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Announcements

Homework released. Due: October 21 at 9:30AM (minute class starts)
Read chapter 8 for next week.
Project proposals due tonight!

 Next up: literature review (due October 30)
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Learning Outcomes

After this week, you will be able to:

1. Explain how TD-learning combines ideas from dynamic programming
and Monte Carlo value function learning.

2. Implement TD-learning algorithms such as TD(0), Q-learning, and
SARSA.

3. Compare and contrast on- and off-policy TD-learning methods for
control.

4. Compare and contrast TD and Monte Carlo value function learning.
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loday

Finishing Prediction
 Convergence of TD / Monte Carlo.

e TD(A)
On-Policy SARSA for control.

Q-learning for control.

Off-Policy SARSA.
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Review

* Temporal difference (TD) learning learns from experience and bootstraps
* Allows immediate learning without a model of the environment.

* In a batch setting, TD-learning converges to the certainty-equivalence
estimate.

* Highlights the connection between TD-learning and dynamic
programming.

 TD-learning and Monte Carlo methods sit at either end of a spectrum of n-
step return methods.
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Convergence

 TD(0) and Monte Carlo both converge but TD methods are usually faster
when using a constant step-size.

e \Where do these methods fall on the bias-variance trade-off?
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Figure 7.2: Performance of n-step TD methods as a function of a, for various values of n, on Walks / Episodes
a 19-state random walk task (Example 7.1). u

Josiah Hanna, University of Wisconsin — Madison



Max’s Presentation

Expected Eligibility traces
Hado van Hasselt et al. AAA
2021.

Slides
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https://docs.google.com/presentation/d/1O8eQ8dsrnpBwTb6PFOu2H2MtQIe-3aan9BfEk8F32Z8/edit?usp=sharing

Certainty Equivalence Updating

» Certainty Equivalence Learning: use data to estimate Markov process and
then compute value function for the estimated process.
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Certainty Equivalence Updating

 Consider a Markov reward process — not an MDP!

* |f policy is fixed (as in prediction) then have a Markov chain on states.

» Given a batch of data D = {(s,, r;, 5;) }, compute the value function.

 For TD(0), update value function with the sum of all TD-errors:

nresmoral e

Vir1(8) < vi(s) +a Z (s, 7, s)r +yvi(s) — vi(s)]

4  Estimate of p
#(s,1,5')
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Number of times we observed s, 1, s’

/ 'Y A / This is like dynamic programming
1 — + , +
(L= awds) +a Sz:‘p(s P+ sl with estimated transitions!

Note: For MDPs, see Reducing Sampling Error in Batch Temporal Difference Learning [Pavse et al. 2020]
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https://pages.cs.wisc.edu/~jphanna/papers/pavse2020reducing.pdf

CE for n-step returns?
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SARSA

Same generalized policy iteration scheme from past two weeks.

 Evaluate .

» Make 7, | greedy with respect to g;,.

Now, use TD(0) to learn action-values:
Q(Sta At) < Q(Sta At) + a[Rt+1 T VQ(SH_laAH_]) T Q(Sta At)]

Is this update on- or off-policy?

What does generalized policy iteration with TD action-values and e-greedy exploration
converge to”?
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Q-Learning

SARSA is approximating policy iteration. What about value iteration?

Q-learning update:

Q(Sp Az) < Q(Sza At) + a[Rt+1 T 4 mE}X Q(Sz+1a Cl/) T Q(Sta At)]

Is this update on- or off-policy?

 Off-policy: can follow any policy (e.g., e-greedy) while learning ¢, .

e “Follow a policy derived from Q” — still off-policy!

What does the Q-learning update converge to?

oq*
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e Q-learning is off-policy; SARSA is on-policy.

Q-Learning or SARSA?

« Q-learning follows an exploration policy and learns ¢, .

« SARSA follows an exploration policy, 7, and learns ¢ ..

 What if exploration policy is greedy??
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Double Q-Learning

Q-learning may suffer from maximization bias?
 What is it?

Double Q-learning mitigates this bias by learning two action-value
functions:

0,05, A4) < O1(5,A) + alR; | +y0»(5,4 1, arg max Q1(5,41,a)) — O1(5,,A,)]
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Is this on- or off-policy? Nl H—®-
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What does double Q-learning converge to?
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Off-Policy SARSA

Can SARSA learn off-policy?

Yes, with importance sampling!

Q0S5 A) < OS5, A) + ap R, + 705,41, Aiy) — OS5, A

(A, S)
b(A,|S,)

Where p, ‘=

Note that we only have a single factor in the importance weight.
 \What advantage would this have compared to off-policy Monte Carlo?

 What is the off-policy variant of n-step returns??
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Expected SARSA

« SARSA samples the final acton A’. How could this be harmful?

 We know 7 so we can compute the expected action-value exactly.

L 08, A) < O, A) +alRy, +7 ) w(a']S,4)Q(S,1,a) — (S, A)]

rrrrrrrr

 How is this update useful? What are its limitations?

* (+) Lower variance —> more data efficient learning.

* (-) Computational cost for large or continuous action sets.
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After-States

In RL, the environment is usually a blackbox.

But sometimes we have intermediate state changes that are available
immediately after an action is taken.

Such knowledge can be built into RL algorithms to help generalize

learning.
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Summary

 [D-learning can be integrated into generalized policy iteration in several
ways.

 SARSA uses on-policy TD-learning.
« Q-learning learns g, while acting off-policy.

 Expected SARSA generalizes Q-learning and usually improves upon
SARSA.

 These methods enable fully incremental, online, model-free learning.
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Action ltems

* Project proposal due midnight tonight.

 Read Chapter 8.
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