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Announcements

• Homework released. Due: October 21 at 9:30AM (minute class starts) 


• Start reading chapter 6 for next week.


• Project proposals due: Thursday, October 2nd.
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Course Overview

• So far we’ve seen:

• Learning in a simplified setting (k-armed bandits).

• Formalized reinforcement learning problems (MDPs).

• Exact solution methods for MDPs (dynamic programming methods).


• Today: first learning methods for MDPs.


• Next week: learning methods that bootstrap like dynamic programming 
methods.
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Learning Outcomes

After this week, you will be able to:


1. Differentiate between value function computation and learning.


2. Describe and implement approaches to estimating value functions from 
sampled experience in an MDP.


3. Learn optimal policies from sampled experience.


4. Differentiate between on- and off-policy learning. 
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From last time: Undiscounted MDPs
• Require either discounting or guarantee of termination for  to be well-defined.


• Question from last time: if , does policy evaluation converge?


• Yes, under the second condition.


• Proof: let  be the probability of termination at each time-step. Then we can easily show 
that (with ): 


• Define . This gives us 


• But this is just the Bellman equation for policy value and so turning it into an update operator for 
computing values will also converge.

vπ(s)

γ = 1

τ ∈ (0,1]
γ = 1 vπ(s) = ∑

a

π(a |s)∑
s′￼,r

p(s′￼, r |s, a)[r + τ ⋅ 0 + (1 − τ)vπ(s′￼)]

γ′￼ = 1 − τ vπ(s) = ∑
a

π(a |s)∑
s′￼,r

p(s′￼, r |s, a)[r + γ′￼vπ(s′￼)]
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Generalized Policy Iteration
• What is it?


• We can be quite permissive in how we mix evaluation and improvement.


• As long as  becomes closer to  and  becomes greedy w.r.t.  we will 
converge to .


• A general framework for all algorithms we will introduce in this class.


• Do you think this holds when  must generalize across states? I.e., increasing 
the value of  will also increase the value of  for s’,a’ close to s.

q qπ π q
q⋆, π⋆

qπ
qπ(s, a) qπ(s′￼, a′￼)

vk+1(s) ← ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvk(s′￼)]
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Practice: do we have to be greedy?
• Recall the policy improvement theorem: we have  and set 

. Then .


• Suppose  is a stochastic policy and we set  as follows:


• 


• Normalize  so that .


• Do we still have that ?

vπ
π′￼(s) ← arg max

a ∑
s′￼,r

p(s′￼, r |s, a)[r + γvπ(s′￼)] vπ′￼
(s) ≥ vπ(s)∀s

π π′￼

π′￼(ã |s) ← π(ã |s) + 1{ã ∈ arg max
a ∑

s′￼,r

p(s′￼, r |s, a)[r + γvπ(s′￼)]}

π′￼ ∑
a

π′￼(a |s) = 1

vπ′￼
(s) ≥ vπ(s)∀s

vk+1(s) ← ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvk(s′￼)]
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Markov Reward Process
• Like MDPs but no actions; Markov chains with rewards


•  is the state transition and reward distribution function.


• A fixed policy induces a Markov reward process on the state space:


• .


• A fixed policy induces a Markov reward process on the state-action space:


•

p(s′￼, r |s)

p(s′￼, r |s) = ∑
a

π(a |s)p(s′￼, r |s, a)

p((s′￼, a′￼), r | (s, a)) = π(a′￼|s′￼)p(s′￼, r |s, a)

State values for this MRP are same 
as  in MDPvπ(s)

State values for this MRP are same 
as  in MDPqπ(s, a)
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. . . St, At, Rt+1, St+1, At+1, . . .
St+1, Rt+1 ∼ p( ⋅ |St, At)

At+1 ← π(St+1)

Markov Decision Processes

We observe the trajectory but don’t know .p
Learn / estimate value functions vs. compute value functions
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Statistics Review
• We have random variable  and use  as an estimate of unknown 

value . The expected value of  is .


• Variance of :


• Bias of X:


• An estimate is a consistent estimator of an unknown value if it converges 
(probabilistically) to the value being estimated.

X ∼ d X
μ X Ed[X]

X

𝚅𝚊𝚛d[X] = Ed[(X − Ed[X])2]

𝙱𝚒𝚊𝚜d[X] = μ − Ed[X]



Bias / Variance

High Variance

Low Variance

Low Bias High Bias

Wikipedia: Bias-variance tradeoff
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Monte Carlo Methods
• Random variable  and real-valued function , estimate:


• The distribution  is unknown but we can sample .


• Monte Carlo approximation:


• The law of large numbers tells us that as  that error in the approximation goes to zero.


• Error is order .

X ∼ d f(X)

d X ∼ d

n → ∞

1/ n

∑
x

d(x)f(x) ≈
1
n

n

∑
i=1

f(Xi) Xi ∼ d

Ed[ f(X)] = ∑
x

d(x)f(x)



Josiah Hanna, University of Wisconsin — Madison

Monte Carlo Methods

∑
x

d(x)f(x) ≈
1
n

n

∑
i=1

f(Xi)

Xi ∼ d
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Monte Carlo in RL
• Given a policy, compute its state- or action-value function.


•  is a trajectory  generated by following .


•  is a probability distribution over trajectories that is induced from MDP and .


•  is the sum of discounted rewards along a trajectory: 

X S0, A0, R1, S1, A1, . . . RT, ST π

d π

f
T

∑
t=0

γtRt+1

qπ(s, a) = Eπ[
T

∑
t=0

γtRt+1 |St = s, At = a]

Pr(s0, a0, r1, s1, . . . rT, st) =
T−1

∏
t=0

π(at |st)p(st+1, rt+1 |st, at)
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Single State First-Visit Monte Carlo
• Estimate  for a fixed state, .


• Assume we always start in state  and all episodes eventually terminate.


• To evaluate policy , set , and repeat  times:


• Start at , take action .


• Until termination: , .


• .


• Return 


• As , .

qπ(s0, a0) s0, a0

s0

π 𝚝𝚘𝚝𝚊𝚕 ← 0 n

s0 a0

St, Rt ∼ p(S′￼, R |St−1, At−1) At ∼ π(A |St)

𝚝𝚘𝚝𝚊𝚕 ← 𝚝𝚘𝚝𝚊𝚕 + ∑
t=0

γtRt+1

Qn(s0, a0) ← 𝚝𝚘𝚝𝚊𝚕/n

n → ∞ Qn(s0, a0) → qπ(s0, a0)

How would you change 
for state-values?

What is storage requirement for first-
visit Monte Carlo?
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Every-Visit Monte Carlo
• In general, we may see the same state multiple times per-episode.


• How does every-visit Monte Carlo differ from first-visit Monte Carlo?


• Uses return following each occurrence of a state-action pair.


• May converge faster depending on number of extra occurrences.


• Does every-visit Monte Carlo give unbiased estimates of values?


• No, but will converge in the limit (statistically consistent).
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Monte Carlo or Dynamic Programming?
• When would you prefer Monte Carlo methods?


• No model of the environment or simulation-only model.


• No Markov state.


• When would you prefer dynamic programming methods?


• No episode termination.


• Model known, small number of Markov states and actions.

vk+1(s) ← ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvk(s′￼)]
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Policy Evaluation for Control 
• Either first-visit or every-visit Monte Carlo can estimate  or  from 

experience generated by following policy . What else is needed for control?


• Must estimate action-values (not state-values). Why?


• With state-values, the best action is: 


• One-step search requires model to be known.


• Must see all states and actions but  may only select a single action in any 
given state.

• Need exploration!

vπ qπ
π

a⋆ = arg max ∑
s′￼,r

p(s′￼, r |s, a)[r + γv⋆(s′￼)]

π

vk+1(s) ← ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvk(s′￼)]
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Exploring Starts
• Simple idea to provide exploration.


• How does it work?

• Non-zero probability of starting in any state and then taking a random 

action.


• Is it practical?

• Depends. 

• Inapplicable to continuing problems or problems where we do not control 

the initial state distribution.

• Is applicable and potentially beneficial when we DO control the initial 

state distribution.
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Monte Carlo Policy Iteration
• To find , start with arbitrary , and alternate:


• Run Monte Carlo policy evaluation of  for  episodes.


• Make  the greedy policy w.r.t. .


• How large must  be?


• Exploring starts ensures convergence only if all returns averaged come from 
same policy. Why?

• Conjectured that there is no need to discard returns as policy changes but no 

formal proof.

π⋆ π0

πk n

πk+1 qk

n

vk+1(s) ← ∑
a

π(a |s)∑
s′￼

∑
r

p(s′￼, r |s, a)[r + γvk(s′￼)]
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Summary

• Monte Carlo methods learn value functions for the observed return 
without model knowledge.


• Must learn action-values for control and require an exploration mechanism 
to ensure coverage of all state-action pairs.


• Basic idea of policy iteration still applies even though we only have an 
approximate policy evaluation step.
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Action Items

• Start on homework


• Start reading chapter 6 for next week.


• Be thinking about final project — proposal due next week.


• The more concrete your proposal is, the better guidance you will 
receive!


