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Announcements

« Homework released. Due: October 21 at 9:30AM (minute class starts)
 Read chapter 6 for next week.

* Project proposals due: Thursday, October 2nd.
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Learning Outcomes

After this week, you will be able to:
1. Differentiate between value function computation and learning.

2. Describe and implement approaches to estimating value functions from
sampled experience in an MDP.

3. Learn optimal policies from sampled experience.

4. Differentiate between on- and off-policy learning.
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Single-State First-Visit Monte Carlo

» Only estimate g (s, a) for a fixed state, s, dj.-
« Assume we always start in state 5, and all episodes eventually terminate.

» To evaluate policy 7, set total « 0, and repeat n times:

« Start at ), take action a,.
e Until termination: S,, R, ~ p(S, R|S,_1,A,_, A, ~ (A | S)).

_ total « total + Z Y'R. .
=0

 Return Q, (sy, ay) < total/n

e Asn — 00, Q,(S9, ay) = q,(Sg, ap)-
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First-Visit Monte Carlo

« To evaluate policy 7z, set returns(s,a) < {}, and repeat n times:

« Sample 5y, Ag ~

explore

o Until termination: S, R, ~ p(S',R|S,_1,A,_), 4, ~ n(A|S)).

 For first visit to (s, @) in episode (at timestep i):

T
returns(s,a) « returns(s,a) U { Z Y'R..,}.

=1

o Return Q (s, ay) < mean(returns)

e Asn — o0, Q, (8o, ag) = q,(Sg, ap).
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Monte Carlo Policy Iteration

» To find 7, start with arbitrary 7, and alternate:
« Run Monte Carlo policy evaluation of 7, for n episodes.
» Make 7, | the greedy policy w.r.t. g,.

 How large must n be?

* EXxploring starts ensures convergence only if all returns averaged come from
same policy.

* Conjectured that there is no need to discard returns as policy changes but no
formal proof.
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Brian’s Presentation

High-Dimensional Continuous Control Using Generalized
Advantage Estimation (GAE)

Schulman, Mortiz, Levine, Jordan, and Abbeel

Slides
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https://docs.google.com/presentation/d/1QoDV3JvzXqKlFia8L4W-5HOfzmYvEeCdWZF5_HzxsTI/edit?slide=id.p#slide=id.p

Ensuring Exploration

* Exploring starts are restrictive. What else to do?

. €-greedy policies: select a™ = arg max ¢(s, a) with probability 1 — €; else random
a
action.

 Hard policy = Deterministic policy, Soft policy = All actions have some probability.
* Do e-greedy methods converge? If so, to what?

« Can we still reach %7

 What if we decay epsilon?
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Off-Policy Motivation

 What is the difference between off-policy and on-policy learning?

* Trajectories generated by behavior policy, used to evaluate target policy.

» If behavior = target (Vs, a, n(a|s) = b(a|s)), then on-policy. Otherwise, off-policy.
 Why do we need off-policy learning?

* Behavior policy explores, target policy exploits.

* Learn for many reward functions at the same time.

* Behavior policy is a known and safe policy.
 What is the main challenge in off-policy learning?

* Distribution shift! Behavior policy and target policy induce different trajectory
distributions. Thus, g,(s, a) # g,(s,a) in general.

Josiah Hanna, University of Wisconsin — Madison



Importance Sampling Methods

Given distribution d(X) and real-valued function f(X), estimate:
E,LfX)] = ) dx)fx)

The distribution d is unknown but we can sample X ~ b.

If we set b < d then reduces to

MOnte Car|0 apprOXImathn standard Monte Carlo.
1 «— d(X)
d(x)f(x) = b(X) (x) ~ — —fX)  X.~b
Z 4 Z b(x) f n l=21 b(X;) % !
Law of large numbers tells us that as n — oo that error in the approximation goes to zero.
d(x
Error is order 1/\/; (assuming ) is bounded).

b(x)
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Off-Policy Monte Carlo in RL

Key idea: correct return distribution with importance sampling.

Trajectory distribution that is induced from MDP and behavior policy.

Pr(sy, ag, 7y, S1s - - - Ty ST) = H b(a,|s)p(S;1> Fraq | S A
=0

Desired trajectory distribution induced from MDP and target policy.

Pr(sy, ag, 71, S15 - - - Iy S7) = H m(a,| s)p(S,15 ¥yt | S a)
=0

Importance weighted returns;

m(a; | s)P(S; 1> Tivy | S5 @) JZ'(CZ S;)
peri= ] — H v(s) = .G,

b(a; | s)p(Sit1» Tip115; a;) b(a;| s
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Importance Sampling Variance

» Importance sampling provides unbiased estimates of v_(s) using
returns sampled by running the behavior policy.

» Assuming that, if Z(a|s) > 0O, then b(al|s) > 0.

* In practice:
e (Can have infinite variance.

 Most of the time, importance sampling severely under-estimates

and then rarely, massively over-estimates. ]

* Can return implausible estimates.

» Ex: Suppose you know G, is bounded and hence v_(s) is
bounded' ImpOrtance Sampling may eStimate a Value mUCh n [‘: l:»;;ll.,;lemporta"-:;'J\'-::-;r‘:egﬂo:zturn C'!
greater than the bound. Thomas et al. 2015
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Importance Sampling Variance
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Variance of Importance Sampling
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Weighted Importance Sampling

e Estimation error = Variance + Bias2. Often a trade-off: can reduce
variance by introducing bias.

 Weighted Importance Sampling introduces bias but can drastically lower
variance.

. 1€ T(S) pt: TGt Mean
V(S) . — —Z square
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Per-Decision Importance Sampling

* Ordinary importance sampling re-weights all rewards the same:

pt:TGt — pt:T(Rt+1 T th+2 T ... yT_t_lRT)

 Actions that follow a reward do not affect the likelihood of that reward.
k _ k
PtV Riiii1 = Pk Pra1:TV Rigis

* Per-decision importance sampling takes advantage of this by dropping
factors in the importance ratios.

E,lp;. TVth+k+ U =E,lp, :kaRt+k+ (]
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Off-Policy Control

* With off-policy prediction, we can run a soft behavior policy to provide exploration while improving the
target policy greedily.

* Behavior policy must ensure state-action coverage.
 EX: Behavior policy is e-greedy and target policy is greedy.
» Still follow general policy iteration scheme:

» Evaluate target policy (i.e., estimate ¢_) with off-policy Monte Carlo.

« Make target policy greedy w.r.t. g_..

« Converges to *.
T-1 -1
e (a; | spP(Sig1s Tig1 155> @) (a; ] 5;)
* |s this efficient? Pr.T -= H = H
o Dai | sop(sipys i s ) 2 b(a;] s)
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Off-Policy First-Visit Monte Carlo

 To evaluate policy 7, set returns(s,a) <« {}, and repeat n times:

« Sample 5y ~ d;pitial

o Until termination: S,, R, ~ p(S, R|S,_{,A,_)| A, ~ b(A|S,).

 For first visit to (s, a) in episode (at timestep i):

T
returns(s,a) <« returns(s,a) U {pi:TZ 'R, .}

SHP(Siy 15> Tig

T—-1

=i
» Return Q, (s, ay) < mean(returns) Il 1(a,
l
Pr.T -= H
-+ b(g
e Asn — 00, Q, (g, dy) = q,(So, dp)- i=t

A SOP(Sic1s Figt

Spay) H m(a;| s;
Si» ;) b(a;|s;

=1
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How to use IS in practice

m(a|s)

b(als)

).

Clip or bound weights, i.e., p <« min(

Restrict policy difference.
Baselines and doubly robust estimators.

Bootstrap (next week) — truncate the return after k steps and use
y™**=1y (S, ) in place of the sum of the remaining rewards.
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Discounting Aware Importance Sampling

o Discounted return: G, := R, | + ;/th T ;/T_IRT

* Alternatively, the discount represents the probability of not terminating.
Episodes terminate with probability 1 — .

 What is the expected undiscounted return under this formalism:

-1 T
=R+ =Ry + R )+ ...+ (1 = y)y' ' Z Ky + y' ! Z R =G,
k=1 k=1

* Now a very similar idea to per-decision |IS; no need to importance sample
actions after all rewards in a partial return have been received.
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Summary

 Off-Policy Monte Carlo policy evaluation methods enable learning g, while
taking actions according to a behavior policy b.

 Importance sampling re-weights returns so that — in expectation — they
are equal to g,

» Off-Policy Monte Carlo policy iteration uses a behavior policy for
exploration while learning an optimal target policy.
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Action ltems

e Start on homework
e Start reading chapter 6 for next week.

* Be thinking about final project — proposal due next week.

 The more concrete your proposal is, the better guidance you will
receive!
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