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1 Introduction

The last reading introduced the Bayes Filter as a means to compute a robot’s posterior belief, p(xt|z1:t, u1:t),
online, using recursive updates in which computation does not increase with t. At every time-step, the Bayes
Filter alternates the two steps:

1. Prediction: The prior belief about the state is updated based on the system dynamics:

bel(xt)←
∫
xt−1

p(xt | ut, xt−1) · bel(xt−1) dxt−1.

2. Update: The prior belief is refined using sensor observations.

bel(xt)← η · p(zt | xt) · bel(xt).

When the number of possible states is finite, the integral is replaced with a summation. A main limitation
of Bayes Filter is that the updates in the prediction and update step are not tractable if the number of
possible states is large or states are continuous. While the Bayes Filter is intractable in general, there are
special cases where it can be applied even with continuous states. In this reading, we will introduce the
Kalman Filter which will enable exact implementation of a Bayes Filter for the special case of a linear state
transition and observation model with Gaussian uncertainty. Furthermore, the Kalman Filter assumes that
the belief distribution is Gaussian, which allows it to be fully described by its mean and covariance. These
assumptions enable the use of linear algebra to efficiently compute the optimal state estimate through the
prediction and update steps, making the Kalman Filter a computationally efficient realization of the Bayes
Filter. The Kalman Filter is an optimal recursive algorithm used for estimating the state of a dynamic
system from a series of noisy measurements. In addition to robotics, it is widely applied in control systems
and finance.

2 System Model

The basic Kalman Filter makes specific assumptions about the robot’s environment. Specifically, we assume
linear Gaussians for both state transitions and sensor observations. Formally, we have that:

xt = Axt−1 +But + wt, (1)

zt = Hxt + vt, (2)

where:
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• xt is the vector of state variables at time t,

• ut is the vector of control inputs at time t,

• zk is the vector of sensor observations at time t,

• A is the state transition matrix,

• B is the control matrix,

• H is the observation matrix,

• wt ∼ N (0, Q) is noise in the robot’s state transition,

• vt ∼ N (0, R) is noise in the robot’s observation.

Note that we are assuming both transition noise and observation noise have Gaussian distributions with mean
0 and covariance matrices Q and R respectively. Ignoring the noise, we can see that both state transitions
and observations are linear in xt and ut. Taken together, we are assuming that state transitions are produced
by a linear transformation of the state and control at time t followed by adding Gaussian noise. A similar
process is used to determine the observation at time t. This is the linear-Gaussian assumption.

Another way of writing the linear-Gaussian assumption is that p(xt|xt−1, ut) = N (xt;Axt−1 + But, Q)
and p(zt|xt) = N (zt;Hxt, R).

3 Kalman Filter

We are now ready to instantiate the Bayes Filter under the specific assumptions from the previous section.
One final assumption we must make is that the robot’s initial belief about its state is Gaussian: bel(x0) =
N (x;µ0,Σ0). This assumption and the assumption of a linear-Gaussian environment means that the robot’s
belief will maintain a Gaussian form under Kalman Filter updates: bel(xt) = N (x;µt,Σt).

3.1 Prediction Step

First, we compute the posterior belief about the next state given the robot’s control, ut, but before incorpo-
rating the observation:

µ̄t = Aµt−1 +But (3)

Σ̄t = AΣt−1A
⊤ +Q (4)

where:

• µ̄t is the predicted mean of the belief distribution before the sensor observation is incorporated.

• Σ̄t is the predicted covariance of the belief distribution.

3.2 Update Step

We then incorporate the sensor observation to produce the final posterior belief, bel(xt).

Kt = Σ̄tH
T (HΣ̄tH

T +R)−1 (5)

µ̄t = µ̄t +Kt(zt −Hµ̄t) (6)

Σt = (I −KkH)Σ̄t (7)

where:
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• Kt is known as the Kalman gain. The Kalman gain balances how much to trust the new observation
instead of the prediction alone. If R is large then the measurement is very noisy and hence less
trustworthy; consequently, Kt will be small.

• µ̄t is the updated state estimate.

• Σt is the updated covariance.

Following these updates, we have that the robot’s belief will be bel(xt) = N (xt;µt,Σt).
This prediction and update step are an exact implementation of a Bayes Filter under specific assumptions

on the system model and initial belief. That is, the Kalman prediction and update steps are obtained from
plugging the linear Gaussian system model into the Bayes Filter update steps.

Algorithm 1 Kalman Filter

1: Input: Previous belief represented as a Gaussian with mean, µt−1, and covariance, Σt−1, control input
ut, measurement zt

2: Output: Updated belief represented as a Gaussian with mean, µt, and covariance Σt.
3: procedure KalmanFilter(µt−1,Σt−1, ut, zt)
4: // Prediction step
5: µ̄t = Aµt−1 +But

6: Σ̄t = AΣt−1A
⊤ +Q

7: // Correction step
8: Kt = Σ̄tH

T (HΣ̄tH
T +R)−1 // Compute Kalman gain

9: µ̄t = µ̄t +Kt(zt − µ̄t)
10: Σt = (I −KkH)Σ̄t

11: return µt,Σt

12: end procedure

3.3 Strengths and Weaknesses

The Kalman Filter has the following strengths:

• The Kalman Filter inherits the optimality of a Bayes Filter assuming the system is actually linear with
Gaussian noise.

• Like a Bayes Filter, the Kalman Filter is recursive which implies that computation does not grow with
t. Furthermore, the linear algebra computations can be done in Polynomial time and are typically fast
with modern linear algebra libraries (e.g., Eigen or Numpy).

• Like a Bayes Filter, the Kalman Filter provides uncertainty estimates through the covariance, Σt. If
the determinant of Σt is large then the robot is uncertain about the true state. If the determinant of
Σt is small then the robot is more certain that µt is its current state.

These advantages are offset by some important weaknesses:

• The Kalman Filter assumes Gaussian noise which limits its applicability to systems with non-Gaussian
noise.

• If the system is highly nonlinear then the Kalman Filter will compute a sub-optimal belief.

• With a Kalman Filter, the belief is always Gaussian which means the robot cannot represent multi-
modal uncertainty. For example, the robot cannot represent the belief that it is located in one of two
locations.
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4 Extended Kalman Filter

The Extended Kalman Filter (EKF) is a nonlinear extension of the Kalman Filter that linearizes the system
dynamics using a first-order Taylor expansion (see the appendix for a quick review of what this is). The
EKF mitigates the KF’s assumption that the system is linear.

4.1 Nonlinear System Model

For a nonlinear system:
xt = f(xt−1, ut) + wt, (8)

zt = h(xt) + vt, (9)

where f and h are nonlinear functions describing the state transition and observation models, respectively.
Alternatively, we can write that xt ∼ N (f(xt−1, ut), Q) and zt ∼ N (h(xt), R).

4.2 Linearization Using Jacobians

The key idea of the EKF is to make the system approximately linear by replacing the nonlinear f and h
with a linear approximation. This is done using the method of Taylor series expansion (see Appendix A
for a brief review). To apply the Kalman filter equations, the system is linearized about the current state
estimate, µt−1. Specifically, we define matrices At and Ht as the Jacobian matrices of f and h respectively,
both evaluated at x = µt−1.

At =
∂f

∂x

∣∣∣
x=µt−1

, Ht =
∂h

∂x

∣∣∣
x=µt−1

. (10)

In multivariate calculus, the Jacobian matrix represents the first-order partial derivatives of a vector-valued
function. Given a function f : Rn → Rm, the Jacobian matrix J is defined as:

J =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

. . . ∂fm
∂xn

 . (11)

Each row represents one of the outputs of f and each column represents one of the inputs. Intuitively, each
entry, i, j, captures how fast output i is changing as input j changes.

4.3 Prediction and Update

The EKF follows very similar updates to the Kalman Filter:

µ̄t = f(µt, ut) (12)

Σ̄t = AtΣt−1A
⊤
t +Q (13)

We then compute the Kalman gain:

Kt = ΣtH
⊤
t (HtΣtH

⊤
t +Q)−1 (14)

And finally, apply the updates:
µt = µ̄t +Kt(zt − h(µ̄t)) (15)

Σt = (I −KtHt)Σt (16)
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5 Strengths and Weaknesses of Kalman Filters

5.1 Extended Kalman Filter (EKF)

Strengths:

• Extends the Kalman Filter to nonlinear systems.

• Works well for systems that can be locally linearized. The Taylor expansion is only an accurate
representation of the transition/observation function for x close to µt. The closer these functions are
to linear, the more accurate the Taylor expansion approximation will be.

Weaknesses:

• Accuracy depends on the quality of linearization. See discussion above. Highly nonlinear systems will
have poor accuracy with an EKF.

• Computationally more expensive than the standard Kalman Filter due to need to compute Jacobians.

• May diverge if the system is highly nonlinear.

6 Conclusion

The Kalman Filter and its nonlinear extension, the Extended Kalman Filter, provide powerful tools for state
estimation in dynamic systems. Their recursive nature makes them computationally efficient for real-time
applications.

A Review

The following appendices provide background on some mathematical concepts used in these notes. If you
are familiar with these topics, you can skip over them.

A.1 Gaussian Distributions

The Gaussian (or multi-variate normal) distribution is one of the most common probability distributions
for continuous random variables. Let x ∈ Rd be a d-dimensional vector. We say that x has a Gaussian
distribution if:

p(x) =
1√

2π detΣ
e−

1
2 (x−µ)⊤Σ−1(x−µ),

where µ ∈ Rd is called the mean vector and Σ ∈ Rd×d is the covariance matrix. The matrix Σ must be
positive-definite.

A few additional notes on the Gaussian distribution:

1. When d = 1, the Gaussian distribution is the familiar bell curve.

2. Under a Gaussian distribution, p(x) is maximized when x = µ, i.e., the mean is the most likely outcome.

3. The covariance controls the spread of p(x). When the covariance is large, then p(x) is spread out and
values of x that are farther from µ receive more probability density. When the covariance is small then
most sampled values of x will be close to µ.

For notation, we will denote Gaussian distributions as N (µ,Σ) and the density of x under a Gaussian
with mean µ and covariance Σ as N (x;µ,Σ).
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A.2 Jacobian Matrix

In multivariate calculus, the Jacobian matrix represents the first-order partial derivatives of a vector-valued
function. Given a function f : Rn → Rm, the Jacobian matrix J is defined as:

J =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

. . . ∂fm
∂xn

 . (17)

The Jacobian is used in the Extended Kalman Filter to linearize nonlinear functions by approximating them
with a first-order Taylor series expansion.

A.3 Taylor Series Expansion

The Taylor series is a mathematical tool used to approximate a function by expanding it around a given
point. For a function f(x) that is differentiable, the first-order Taylor expansion around a fixed point x0 is
given by:

f(x) ≈ f(x0) +
df

dx

∣∣∣
x0

(x− x0). (18)

Note that the right hand side of Equation (18) is a linear function in x since df
dx

∣∣∣
x0

and f(x0) are constant with

respect to x. The approximation is perfect for x = x0 and will generally become worse as x moves away from
x0. If f is linear (f(x) = ax+ b) then the approximation is again perfect since f(x) ≈ ax0 + b+ a(x− x0) =
ax+ b = f(x). However, for nonlinear f , the approximation has error that increases as |x− x0| grows.

In the case of multiple variables, the Taylor expansion generalizes to:

f(x) ≈ f(x0) + J(x0)(x− x0), (19)

where J(x0) is the Jacobian matrix evaluated at x0. The Taylor expansion is useful in the Extended Kalman
Filter because it allows nonlinear functions to be locally approximated by linear functions, enabling the use
of linear filtering techniques.
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