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Simultaneous Localisation and Mapping (SLAM):
Part I The Essential Algorithms

Hugh Durrant-Whyte, Fellow, IEEE, and Tim Bailey

Abstract—This tutorial provides an introduction to Simul-
taneous Localisation and Mapping (SLAM) and the exten-
sive research on SLAM that has been undertaken over the
past decade. SLAM is the process by which a mobile robot
can build a map of an environment and at the same time
use this map to compute it’s own location. The past decade
has seen rapid and exciting progress in solving the SLAM
problem together with many compelling implementations of
SLAM methods. Part I of this tutorial (this paper), de-
scribes the probabilistic form of the SLAM problem, essen-
tial solution methods and significant implementations. Part
II of this tutorial will be concerned with recent advances in
computational methods and new formulations of the SLAM
problem for large scale and complex environments.

I. Introduction

The Simultaneous Localisation and Mapping (SLAM)
problem asks if it is possible for a mobile robot to be placed
at an unknown location in an unknown environment and
for the robot to incrementally build a consistent map of
this environment while simultaneously determining its lo-
cation within this map. A solution to the SLAM problem
has been seen as a ‘holy grail’ for the mobile robotics com-
munity as it would provide the means to make a robot truly
autonomous.

The ‘solution’ of the SLAM problem has been one of
the notable successes of the robotics community over the
past decade. SLAM has been formulated and solved as a
theoretical problem in a number of different forms. SLAM
has also been implemented in a number of different domains
from indoor robots, to outdoor, underwater and airborne
systems. At a theoretical and conceptual level, SLAM can
now be considered a solved problem. However, substantial
issues remain in practically realizing more general SLAM
solutions and notably in building and using perceptually
rich maps as part of a SLAM algorithm.

This two-part tutorial and survey of SLAM aims to pro-
vide a broad introduction to this rapidly growing field.
Part I (this paper) begins by providing a brief history of
early developments in SLAM. Section III introduces the
structure the SLAM problem in now standard Bayesian
form, and explains the evolution of the SLAM process.
Section IV describes the two key computational solutions
to the SLAM problem; through the use of the extended
Kalman filter (EKF-SLAM) and through the use of Rao-
Blackwellised particle filters (FastSLAM). Other recent so-
lutions to the SLAM problem are discussed in Part II of
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this tutorial. Section V describes a number of important
real-world implementations of SLAM and also highlights
implementations where the sensor data and software are
freely down-loadable for other researchers to study. Part
II of this tutorial describes major issues in computation,
convergence and data association in SLAM. These are sub-
jects that have been the main focus of the SLAM research
community over the past five years.

II. History of the SLAM Problem

The genesis of the probabilistic SLAM problem occurred
at the 1986 IEEE Robotics and Automation Conference
held in San Francisco. This was a time when probabilis-
tic methods were only just beginning to be introduced
into both robotics and AI. A number of researchers had
been looking at applying estimation-theoretic methods to
mapping and localisation problems; these included Peter
Cheeseman, Jim Crowley, and Hugh Durrant-Whyte. Over
the course of the conference many paper table cloths and
napkins were filled with long discussions about consistent
mapping. Along the way, Raja Chatila, Oliver Faugeras,
Randal Smith and others also made useful contributions to
the conversation.

The result of this conversation was a recognition that
consistent probabilistic mapping was a fundamental prob-
lem in robotics with major conceptual and computational
issues that needed to be addressed. Over the next few years
a number of key papers were produced. Work by Smith
and Cheesman [39] and Durrant-Whyte [17] established a
statistical basis for describing relationships between land-
marks and manipulating geometric uncertainty. A key el-
ement of this work was to show that there must be a high
degree of correlation between estimates of the location of
different landmarks in a map and that indeed these corre-
lations would grow with successive observations.

At the same time Ayache and Faugeras [1] were under-
taking early work in visual navigation, Crowley [9] and
Chatila and Laumond [6] in sonar-based navigation of mo-
bile robots using Kalman filter-type algorithms. These two
strands of research had much in common and resulted soon
after in the landmark paper by Smith, Self and Cheese-
man [40]. This paper showed that as a mobile robot moves
through an unknown environment taking relative observa-
tions of landmarks, the estimates of these landmarks are
all necessarily correlated with each other because of the
common error in estimated vehicle location [27]. The im-
plication of this was profound: A consistent full solution
to the combined localisation and mapping problem would
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require a joint state composed of the vehicle pose and every
landmark position, to be updated following each landmark
observation. In turn, this would require the estimator to
employ a huge state vector (of order the number of land-
marks maintained in the map) with computation scaling as
the square of the number of landmarks.

Crucially, this work did not look at the convergence prop-
erties of the map or its steady-state behavior. Indeed, it
was widely assumed at the time that the estimated map
errors would not converge and would instead exhibit a ran-
dom walk behavior with unbounded error growth. Thus,
given the computational complexity of the mapping prob-
lem and without knowledge of the convergence behavior of
the map, researchers instead focused on a series of approxi-
mations to the consistent mapping problem solution which
assumed or even forced the correlations between landmarks
to be minimized or eliminated so reducing the full filter to
a series of decoupled landmark to vehicle filters ([28], [38]
for example). Also for these reasons, theoretical work on
the combined localisation and mapping problem came to a
temporary halt, with work often focused on either mapping
or localisation as separate problems.

The conceptual break-through came with the realisation
that the combined mapping and localisation problem, once
formulated as a single estimation problem, was actually
convergent. Most importantly, it was recognised that the
correlations between landmarks, that most researchers had
tried to minimize, were actually the critical part of the
problem and that, on the contrary, the more these corre-
lations grew, the better the solution. The structure of the
SLAM problem, the convergence result and the coining of
the acronym ‘SLAM’ was first presented in a mobile robot-
ics survey paper presented at the 1995 International Sym-
posium on Robotics Research [16]. The essential theory on
convergence and many of the initial results were developed
by Csorba [11], [10]. Several groups already working on
mapping and localisation, notably at MIT [29], Zaragoza
[5], [4], the ACFR at Sydney [20], [45] and others [7], [13],
began working in earnest on SLAM1 applications in indoor,
outdoor and sub-sea environments.

At this time, work focused on improving computational
efficiency and addressing issues in data association or ‘loop
closure’. The 1999 International Symposium on Robot-
ics Research (ISRR’99) [23] was an important meeting
point where the first SLAM session was held and where
a degree of convergence between the Kalman-filter based
SLAM methods and the probabilistic localisation and map-
ping methods introduced by Thrun [42] was achieved. The
2000 IEEE ICRA Workshop on SLAM attracted fifteen re-
searchers and focused on issues such as algorithmic com-
plexity, data association and implementation challenges.
The following SLAM workshop at the 2002 ICRA attracted
150 researchers with a broad range of interests and appli-
cations. The 2002 SLAM summer school hosted by Hen-
rik Christiansen at KTH in Stockholm attracted all the

1Also called Concurrent Mapping and Localisation (CML) at this
time.

key researchers together with some 50 PhD students from
around the world and was a tremendous success in build-
ing the field. Interest in SLAM has grown exponentially
in recent years, and workshops continue to be held at both
ICRA and IROS. The SLAM summer school ran in 2004
in Tolouse and will run at Oxford in 2006.

III. Formulation and Structure of
the SLAM problem

SLAM is a process by which a mobile robot can build
a map of an environment and at the same time use this
map to deduce it’s location. In SLAM both the trajectory
of the platform and the location of all landmarks are esti-
mated on-line without the need for any a priori knowledge
of location.

A. Preliminaries
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Fig. 1. The essential SLAM problem. A simultaneous estimate of
both robot and landmark locations is required. The true locations are
never known or measured directly. Observations are made between
true robot and landmark locations. See text for details.

Consider a mobile robot moving through an environment
taking relative observations of a number of unknown land-
marks using a sensor located on the robot as shown in
Figure 1. At a time instant k, the following quantities are
defined:
• xk: The state vector describing the location and orien-
tation of the vehicle.
• uk: The control vector, applied at time k−1 to drive the
vehicle to a state xk at time k.
• mi: A vector describing the location of the ith landmark
whose true location is assumed time invariant.
• zik: An observation taken from the vehicle of the location
of the ith landmark at time k. When there are multiple
landmark observations at any one time or when the specific
landmark is not relevant to the discussion, the observation
will be written simply as zk.
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In addition, the following sets are also defined:
• X0:k = {x0,x1, · · · ,xk} = {X0:k−1,xk} : The history of
vehicle locations.
• U0:k = {u1,u2, · · · ,uk} = {U0:k−1,uk} : The history
of control inputs.
• m = {m1,m2, · · · ,mn} The set of all landmarks.
• Z0:k = {z1, z2, · · · , zk} = {Z0:k−1, zk} : The set of all
landmark observations.

B. Probabilistic SLAM

In probabilistic form, the Simultaneous Localisation and
Map Building (SLAM) problem requires that the probabil-
ity distribution

P (xk,m | Z0:k,U0:k,x0) (1)

be computed for all times k. This probability distribution
describes the joint posterior density of the landmark lo-
cations and vehicle state (at time k) given the recorded
observations and control inputs up to and including time
k together with the initial state of the vehicle. In gen-
eral, a recursive solution to the SLAM problem is de-
sirable. Starting with an estimate for the distribution
P (xk−1,m | Z0:k−1,U0:k−1) at time k − 1, the joint pos-
terior, following a control uk and observation zk, is com-
puted using Bayes Theorem. This computation requires
that a state transition model and an observation model
are defined describing the effect of the control input and
observation respectively.

The observation model describes the probability of
making an observation zk when the vehicle location and
landmark locations are known, and is generally described
in the form

P (zk | xk,m). (2)

It is reasonable to assume that once the vehicle location
and map are defined, observations are conditionally inde-
pendent given the map and the current vehicle state.

The motion model for the vehicle can be described in
terms of a probability distribution on state transitions in
the form

P (xk | xk−1,uk) (3)

That is, the state transition is assumed to be a Markov
process in which the next state xk depends only on the
immediately proceeding state xk−1 and the applied control
uk, and is independent of both the observations and the
map.

The SLAM algorithm is now implemented in a standard
two-step recursive (sequential) prediction (time-update)
correction (measurement-update) form:
Time-update

P (xk,m | Z0:k−1,U0:k,x0)

=
∫

P (xk | xk−1,uk)

×P (xk−1,m | Z0:k−1,U0:k−1,x0)dxk−1 (4)

Measurement Update

P (xk,m | Z0:k,U0:k,x0)

=
P (zk | xk,m)P (xk,m | Z0:k−1,U0:k,x0)

P (zk | Z0:k−1,U0:k)
(5)

Equations 4 and 5 provide a recursive procedure for calcu-
lating the joint posterior P (xk,m | Z0:k,U0:k,x0) for the
robot state xk and map m at a time k based on all observa-
tions Z0:k and all control inputs U0:k up to and including
time k. The recursion is a function of a vehicle model
P (xk | xk−1,uk) and an observation model P (zk | xk,m).

It is worth noting that the map building problem
may be formulated as computing the conditional density
P (m | X0:k,Z0:k,U0:k). This assumes that the location
of the vehicle xk is known (or at least deterministic) at
all times, subject to knowledge of initial location. A map
m is then constructed by fusing observations from differ-
ent locations. Conversely, the localisation problem may
be formulated as computing the probability distribution
P (xk | Z0:k,U0:k,m). This assumes that the landmark lo-
cations are known with certainty and the objective is to
compute an estimate of vehicle location with respect to
these landmarks.

C. Structure of Probabilistic SLAM

To simplify the discussion in this section we will drop the
conditioning on historical variables in Equation 1 and write
the required joint posterior on map and vehicle location as
P (xk,m | zk) and even P (xk,m) as the context permits.

The observation model P (zk | xk,m) makes explicit the
dependence of observations on both the vehicle and land-
mark locations. It follows that the joint posterior can not
be partitioned in the obvious manner

P (xk,m | zk) 6= P (xk | zk)P (m | zk),

and indeed it is well known from the early papers on consis-
tent mapping [39], [17] that a partition such as this leads
to inconsistent estimates. However, the SLAM problem
has more structure than is immediately obvious from these
Equations.

Referring again to Figure 1, it can be seen that much
of the error between estimated and true landmark loca-
tions is common between landmarks and is in fact due to
a single source; errors in knowledge of where the robot is
when landmark observations are made. In turn, this im-
plies that the errors in landmark location estimates are
highly correlated. Practically, this means that the relative
location between any two landmarks, mi − mj , may be
known with high accuracy, even when the absolute loca-
tion of a landmark mi is quite uncertain. In probabilistic
form this means that the joint probability density for the
pair of landmarks P (mi,mj) is highly peaked even when
the marginal densities P (mi) may be quite dispersed.

The most important insight in SLAM was to realize
that the correlations between landmark estimates increase
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monotonically as more and more observations are made2.
Practically, this means that knowledge of the relative loca-
tion of landmarks always improves and never diverges, re-
gardless of robot motion. In probabilistic terms, this means
that the joint probability density on all landmarks P (m)
becomes monotonically more peaked as more observations
are made.

This convergence occurs because the observations made
by the robot can be considered as ‘nearly independent’
measurements of the relative location between landmarks.
Referring again to Figure 1, consider the robot at location
xk observing the two landmarks mi and mj . The relative
location of observed landmarks is clearly independent of
the coordinate frame of the vehicle and successive obser-
vations from this fixed location would yield further inde-
pendent measurements of the relative relationship between
landmarks. Now, as the robot moves to location xk+1,
it again observes landmark mj this allows the estimated
location of the robot and landmark to be updated rela-
tive to the previous location xk. In turn this propagates
back to update landmark mi even though this landmark
is not seen from the new location. This occurs because
the two landmarks are highly correlated (their relative lo-
cation is well known) from previous measurements. Fur-
ther, the fact that the same measurement data is used to
update these two landmarks makes them more correlated.
The term ‘nearly independent’ measurement is appropriate
because the observation errors will be correlated through
successive vehicle motions. Also note that in Figure 1 at
location xk+1 the robot observes two new landmarks rel-
ative to mj . These new land-marks are thus immediately
linked or correlated to the rest of the map. Later update to
these landmarks will also update landmark mj and through
this landmark mi and so on. That is, all landmarks end
up forming a network linked by relative location or cor-
relations whose precision or value increases whenever an
observation is made.

This process can be visualized (Figure 2) as a network of
springs connecting all landmarks together, or as a rubber
sheet in which all landmarks are embedded. An observa-
tion in a neighbourhood acts like a displacement to spring
system or rubber sheet such that it’s effect is great in the
neighbourhood and, dependent on local stiffness (correla-
tion) properties, diminishes with distance to other land-
marks. As the robot moves through this environment and
takes observations of the landmarks, the the springs be-
come increasingly (and monotonically) stiffer. In the limit,
a rigid map of landmarks or an accurate relative map of
the environment is obtained. As the map is built, the lo-
cation accuracy of the robot measured relative to the map
is bounded only by the quality of the map and relative
measurement sensor. In the theoretical limit, robot rel-
ative location accuracy becomes equal to the localisation
accuracy achievable with a given map.

2These results have only been proved for the linear Gaussian case
[14]. Formal proof for the more general probabilistic case remains an
open problem.

Fig. 2. Spring network analogy. The landmarks are connected by
springs describing correlations between landmarks. As the vehicle
moves back and forth through the environment, spring stiffness or
correlations increase (red links become thicker). As landmarks are
observed and estimated locations are corrected, and these changes
are propagated through the spring network. Note, the robot itself is
correlated to the map.

IV. Solutions to the SLAM Problem

Solutions to the probabilistic SLAM problem involve
finding an appropriate representation for the observation
model Equation 2 and motion model Equation 3 which al-
lows efficient and consistent computation of the prior and
posterior distributions in Equations 4 and 5. By far the
most common representation is in the form of a state-space
model with additive Gaussian noise, leading to the use
of the extended Kalman filter (EKF) to solve the SLAM
problem as described in Section IV-A. One important al-
ternative representation is to describe the vehicle motion
model in Equation 3 as a set of samples of a more gen-
eral non-Gaussian probability distribution. This leads to
the use of the Rao-Blackwellised particle filter, or Fast-
SLAM algorithm, to solve the SLAM problem as described
in Section IV-B. While EKF-SLAM and FastSLAM are the
two most important solution methods, newer alternatives,
which offer much potential, have been proposed including
the use of the information-state form [43]. These are dis-
cussed further in Part II of this tutorial.

A. EKF-SLAM

The basis for the EKF-SLAM method is to describe the
vehicle motion in the form

P (xk | xk−1,uk) ⇐⇒ xk = f(xk−1,uk) + wk, (6)

where f(·) models vehicle kinematics and where wk are
additive, zero mean uncorrelated Gaussian motion distur-
bances with covariance Qk. The observation model is de-
scribed in the form

P (zk | xk,m) ⇐⇒ z(k) = h(xk,m) + vk, (7)

where h(·) describes the geometry of the observation and
where vk are additive, zero mean uncorrelated Gaussian
observation errors with covariance Rk.
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With these definitions the standard EKF method [31],
[14] can be applied to compute the mean

[
x̂k|k
m̂k

]
= E

[
xk

m
| Z0:k

]
,

and covariance

Pk|k =
[

Pxx Pxm

PT
xm Pmm

]

k|k

= E

[(
xk − x̂k

m− m̂k

)(
xk − x̂k

m− m̂k

)T

| Z0:k

]

of the joint posterior distribution P (xk,m | Z0:k,U0:k,x0)
from:
Time-update

x̂k|k−1 = f(x̂k−1|k−1,uk) (8)
Pxx,k|k−1 = ∇f Pxx,k−1|k−1∇fT + Qk (9)

where ∇f is the Jacobian of f evaluated at the estimate
x̂k−1|k−1. There is generally no need to perform a time-
update for stationary landmarks3.
Observation-update
[
x̂k|k
m̂k

]
=

[
x̂k|k−1

m̂k−1

]
+Wk

[
z(k)− h(x̂k|k−1, m̂k−1)

]
(10)

Pk|k = Pk|k−1 −WkSkWT
k (11)

where
Sk = ∇hPk|k−1∇hT + Rk

Wk = Pk|k−1∇hT S−1
k

and where ∇h is the Jacobian of h evaluated at x̂k|k−1 and
m̂k−1.

This EKF-SLAM solution is very well known and inherits
many of the same benefits and problems as the standard
EKF solutions to navigation or tracking problems. Four of
the key issues are briefly discussed here:
Convergence: In the EKF-SLAM problem, convergence
of the map is manifest in the monotonic convergence of the
determinant of the map covariance matrix Pmm,k, and all
land-mark pair sub-matrices, toward zero. The individual
land-mark variances converge toward a lower bound deter-
mined by initial uncertainties in robot position and obser-
vations. The typical convergence behaviour of landmark
location variances is shown in Figure 3 (from [14]).
Computational Effort: The observation update step re-
quires that all landmarks and the joint covariance matrix
be updated every time an observation is made. Naively,
this means computation grows quadratically with the num-
ber of landmarks. There has been a great deal of work un-
dertaken in developing efficient variants of the EKF-SLAM
solution and real-time implementations with many thou-
sands of landmarks have been demonstrated [21], [29]. Ef-
ficient variants of the EKF-SLAM algorithm are discussed
in Part II of this tutorial.

3However, a time-update is necessary for landmarks that may move
[44].
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Fig. 3. The convergence in landmark uncertainty. The plot shows
a time history of standard deviations of a set of landmark locations.
A landmark is initially observed with uncertainty inherited from the
robot location and observation. Over time, the standard deviations
reduce monotonically to a lower bound. New landmarks are acquired
during motion (from [14]).

Data Association: The standard formulation of the
EKF-SLAM solution is especially fragile to incorrect associ-
ation of observations to landmarks [35]. The ‘loop-closure’
problem, when a robot returns to re-observe landmarks af-
ter a large traverse, is especially difficult. The association
problem is compounded in environments where landmarks
are not simple points and indeed look different from differ-
ent view-points. Current work in this area will be described
in Part II of this tutorial.
Non-linearity: EKF-SLAM employs linearised models of
non-linear motion and observation models and so inher-
its many caveats. Non-linearity can be a significant prob-
lem in EKF-SLAM and leads to inevitable, and sometimes
dramatic, inconsistency in solutions [24]. Convergence and
consistency can only be guaranteed in the linear case.

B. Rao-Blackwellised Filter

The FastSLAM algorithm, introduced by Montemerlo et
al. [32], marked a fundamental conceptual shift in the de-
sign of recursive probabilistic SLAM. Previous efforts fo-
cused on improving the performance of EKF-SLAM, while
retaining its essential linear Gaussian assumptions. Fast-
SLAM with its basis on recursive Monte Carlo sampling,
or particle filtering, was the first to directly represent the
non-linear process model and non-Gaussian pose distribu-
tion.4 This approach was influenced by earlier probabilistic
mapping experiments of Murphy [34] and Thrun [41].

The high dimensional state-space of the SLAM prob-
lem makes direct application of particle filters compu-
tationally infeasible. However, it is possible to reduce
the sample-space by applying Rao-Blackwellisation (R-B),

4Note, FastSLAM still linearises the observation model, but this is
typically a reasonable approximation for range-bearing measurements
when the vehicle pose is known.
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whereby a joint state is partitioned according to the prod-
uct rule P (x1,x2) = P (x2 | x1)P (x1) and, if P (x2 | x1)
can be represented analytically, only P (x1) need be sam-
pled x(i)

1 ∼ P (x1). The joint distribution, therefore, is
represented by the set {x(i)

1 , P (x2 | x(i)
1 )}N

i and statistics
such as the marginal

P (x2) ≈ 1
N

N∑

i

P (x2 | x(i)
1 )

can be obtained with greater accuracy than is possible by
sampling over the joint space.

The joint SLAM state may be factored into a vehicle
component and a conditional map component.

P (X0:k,m | Z0:k,U0:k,x0)
= P (m | X0:k,Z0:k)P (X0:k | Z0:k,U0:k,x0). (12)

Here the probability distribution is on the trajectory X0:k

rather than the single pose xk because, when conditioned
on the trajectory, the map landmarks become independent
(see Figure 4). This is a key property of FastSLAM, and
the reason for its speed; the map is represented as a set
of independent Gaussians, with linear complexity, rather
than a joint map covariance with quadratic complexity.
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Fig. 4. A graphical model of the SLAM algorithm. If the history of
pose states are known exactly then, since the observations are condi-
tionally independent, the map states are also independent. For Fast-
SLAM, each particle defines a different vehicle trajectory hypothesis.

The essential structure of FastSLAM, then, is a Rao-
Blackwellised state, where the trajectory is represented by
weighted samples and the map is computed analytically.
Thus, the joint distribution, at time k, is represented by the
set {w(i)

k ,X(i)
0:k, P (m | X(i)

0:k,Z0:k)}N
i , where the map accom-

panying each particle is composed of independent Gaussian
distributions P (m | X(i)

0:k,Z0:k) =
∏M

j P (mj | X(i)
0:k,Z0:k).

Recursive estimation is performed by particle filtering for
the pose states, and the EKF for the map states.

Updating the map, for a given trajectory particle X
(i)
0:k, is

trivial. Each observed landmark is processed individually
as an EKF measurement update from a known pose (see
Figure 5). Unobserved landmarks are unchanged. Propa-
gating the pose particles, on the other hand, is more com-
plex, as we discuss below.

We forego giving a background on particle filters, except
to say that it is derived from a recursive form of sampling

Fig. 5. A single realisation of robot trajectory in the FastSLAM algo-
rithm. The ellipsoids show the proposal distribution for each update
stage, from which a robot pose is sampled and, assuming this pose
is perfect, the observed landmarks are updated. Thus, the map for
a single particle is governed by the accuracy of the trajectory. Many
such trajectories provide a probabilistic model of robot location.

known as sequential important sampling (SIS) [15], which
actually samples from a joint state history, but “telescopes”
the joint into a recursion via the product rule.

P (x0,x1, . . . ,xT | Z0:T )
= P (x0 | Z0:T )P (x1 | x0,Z0:T ) . . . P (xT | X0:T−1,Z0:T ).

At each time-step k, particles are drawn from a proposal
distribution π(xk | X0:k−1,Z0:k), which approximates the
true distribution P (xk | X0:k−1,Z0:T ), and the samples are
given importance weights to compensate for any discrep-
ancy. The approximation error grows with time (and in-
herent joint state-space), increasing the variation in sam-
ple weights, degrading statistical accuracy. A resampling
step reinstates uniform weighting, but causes loss of histor-
ical particle information. This leads to a crucial property:
SIS with resampling can produce reasonable statistics only
for systems that “exponentially forget” their past [8] (i.e.,
systems whose process noise cause the state at time k to
become increasingly independent of preceding states).

The general form of a R-B particle filter for SLAM is as
follows. We assume that, at time k − 1, the joint state is
represented by {w(i)

k−1,X
(i)
0:k−1, P (m | X(i)

0:k−1,Z0:k−1)}N
i .

1. For each particle, compute a proposal distribution, con-
ditioned on the specific particle history, and draw a sample
from it

x(i)
k ∼ π(xk | X(i)

0:k−1,Z0:k,uk). (13)

This new sample is (implicitly) joined to the particle his-

tory X(i)
0:k

4
=

{
X(i)

0:k−1,x
(i)
k

}
.

2. Weight samples according to the importance function

w
(i)
k = w

(i)
k−1

P (zk | X(i)
0:k,Z0:k−1)P (x(i)

k | x(i)
k−1,uk)

π(x(i)
k | X(i)

0:k−1,Z0:k,uk)
. (14)

The numerator terms of this equation are the observation
model and the motion model, respectively. The former
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differs from Equation 2 because R-B requires dependency
on the map be marginalised away.

P (zk | X0:k,Z0:k−1)

=
∫

P (zk | xk,m)P (m | X0:k−1,Z0:k−1)dm (15)

3. If necessary,5 perform resampling. Resampling is ac-
complished by selecting particles, with replacement, from
the set {X(i)

0:k}N
i , including their associated maps, with

probability of selection proportional to w
(i)
k . Selected par-

ticles are given uniform weight, w
(i)
k = 1

N .
4. For each particle, perform an EKF update on the ob-
served landmarks as a simple mapping operation with
known vehicle pose.

The two versions of FastSLAM in the literature, Fast-
SLAM 1.0 [32] and FastSLAM 2.0 [33], differ only in terms
of the form of their proposal distribution (step 1) and, con-
sequently in their importance weight (step 2). FastSLAM
2.0 is by far the more efficient solution.

For FastSLAM 1.0, the proposal distribution is the mo-
tion model

x(i)
k ∼ P (xk | x(i)

k−1,uk) (16)

Therefore, from Equation 14, the samples are weighted ac-
cording to the marginalised observation model.

w
(i)
k = w

(i)
k−1P (zk | X(i)

0:k,Z0:k−1) (17)

For FastSLAM 2.0, the proposal distribution includes the
current observation

x(i)
k ∼ P (xk | X(i)

0:k−1,Z0:k,uk) (18)

where

P (xk | X(i)
0:k−1,Z0:k,uk)

=
1
C

P (zk | xk,X(i)
0:k−1,Z0:k−1)P (xk | x(i)

k−1,uk)(19)

and C is a normalising constant. The importance weight
according to Equation 14 is w

(i)
k = w

(i)
k−1C. The advantage

of FastSLAM 2.0 is that its proposal distribution is locally
optimal [15]. That is, for each particle, it gives the small-
est possible variance in importance weight w

(i)
k conditioned

upon the available information, X(i)
0:k−1, Z0:k and U0:k.

Statistically, FastSLAM (1.0 and 2.0) suffers degenera-
tion due to its inability to forget the past. Marginalis-
ing the map in Equation 15 introduces dependence on the
pose and measurement history, and so, when resampling
depletes this history, statistical accuracy is lost [2]. Never-
theless, empirical results of FastSLAM 2.0 in real outdoor
environments [33] show that the algorithm is capable of
generating an accurate map in practice.

5When best to instigate resampling is an open problem. Some im-
plementations resample every time-step, others after a fixed number
of time-steps, and others once the weight variance exceeds a thresh-
old.

V. Implementation of SLAM

Practical realisations of probabilistic SLAM have become
increasingly impressive in recent years, covering larger ar-
eas in more challenging environments. Here we discuss two
representative implementations and mention other notable
applications.

Fig. 6. Real-time SLAM visualisation by Newman et al. [37].

The “explore and return” experiment by Newman et al.
[37] was a moderate-scale indoor implementation that val-
idated the non-divergence properties of EKF-SLAM by re-
turning to a precisely marked starting point. The exper-
iment is remarkable because its return trip was fully au-
tonomous. The robot was manually driven during the ex-
ploration phase, although without visual contact by the
operator, who relied solely on a real-time rendering of the
robot’s map (see Figure 6). For the return trip, the robot
plans a path and returns without human intervention.
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Fig. 7. Large-scale outdoor SLAM by Guivant and Nebot [21].

Guivant and Nebot [21] pioneered the application of
SLAM in very large outdoor environments (see Figure 7).
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Table 1: Open Source SLAM Software
Author Description Link
Kai Arras The CAS Robot Navigation Toolbox, a Matlab simu-

lation toolbox for robot localization and mapping.
www.cas.kth.se/toolbox/index.html

Tim Bailey Matlab simulators for EKF-SLAM, UKF-SLAM,
and FastSLAM 1.0 and 2.0.

www.acfr.usyd.edu.au/homepages/
academic/tbailey/software/index.html

Mark Paskin Java library with several SLAM variants, including
Kalman filter, information filter, and thin junction
tree forms. Includes a Matlab interface.

www.stanford.edu/~paskin/slam/

Andrew Davison Scene, a C++ library for map-building and localisa-
tion. Facilitates real-time single camera SLAM.

www.doc.ic.ac.uk/~ajd/Scene/
index.html

José Neira Matlab EKF-SLAM simulator that demonstrates
joint compatibility branch-and-bound data association.

http://webdiis.unizar.es/~neira/
software/slam/slamsim.htm

Dirk Hähnel C language grid-based version of FastSLAM. www.informatik.uni-freiburg.de/
~haehnel/old/download.html

Various Matlab code from the 2002 SLAM summer school. www.cas.kth.se/slam/toc.html

Table 2: Online Datasets
Author Description Link
Jose Guivant, Juan Nieto
and Eduardo Nebot

Numerous large-scale outdoor datasets, notably
the popular Victoria Park data.

www.acfr.usyd.edu.au/homepages/
academic/enebot/dataset.htm

Chieh-Chih Wang Three large-scale outdoor datasets collected by the
Navlab11 testbed.

www.cs.cmu.edu/~bobwang/
datasets.html

Radish (The Robotics
Data Set Repository)

Many and varied indoor datasets, including large-
area data from the CSU Stanislaus library, the
Intel Research Lab in Seattle, the Edmonton Con-
vention Centre, and more.

http://radish.sourceforge.net/

IJRR (The International
Journal of Robotics Re-
search)

IJRR maintains a webpage for each article, often
containing data and video of results. A good ex-
ample is a paper by Bosse et al. [3], which has
data from Killian Court at MIT.

www.ijrr.org/contents/23 12/
abstract/1113.html

They addressed computational issues of real-time opera-
tion, while also dealing with high-speed vehicle motion,
non-flat terrain, and dynamic clutter. Their results are
particularly interesting because they are accompanied by
accurate RTK-GPS ground truth, showing the practical
veracity of the algorithm, which involved closing several
large loops. The logged data from their Victoria Park trials
is available online, and has become a popular benchmark
within the SLAM research community.

SLAM applications now exist in a wide variety of do-
mains. They include indoor [4], [7], [12], [3], outdoor [21],
[19], aerial [25], and subsea [45], [36], [18]. There are differ-
ent sensing modalities such as bearing only [13] and range
only [30].

We also make honourable mention of consistent pose es-
timation (CPE) [22], [26], which is an entirely different
SLAM paradigm based on topological mapping and data
alignment, due to its exemplary results in large indoor en-
vironments.

Various researchers in the SLAM community have writ-
ten software demonstrating SLAM, implemented in Mat-
lab, C++, and Java, and available online (see Table 1).
Collections of logged data are listed in Table 2. These

datasets are from real sensors in real environments, and
are a valuable resource to assess and benchmark the vari-
ous SLAM algorithms.

VI. Conclusions

This paper has described the SLAM problem, the es-
sential methods for solving the SLAM problem and has
summarised key implementations and demonstrations of
the method. While there are still many practical issues
to overcome, especially in more complex outdoor environ-
ments, the general SLAM method is now a well understood
and established part of robotics. Part II of this tutorial will
summarise more recent work in addressing some of the re-
maining issues in SLAM including; computation, feature
representation and data association.
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