
Advanced Topics in
Reinforcement Learning
Lecture 9: On-Policy Temporal Difference Learning

Josiah Hanna

University of Wisconsin — Madison

Josiah Hanna, University of Wisconsin — Madison

Announcements

• Homework released. Due: October 21 at 9:30AM (minute class starts)

• Read chapter 8 for next week.

• Project proposals due tonight!

• Next up: literature review (due October 30)

Josiah Hanna, University of Wisconsin — Madison

Learning Outcomes
After this week, you will be able to:

1. Explain how TD-learning combines ideas from dynamic programming
and Monte Carlo value function learning.

2. Implement TD-learning algorithms such as TD(0), Q-learning, and
SARSA.

3. Compare and contrast on- and off-policy TD-learning methods for
control.

4. Compare and contrast TD and Monte Carlo value function learning.

Josiah Hanna, University of Wisconsin — Madison

Today
• Finishing Prediction

• Convergence of TD / Monte Carlo.

• TD()

• On-Policy SARSA for control.

• Q-learning for control.

• Off-Policy SARSA.

λ

Josiah Hanna, University of Wisconsin — Madison

Review
• Temporal difference (TD) learning learns from experience and bootstraps

• Allows immediate learning without a model of the environment.

• In a batch setting, TD-learning converges to the certainty-equivalence
estimate.

• Highlights the connection between TD-learning and dynamic
programming.

• TD-learning and Monte Carlo methods sit at either end of a spectrum of n-
step return methods.

Josiah Hanna, University of Wisconsin — Madison

Convergence
• TD(0) and Monte Carlo both converge but TD methods are usually faster

when using a constant step-size.

• Where do these methods fall on the bias-variance trade-off?

Josiah Hanna, University of Wisconsin — Madison

Max’s Presentation

Slides

Expected Eligibility traces
Hado van Hasselt et al. AAAI
2021.

https://docs.google.com/presentation/d/1O8eQ8dsrnpBwTb6PFOu2H2MtQIe-3aan9BfEk8F32Z8/edit?usp=sharing

Josiah Hanna, University of Wisconsin — Madison

• Certainty Equivalence Learning: use data to estimate Markov process and
then compute value function for the estimated process.

Certainty Equivalence Updating

Data:
A, 0, B, 0

B, 1

B, 1

B, 1

B, 1

B, 1

B, 1

B, 0

A B

r=1

r=0

r=0

100%

50%

50%

True Markov Process

A B

r=1

r=0

r=0

100%

75%

25%

Estimated Markov Process

Josiah Hanna, University of Wisconsin — Madison

Certainty Equivalence Updating
• Consider a Markov reward process — not an MDP!

• If policy is fixed (as in prediction) then have a Markov chain on states.

• Given a batch of data , compute the value function.

• For TD(0), update value function with the sum of all TD-errors:

•

•

•

D = {(si, ri, s′￼i)}

vk+1(s) ← vk(s) + α∑
s′￼,r

#(s, r, s′￼)[r + γvk(s′￼) − vk(s)]

= vk(s) + α′￼∑
s′￼,r

#(s, r, s′￼)
#(s)

[r + γvk(s′￼) − vk(s)]

= (1 − α′￼)vk(s) + α′￼∑
s′￼,r

̂p(s′￼, r |s)[r + γvk(s′￼)] This is like dynamic programming
with estimated transitions!

Note: For MDPs, see Reducing Sampling Error in Batch Temporal Difference Learning [Pavse et al. 2020]

Number of times we observed s, r, s′￼

Estimate of p

https://pages.cs.wisc.edu/~jphanna/papers/pavse2020reducing.pdf

Josiah Hanna, University of Wisconsin — Madison

CE for n-step returns?

rγ
n := r1 + γr2 + . . . + γn−1rn

∑
r1:n,sn

#(s, r1:n, sn)
#(s)

[rγ
n + γnvk(sn)] = ∑

r1:n,sn

#(s, r1:n, sn)
#(s)

rγ
n + ∑

r1:n,sn

#(s, r1:n, sn)
#(s)

γnvk(sn)

= ∑
r1:n

#(s, r1:n)
#(s)

rγ
n + ∑

sn

#(s, sn)
#(s)

γnvk(sn)

= ̂rγ
n(s) + γn ∑

sn

̂p(sn |s)vk(sn)

What is this if ? What if ?n = ∞ n = 1

Josiah Hanna, University of Wisconsin — Madison

S A R S A
• Same generalized policy iteration scheme from past two weeks.

• Evaluate .

• Make greedy with respect to .

• Now, use TD(0) to learn action-values:

• Is this update on- or off-policy?

• What does generalized policy iteration with TD action-values and -greedy exploration
converge to?

πk

πk+1 qk

ϵ

Q(St, At) ← Q(St, At) + α[Rt+1 + γQ(St+1, At+1) − Q(St, At)]

Josiah Hanna, University of Wisconsin — Madison

Q-Learning
• SARSA is approximating policy iteration. What about value iteration?

• Q-learning update:

• Is this update on- or off-policy?

• Off-policy: can follow any policy (e.g., -greedy) while learning .

• “Follow a policy derived from Q” — still off-policy!

• What does the Q-learning update converge to?

•

ϵ q⋆

q⋆

Q(St, At) ← Q(St, At) + α[Rt+1 + γ max
a′￼

Q(St+1, a′￼) − Q(St, At)]

Josiah Hanna, University of Wisconsin — Madison

Q-Learning or SARSA?
• Q-learning is off-policy; SARSA is on-policy.

• Q-learning follows an exploration policy and learns .

• SARSA follows an exploration policy, , and learns .

• What if exploration policy is greedy?

q⋆

π qπ

Josiah Hanna, University of Wisconsin — Madison

Double Q-Learning
• Q-learning may suffer from maximization bias?

• What is it?

• Double Q-learning mitigates this bias by learning two action-value
functions:

• Is this on- or off-policy?

• What does double Q-learning converge to?

Q1(St, At) ← Q1(St, At) + α[Rt+1 + γQ2(St+1, arg max
a′￼

Q1(St+1, a′￼)) − Q1(St, At)]

Josiah Hanna, University of Wisconsin — Madison

Off-Policy SARSA
• Can SARSA learn off-policy?

• Yes, with importance sampling!

•

• Where .

• Note that we only have a single factor in the importance weight.

• What advantage would this have compared to off-policy Monte Carlo?

• What is the off-policy variant of n-step returns?

Q(St, At) ← Q(St, At) + αρt[Rt+1 + γQ(St+1, At+1) − Q(St, At)]

ρt :=
π(At |St)
b(At |St)

Josiah Hanna, University of Wisconsin — Madison

Expected SARSA
• SARSA samples the final acton A’. How could this be harmful?

• We know so we can compute the expected action-value exactly.

•

• How is this update useful? What are its limitations?

• (+) Lower variance —> more data efficient learning.

• (-) Computational cost for large or continuous action sets.

π

Q(St, At) ← Q(St, At) + α[Rt+1 + γ∑
a′￼

π(a′￼|St+1)Q(St+1, a′￼) − Q(St, At)]

Josiah Hanna, University of Wisconsin — Madison

After-States
• In RL, the environment is usually a blackbox.

• But sometimes we have intermediate state changes that are available
immediately after an action is taken.

• Such knowledge can be built into RL algorithms to help generalize
learning.

Josiah Hanna, University of Wisconsin — Madison

Summary
• TD-learning can be integrated into generalized policy iteration in several

ways.

• SARSA uses on-policy TD-learning.

• Q-learning learns while acting off-policy.

• Expected SARSA generalizes Q-learning and usually improves upon
SARSA.

• These methods enable fully incremental, online, model-free learning.

q⋆

Josiah Hanna, University of Wisconsin — Madison

Action Items

• Project proposal due midnight tonight.

• Read Chapter 8.

