The Bayes Filter

Josiah Hanna

February 4, 2025

1 Notes on Notation

1. We will write p(-]y) to denote the conditional distribution over some random variable
given that we have observed y.

2. We will write ~ p(+|y) to denote that variable z has its outcome distributed according
to the conditional distribution, p(-|y).

2 Robot Interaction Model

We will formalize a robot interacting with its environment as a discrete-time process. At
time t = 0, the environment is in an initial state, xq. The robot chooses a control action, u1,
and then the environment transitions to state x; ~ p(:|zg,u;). The robot then receives an
observation, z; ~ g(:|z1). The process then repeats with the robot choosing a new action.
We will refer to the full sequence of states up to and including time ¢ as xg; and similarly
for actions, uj; and observations, z,,. Following common notation (e.g., in the textbook
Probabilistic Robotics, the state index begins at ¢ = 0 and control and observation indices
begin at t = 1.

3 State Estimation

Robots only perceive observations from their sensors. In general, observations provide in-
complete and potentially noisy information about the state of the world. However, robots
need to infer the state of the world to make good decisions.

Why does the robot need to estimate state to make good decisions? A single observation is
likely missing some critical information. For example, autonomous vehicles cannot observe
pedestrians that are currently behind other vehicles even if their presence is known. An
alternative approach to state estimation is to attempt to reason based on the full history of
observations and controls. However, the number of possible observation/control histories is
exponential in the time-step ¢ and so will quickly become intractable to base decision-making
on. The state strikes a balance between these extremes by summarizing the useful parts of

the observation history into a compact representation containing all aspects that affect the
future.

A finals reason that state must be estimated is that it is constantly changing as the
robot moves about its environment. The state may evolve if the robot takes action or not.
Choosing not to act is another type of action.

Moreover, we want to be probabilistic and infer a belief distribution over states instead
of simply guessing a single state as the current one. Doing so allows the robot to represent
uncertainty about the state of the world.

4 Probabilistic State Estimation

A naive approach to state estimation might simply estimate which state is most likely given
the robot’s observations and actions up to time ¢. This approach is limited as it chooses
a single state with certainty and thus does not allow the robot to represent uncertainty
about the state of the world. Instead, we will estimate a belief distribution, which is a
probability distribution over possible states in the world given everything that has been
previously observed. We will write bel(z;) to denote the probability of state z; under this
belief distribution. Formally, bel(x;) is the posterior Pr(z;|z1., u1) This belief factors in all
available information up to and including step ¢t. We will find it useful to also refer to the
belief, bel(z;), which we define as Pr(z|z1.4_1, u1.s or the posterior distribution of x; before
the final observation has been received and factored in.

4.1 Naive Belief Computation

Bayes rule gives us a straightforward — but computationally complex — means to compute
the robot’s belief at time ¢. Using Bayes Rule, we obtain:

bel(ry) = Pr(zy|z1s, ure) =0 Y Pr(wpelure) Pr(ziala),

Z1:t—1

where quq is a summation over all possible state sequences from time 1 to time t—1 and n
is a constant that ensures we have a valid probability distribution. With full knowledge of the
state and observation probabilities, we can compute Pr(zy.¢|uy.) = p(x1) Hfzz p(x|Tio1, ui—q)
and Pr(zy4|z14) = H§:1 g(zi|zy).

Unfortunately, this approach to belief computation becomes intractable as the interaction
sequence grows because the summation above will have an exponential number of terms. It
is also memory-intensive as the robot would have to keep around the entire sequence of
observations and past control actions in order to update its belief at each moment in time.

5 Recursive Belief Computation

The key idea of the Bayes filter is to update the robot’s belief recursively as each new control
is taken and a new observation is received. The Bayes filter requires two steps to update the

current belief to a belief that incorporates u; and z;.

1. Prediction. The robot computes a new belief, bel(z;) by predicting the effect of u,
on bel(z;_1). In general, the step increases the Rob robot’s uncertainty about its true
state.

2. Correction. The robot uses the information in the new observation, z;, to correct
its prediction. This step amounts to applying Bayesian inference with bel(x;) as the
prior. In general, this step decreases the robot’s uncertainty about its true state.

Algorithm 1 provides pseudocode for the complete belief update of the Bayes filter. When
used sequentially on robot data, uy; and z1., the Bayes filter algorithm will compute the
same posterior bel(x;) as the direct use of Bayes rule on all of the data at once. The proof
of this fact is left as an exercise to the reader or office hours.

Algorithm 1 Bayes Filter
1: Input: Previous belief bel(x; 1), control input u;, measurement z;
2: Output: Updated belief bel(x;)
3: procedure BAYESFILTER(bel(z;_1), ut, 2¢)
4: // Prediction step

5: for all x; do

6: bel(z;) < >, P | up, 7-1) - bel(z 1)

7: end for

8: // Correction step

9: for all z; do

10: bel(x;) < n-g(z | 7)) -bel(zy) // n is the normalizing constant.
11: end for

12: return bel(x;)

13: end procedure

6 Limitations of the Bayes Filter

There are several limitations of the Bayes filter and it is often more of theoretical interest
than real application. In the following weeks, we will introduce the Kalman filter family and
Particle filters which are significantly more applicable to real robots than Bayes filters.

In particular, the Bayes filter has the following limitations:

1. The computational complexity of exact summation. The prediction step often involves
summing over the entire state space or integrating if the state space is continuous.
Doing so is computationally infeasible for high-dimensional problems. The same lim-
itation applies to computing the normalization constant, 7, in the update step. The
high computational complexity limits scalability and may make the filter too slow to
use for real-time belief updates.

2. Markov assumption. The validity of the Bayes filter relies upon the Markov assump-
tion, i.e., that p(x¢|x;_1,u;) = p(z¢|To.s—1,u1). This assumption is unlikely to hold in
practice.

3. Assumption of known models. The Bayes filter requires accurate knowledge of the
robot’s state transition model, p, and sensor model, g. Errors or approximations in
these models can lead to poor performance.

4. Scalability. The Bayes filter is difficult to implement with large or high dimensional
state spaces. Approximations can be used but these may make it more likely the
Markov assumption is violated.

7 Bayes Smoother

In some applications, we are not only interested in bel(z;) for the current time ¢ but in
bel(x,) for all ¢ from ¢ = 0 to some T'= T. The Bayes filter can almost solve this problem
as it produces a belief for each step bel(x;). However, it is not the optimal approach as
it neglects to use information available in z.7 to refine the belief bel(x;). To see why
observations after ¢ can help infer z;, consider listening to a person talking in a noisy room.
You are unsure if they just said “The price will rise” or “The prize will rise” due to the
similar sound of “price” and “prize.” As they continue talking, you hear “due to inflation”
and so you infer that the more likely utterance is “The price will rise due to inflation.” In
this case, you have used the most recent information to refine a belief about something that
happened in the past.

The Bayes filter only considers information available up to time ¢ when inferring bel(z;).
To incorporate later observations, we will turn to the Bayes smoother. The Bayes smoother
is a post-processing procedure that is ran over the sequence of beliefs computed by the Bayes
filter. Pseudocode is provided in Algorithm 2.

Algorithm 2 Bayes Smoother

1: Input: Beliefs bel(x;) for t = 1...7, motion model p(z11 | T4, Us1)
2: Output: Smoothed beliefs bel’(z;) fort =1...T

3: procedure BAYESSMOOTHER (bel(x;), u;)

4: // Initialization: Start with the final belief

5: bel’(zr) < bel(zr)

6: // Backward smoothing step

7: fort=T7T—-1to 1do

8: for all z; do

9: bel’(xt) « bel(xt) . Zth p(zt+1|x£g&itl>)el/(zt+1)
10: end for

11: end for

12: return bel’(z;) fort =1...T

13: end procedure

