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Announcements

• Homework released. Due: October 21 at 9:30AM (minute class starts) 


• Read chapter 8 for next week.


• Project proposals due tonight!


• Next up: literature review (due October 30)
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Learning Outcomes
After this week, you will be able to:


1. Explain how TD-learning combines ideas from dynamic programming 
and Monte Carlo value function learning.


2. Implement TD-learning algorithms such as TD(0), Q-learning, and 
SARSA.


3. Compare and contrast on- and off-policy TD-learning methods for 
control.


4. Compare and contrast TD and Monte Carlo value function learning.
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Today
• Finishing Prediction


• Convergence of TD / Monte Carlo.


• TD( )


• On-Policy SARSA for control.


• Q-learning for control.


• Off-Policy SARSA.

λ
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Review
• Temporal difference (TD) learning learns from experience and bootstraps


• Allows immediate learning without a model of the environment.


• In a batch setting, TD-learning converges to the certainty-equivalence 
estimate.


• Highlights the connection between TD-learning and dynamic 
programming.


• TD-learning and Monte Carlo methods sit at either end of a spectrum of n-
step return methods.
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Convergence
• TD(0) and Monte Carlo both converge but TD methods are usually faster 

when using a constant step-size.


• Where do these methods fall on the bias-variance trade-off?



Josiah Hanna, University of Wisconsin — Madison

Max’s Presentation

Slides

Expected Eligibility traces 
Hado van Hasselt et al. AAAI 
2021.

https://docs.google.com/presentation/d/1O8eQ8dsrnpBwTb6PFOu2H2MtQIe-3aan9BfEk8F32Z8/edit?usp=sharing
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• Certainty Equivalence Learning: use data to estimate Markov process and 
then compute value function for the estimated process.

Certainty Equivalence Updating

Data: 
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Certainty Equivalence Updating
• Consider a Markov reward process — not an MDP!


• If policy is fixed (as in prediction) then have a Markov chain on states.


• Given a batch of data , compute the value function.


• For TD(0), update value function with the sum of all TD-errors:


• 


• 


•

D = {(si, ri, s′￼i)}

vk+1(s) ← vk(s) + α∑
s′￼,r

#(s, r, s′￼)[r + γvk(s′￼) − vk(s)]

= vk(s) + α′￼∑
s′￼,r

#(s, r, s′￼)
#(s)

[r + γvk(s′￼) − vk(s)]

= (1 − α′￼)vk(s) + α′￼∑
s′￼,r

̂p(s′￼, r |s)[r + γvk(s′￼)] This is like dynamic programming 
with estimated transitions!

Note: For MDPs, see Reducing Sampling Error in Batch Temporal Difference Learning [Pavse et al. 2020]

Number of times we observed s, r, s′￼

Estimate of p

https://pages.cs.wisc.edu/~jphanna/papers/pavse2020reducing.pdf
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CE for n-step returns?

rγ
n := r1 + γr2 + . . . + γn−1rn

∑
r1:n,sn

#(s, r1:n, sn)
#(s)

[rγ
n + γnvk(sn)] = ∑

r1:n,sn

#(s, r1:n, sn)
#(s)

rγ
n + ∑

r1:n,sn

#(s, r1:n, sn)
#(s)

γnvk(sn)

= ∑
r1:n

#(s, r1:n)
#(s)

rγ
n + ∑

sn

#(s, sn)
#(s)

γnvk(sn)

= ̂rγ
n(s) + γn ∑

sn

̂p(sn |s)vk(sn)

What is this if ? What if ?n = ∞ n = 1



Josiah Hanna, University of Wisconsin — Madison

S A R S A
• Same generalized policy iteration scheme from past two weeks.


• Evaluate .


• Make  greedy with respect to .


• Now, use TD(0) to learn action-values:


• Is this update on- or off-policy?


• What does generalized policy iteration with TD action-values and -greedy exploration 
converge to?

πk

πk+1 qk

ϵ

Q(St, At) ← Q(St, At) + α[Rt+1 + γQ(St+1, At+1) − Q(St, At)]
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Q-Learning
• SARSA is approximating policy iteration. What about value iteration?


• Q-learning update:


• Is this update on- or off-policy?


• Off-policy: can follow any policy (e.g., -greedy) while learning .


• “Follow a policy derived from Q” — still off-policy!


• What does the Q-learning update converge to?


•

ϵ q⋆

q⋆

Q(St, At) ← Q(St, At) + α[Rt+1 + γ max
a′￼

Q(St+1, a′￼) − Q(St, At)]
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Q-Learning or SARSA?
• Q-learning is off-policy; SARSA is on-policy.


• Q-learning follows an exploration policy and learns .


• SARSA follows an exploration policy, , and learns .


• What if exploration policy is greedy?

q⋆

π qπ
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Double Q-Learning
• Q-learning may suffer from maximization bias?


• What is it?


• Double Q-learning mitigates this bias by learning two action-value 
functions: 




• Is this on- or off-policy?


• What does double Q-learning converge to?

Q1(St, At) ← Q1(St, At) + α[Rt+1 + γQ2(St+1, arg max
a′￼

Q1(St+1, a′￼)) − Q1(St, At)]
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Off-Policy SARSA
• Can SARSA learn off-policy?


• Yes, with importance sampling!


• 


• Where .


• Note that we only have a single factor in the importance weight.


• What advantage would this have compared to off-policy Monte Carlo?


• What is the off-policy variant of n-step returns?

Q(St, At) ← Q(St, At) + αρt[Rt+1 + γQ(St+1, At+1) − Q(St, At)]

ρt :=
π(At |St)
b(At |St)
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Expected SARSA
• SARSA samples the final acton A’. How could this be harmful?


• We know  so we can compute the expected action-value exactly.


• 


• How is this update useful? What are its limitations?


• (+) Lower variance —> more data efficient learning.


• (-) Computational cost for large or continuous action sets.

π

Q(St, At) ← Q(St, At) + α[Rt+1 + γ∑
a′￼

π(a′￼|St+1)Q(St+1, a′￼) − Q(St, At)]
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After-States
• In RL, the environment is usually a blackbox.


• But sometimes we have intermediate state changes that are available 
immediately after an action is taken.


• Such knowledge can be built into RL algorithms to help generalize 
learning.
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Summary
• TD-learning can be integrated into generalized policy iteration in several 

ways.


• SARSA uses on-policy TD-learning.


• Q-learning learns  while acting off-policy.


• Expected SARSA generalizes Q-learning and usually improves upon 
SARSA.


• These methods enable fully incremental, online, model-free learning.

q⋆



Josiah Hanna, University of Wisconsin — Madison

Action Items

• Project proposal due midnight tonight.


• Read Chapter 8.


