynamic programming refers to algorithms that compute values at one state using values
(partially) computed for other states.

 Not learning methods!
“Bootstrapping”
* | earning a guess from a guess.
 Methods that use initial value estimates to compute new, improved value estimates.
 From the expression “pull oneself up by your own bootstraps.”

 Not to be confused with bootstrapping in statistics.

Josiah Hanna, University of Wisconsin — Madison

Dynamic Programming in RL

Use value functions to find improved policies.
Turn Bellman equations into value function updates.

Bellman equation for policy value becomes policy evaluation:
Vi q(8) < 2 m(als) Z Zp(s’, r|s,a)lr +yv(s)]
a s r

Bellman optimality equation becomes value iteration:

Vie1(8) < max Z Zp(s r|s,a)lr +yv(s)]

s’

Josiah Hanna, University of Wisconsin — Madison

Limitations of Dynamic Programming

Require full knowledge of the environment
e Know transitions and rewards.

May have high computational requirements; linear in actions, states, and rewards per-
update.

We will discuss relaxing these limitations when we discuss model-based learning in a few
weeks.

 \WWhat is done in practice?
 Dynamic programming methods are applied for solving MDPs in practice.

* Not for full RL problems; but key ideas are important!

Josiah Hanna, University of Wisconsin — Madison

Policy Evaluation (Prediction)

* Given a policy, compute its state- or action-value function.

Vk+1(S) < Zﬂ'(d‘S)Z ZP(S/,V‘S, Cl)[l/'+ yvk(sl)]

Gs1(5:0) <=). Y p(srls,@)lr+y) qls,a)]

 \When to stop making updates?
Do these updates converge?

 Yes, updates are a contraction mapping with respective fixed points v_, g..
» (Convergence proof for value-iteration. Can you generalize it?

Josiah Hanna, University of Wisconsin — Madison

http://users.isr.ist.utl.pt/~mtjspaan/readingGroup/ProofQlearning.pdf

Policy Evaluation Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld dp.htmi

Josiah Hanna, University of Wisconsin — Madison

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Policy lteration

» We have v_(s) for the current policy 7. How can we improve 7?

e Alternate:

» Run policy evaluation updates to find v_.

_ Set 7'(s) « arg max Z p(s,rl|s,a)lr+yv (s')]

s’y

 Why does this work"?

Josiah Hanna, University of Wisconsin — Madison

Policy Improvement Iheorem

Suppose for z that ds, a such that g_(s,a) > v_(s).
Let 7'(s) = a and 7'(§) = z(5) for all other states 5.
What is true about z'? Why?
» As good as or better than x, i.e., v_(s) > v_(s), Vs
If 7 is sub-optimal, does there exist s, a such that g (s, a) > v_(s)?

* Yes, this follows from Bellman Optimality. Must be at least one state where 7 is not greedy w.r.t.
its action-value function.

. Optimal value function: v_(s) = max g, (s, a) Vs
da

Josiah Hanna, University of Wisconsin — Madison

Policy Iteration Demo

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld dp.htmi

Josiah Hanna, University of Wisconsin — Madison

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Summary

Learning value functions allow us to compute optimal policies.
Policy Evaluation: find value function for a fixed policy.

Policy Iteration: compute optimal policy by iterating 1) policy evaluation
and 2) greedy policy improvement.

Value lteration: directly learn optimal value function.

Dynamic programming methods don’t solve the full RL problem but they
are the basis for most of the methods we will see In this class.

Josiah Hanna, University of Wisconsin — Madison

Action ltems

 Read Chapter 5 of course textbook.

e Send a reading response by 12pm on Monday.

e Sign-up for a presentation: https://docs.google.com/spreadsheets/d/
1PMI8XO9IP84GWS5jYFJi1gPo6E19ZKacw5SnRKXxY 7Y Tu8/edit?

usp=sharing

Josiah Hanna, University of Wisconsin — Madison

