Chapter 3

Kinematics

In order to plan a robot’s movements, we have to understand the relation-
ship between our control variables (i.e. the input to the motors that we
can control at any given time) and the effect of these control variables on
the motion of the robot. The simplest models of such relationships can be
built by looking at the geometry of our robot, known as the field of kinemat-
ics. For simple arms in static configurations, a kinematic model is rather
straightforward: if we know the generalized position / configuration angle
of each joint, we can calculate the generalized position of its end-effectors
using trigonometry—a process known as forward kinematics. This process
is usually more involved for mobile robots, as the speeds of the wheels need
to be integrated to determine changes in robot pose, which we refer to as
odometry. Roboticists are often concerned with trying to compute the in-
verse relationship: the position each joint must be at for the end-effector
to be in a desired position or pose. This is generally a far more complex,
underdetermined problem, known as inverse kinematics.

As we will see below, kinematics is the simplest and most fundamental level
of abstraction that a roboticist can use to model the motion of a robot and
its geometry: it deals exclusively with positional quantities, and considers
the robot as if it was frozen in time. Although this simplification is far from
being realistic, we will see that a lot can be done through kinematics alone!
However, a more expressive tool at our disposal is to do a similar modeling
in a second level of abstraction that operates in velocity space; this domain
is called differential kinematics and is introduced in Section 3.3. In all, the
goals of this chapter are to:
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3. Kinematics

e Introduce the forward kinematics of simple arms and mobile robots,
and understand the concept of holonomy

e Provide an intuition on the relationship between inverse kinematics
and path-planning

e Become familiar with differential kinematics and the Jacobian tech-
nique

Within the scope of a kinematic analysis, the term generalized position or
generalized configuration means “any position-equivalent quantity needed
to describe the element”. For what concerns joint space, it depends on
the type of actuation: a revolute joint imparts a rotational motion around
its axis and its configuration is fully described by an angle; a prismatic
joint commands a translational motion along its axis and its configuration
is represented by a distance. Conversely, generalized position in task space
depends on the specific task; in its most general case, a generalized position
equates to the end-effector pose, which is comprised of a 3D position and a
3D orientation—as we will see below.

Remember: configuration space = joint space; cartesian space = task
space. Forward kinematics maps from joint space to task space, and in-
verse kinematics does the opposite. The number of mechanical degrees-
of-freedom n (i.e. DoFs in task space) depends on the robot, while the
number of Cartesian degrees-of-freedom m (i.e. DoFs in task space)
depends on the task. In general, n % m/!

3.1. Forward Kinematics

Now that we have introduced the notion of local coordinate frames, we are
interested in calculating the pose and speed of these coordinate frames as
a function of the robot’s actuators and joint configuration. That is, we are
interested in computing a function f that allows us to map a joint configu-
ration to its corresponding end-effector pose:

r= f(q), f:R*" - R™, (3.1)

where r is the task-space (end-effector) configuration and ¢ is the joint-
space configuration. It is important to remember that the choice of ¢ and
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3.1. Forward Kinematics

r (and, consequently, the complexity of f) depends on your specific robot
platform and the specific task you are investigating. ¢ generally refers to the
actuators/joints that you can control on your robot; it is of size n, where
n is the number of degrees of freedom in joint space (see also Section 2.3).
Conversely, r depends on the task and its dimensionality is m, where m is
the number of DoF's in task space.

We will focus on the problem of computing the forward kinematics map-
ping f for a variety of robot arms to build intuition. While it is always pos-
sible to compute the forward kinematics analytically (i.e. by inspecting the
arm mechanism and the relationship between joint and task configuration,
see Section 3.1.1), in Section 3.1.2 we will introduce a scalable, geometric
technique to compute forward kinematics with more complex arms composed
of many mechanical Degrees of Freedom.

3.1.1. Forward Kinematics of a simple robot arm

......
. .
. .,

Figure 3.1. A simple 2-DOF arm.

Consider the robot arm in Figure 3.1; it is mounted to a table, and is
composed of two links and two joints. Let the length of the first link be Iy
and the length of the second link be l5. You could specify the position of
the link closer to the table by the angle o and the angle of the second link
relative to the first link using the angle 3. Therefore, ¢ = [, 3]T specifies
the two degrees of freedom that we can control. Our goal is to calculate the
position [x,%]” and orientation § of the end-effector given the values of ¢;
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3. Kinematics

consequently, f will map to r = [z,y,0]".
Let’s now calculate the position P; = (z1,y1) of the joint between the first
and the second link using simple trigonometry:

x1 =11 cosa

y1 =1 sina (3.2)
Similarly, the position of the end-effector Py = (2, y2) is given by:

x9 =x1 + ly cos(a + )
Y2 =y1 + la2sin(a + B) (3.3)

For what concerns the orientation of the arm’s end-effector 6, we know it is
just the sum of o + 5. Altogether, the configuration r of the end-effector is
given by:

x =1y cosa+lycos(a+ )
y=Ilisina+ lysin(a + f) (3.4)
f=a+p

The above equations represent the forward kinematic equations of the robot—
as they relate its control parameters o and 8 (also known as joint configura-
tion) to the pose of its end-effector in the local coordinate system spanned
by x and y with the origin at the robot’s base. Note that both « and 3
shown in the figure are positive: both links rotate around the z—axis. Using
the right-hand rule, the direction of positive angles is defined to be counter-
clockwise.

The configuration space of the robot—i.e. the set of angles each actuator
can be set to—is given by 0 < o < 7 as it is not supposed to run into the
table, and —m < B < w. The configuration space is defined with respect
to the robot’s joints and allows us to use the forward kinematics equations
to calculate the workspace of the robot, i.e. the physical space it can move
to. This terminology will be identical for mobile robots. An example of
configuration and workspace for both a manipulator and a mobile robot is
shown in Figure 3.4.

We can now write down a transformation that includes a rotation around
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3.1. Forward Kinematics

the z-axis:
Cag —Sap 0 capla + caly
| 8ag cap 0 sagla+ sali

0 0 O 1

The notation s,g and c,g are shorthand for sin(a + 3) and cos(a + ), re-
spectively. This transformation now allows us to transform from the robot’s
base to the robot’s end-effector configuration r = [z,y,0]7 as a function of
the joint configuration ¢ = [a, 8]7. This transformation will be helpful if we
want to calculate suitable joint angles in order to reach a certain pose (i.e.,
inverse kinematics) or if we want to convert measurements taken relative to
the end-effector back into the base’s coordinate system (e.g., when we have
sensors mounted on the end effector whose output needs to be mapped back
to the world reference frame).

3.1.2. The Denavit-Hartenberg notation

So far, we have considered the forward kinematics of a simple arm and de-
rived relationships between actuator parameters and end-effector positions
using basic trigonometry. In the case of multi-link arms (the vast majority
of robot manipulators in existence), the approach detailed in Section 3.1.1 is
difficult to scale, and alternative solutions are needed. Interestingly, we can
think of the forward kinematics as a chain of homogeneous transformations
with respect to a coordinate system mounted at the base of a manipulator
(or a fixed position in the room). Deriving these transformations can be
confusing and can be facilitated by following a “recipe” such as the one con-
ceived by Denavit and Hartenberg in 1955 (see (Hartenberg & Denavit 1955)
and (Craig 2009)). The so-called Denavit-Hartenberg (DH) representation
has since evolved as a de-facto standard.

A manipulator consists of a series of typically rigid links that are connected
by joints. In the vast majority of cases, a joint can either be revolute (i.e.
change its angle/orientation) or prismatic (i.e. change its length). Knowing
the robot’s kinematic properties (e.g. the length of all rigid links, similarly
to l; and ls in Figure 3.1), the pose of its end-effector is fully described by
its joint configuration (angle for revolute joints, length for prismatic joints).

In order to use the DH convention, we first need to define a coordinate
system at each joint. With reference to Figure 3.2, we choose the z—axis to
be the axis of rotation for a revolute joint and the axis of translation for a
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3. Kinematics
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Figure 3.2. Example of selected Denavit-Hartenberg parameters for three sequential
revolute joints. The z-axes of joint ¢ and ¢+ 1 are parallel, which results in a;; = 0.

prismatic joint. We can now find the common normal between the z—axes
of two subsequent joints, i.e. a line that is orthogonal to each z—axis and
intersects both. While the direction of the x—axis at the base can be chosen
arbitrarily, subsequent x—axes are chosen such that they lie on the common
normal shared between two joints. Whereas the direction of the z—axis
is given by the positive direction of rotation (right-hand rule), the x—axis
points away from the previous joint. This allows defining the y—axis using
the right-hand rule. Note that these rules, in particular the requirement that
z-axes lie along the common normal, might result in coordinate systems with
their origins outside the joint. This is not problematic as the kinematics of a
manipulator is a mathematical representation that need only represent the
geometric and kinematic properties of the robot, and does not need to bear
any physical correspondence to the system. The transformation between two
joints is then fully described by the following four parameters:

1. The length r (sometimes, a is used) of the common normal between
the z-axes of two joints ¢ and ¢ — 1 (link length).
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3.1. Forward Kinematics

2. The angle a between the z-axes of the two joints with respect to the
common normal (link twist), i.e. the angle between the old and the
new z-axis, measured about the common normal.

3. The distance d between the joint axes (link offset), i.e. the offset along
the previous z-axis to the common normal.

4. The rotation € around the common axis along which the link offset is
measured (joint angle), i.e. the angle from the old z-axis to the new
x-axis, about the previous z-axis.

Two of the above D-H parameters describe the link between the joints, and
the other two describe the link’s connection to a neighboring link. Depending
on the link/joint type, these numbers are fixed by the specific mechanical
instance of the robot or can be controlled. For example, in a revolute joint 8
is the varying joint angle, while all other quantities are fixed. Similarly, for
a prismatic joint d is the joint variable. An example of two revolute joints
is shown in Figure 3.2.

The final coordinate transform from one link (i —1) to another (i) can now
be constructed by concatenating the four steps above, which are nothing but
a series of rotations and translations, one for each DH parameter:

n1T = T.(dn) R.(0n) Ty (1) Ro (i) (3.6)

n—1

with
cosb,, —siné, 0(0
sinf,, cosf, 00
T.(dn) = 0 o 1lo (3.7)
0 0 o1
and
1 0 0 0
Ty(rn) = 0 cosay,, —sinay,|0 (3.8)

0 sina, cosay, [0

0 0 0 |1

These are a translation of d,, along the previous z-axis (7%(dy)), a rotation
of 6,, about the previous z-axis (R’ (6,)), a translation of r, along the new

z-axis (T,(ry))and a rotation of a,, around the new z-axis (Ry(ay,)). By
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3. Kinematics

replacing each element in Equation (3.6), the following matrix is created:

cosf, —sinb, cosq,, sinb,sina, |r,cosb,
sinf,, cosb, cosca, — cosb,sinay,|r,sinb,

w1l = 0 sin ay, COS (v, dy,
0 0 0 ‘ 1
R t
N {O 0 0 1] (3.9)

where R is the 3 x 3 rotation matrix and ¢ is the 3 x 1 translation vector.
Like for any homogeneous transform, the inverse *_; 7~ !n is given by

. R_lT] (3.10)

—1p
n T‘[o 0 0 1

with the inverse of R simply being its transpose, R~ = R”.

Similar to the concatenation of transformations detailed in Section 2.4.3,
»_,T in Equation (3.6) can be concatenated with the other transformation
matrices relative to the remaining links in order to compute a the full kine-
matics of the robot arm from the base reference frame up to the end-effector.

3.2. Inverse Kinematics

The forward kinematics of a system are computed by means of a transfor-
mation matrix from the base of a manipulator (or fixed location, such as the
corner of a room) to the end-effector of a manipulator (or a mobile robot).
As such, they are an exact description of the pose of the robot and they
fully characterize its kinematic state. Inverse Kinematics deal with the op-
posite problem: finding a joint configuration that results in a desired pose
at the end effector. To achieve this goal, we will need to solve the forward
kinematics equations for joint angles as a function of the desired pose. With
reference to Equation (3.1), inverse kinematics aims to solve the following;:

q=f"1(r), f1R™ 5 R (3.11)

with a notation similar to Equation (3.1). For a mobile robot, we can do
this only for velocities in the local coordinate system, and need more sophis-
ticated methods to calculate appropriate trajectories. We will discuss this
in depth in Section 3.3.
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3.2. Inverse Kinematics

3.2.1. Solvability

Equation (3.11) is the inverted version of Equation (3.1), and is heavily non-
linear except for trivial mechanisms. Therefore, it makes sense to briefly
think about whether we can solve it at all for specific parameters before
trying. Here, the workspace of a robot becomes important. The workspace
is the sub-space that can be reached by the robot in any configuration.
Clearly, there will be no solutions for the inverse kinematic problem outside
of the workspace of the robot.

A second question to ask is how many solutions we actually expect to
exist and what it means to have multiple solutions geometrically. Multiple
solutions to achieve a desired pose correspond to multiple ways in which a
robot can reach a target (i.e., joint configurations). For example a three-link
arm that wants to reach a point that can be reached without fully extending
all links (which would have only a single solution) can do this by either
folding its links in a concave or a convex fashion. Reasoning about how
many solutions will exist for a given mechanism and desired pose quickly
becomes non-intuitive. For example, a 6-DOF arm can reach certain points
with up to 16 different configurations!

3.2.2. Inverse Kinematics of a Simple Manipulator Arm

We will now look at the inverse kinematics of the 2—link arm that we in-
troduced in Figure 3.1. We need to solve the equations determining the
robot’s forward kinematics by solving for o and 8. This is tricky, however,
as we have to deal with more complicated trigonometric expressions than
the forward kinematics case.

To build an intuition, assume there to be only one link, /;. Solving (3.2)
for « yields to two distinct solutions:

11
0
as cosine is symmetric for positive and negative values. Indeed, for any pos-
sible position on the z—axis ranging from —Iy to [y, there exist two solutions:
the first one with the arm above the table, and the other one with the arm
below it. At the extremes of the workspace, both solutions are the same.
Solving 3.4 for o and S adds two additional solutions that are cumbersome
to reproduce here, involving terms of z and y to the sixth power, and is left
as an exercise to the reader, for example using an online symbolic solver.

o = % cos (3.12)
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3. Kinematics

What will drastically simplify this problem, is to not only specify the
desired position, but also the orientation 6 of the end-effector. In this case,
a desired pose can be specified in the following form

cost —sinf 0 x
stnf cosf 0y
0 0 10
0 0 01

(3.13)

A solution can now be found by simply equating the individual entries of
the transformation (3.5) with those of the desired pose. Specifically, we can
observe:

cost = cos(a + ) (3.14)
T = capla + cal

y= Saﬁl2 + sal1

These can be reduced to

0=a+p
Ca/glg — X Cglg — X
o pr— prm— .1
c L L (3.15)
. _Sapla —y _ spla—y
@ l1 l1

Providing the orientation of the robot in addition to the desired position
therefore allows solving for o and 8 just as a function of x, y and 6.

The main issue with the geometric approach detailed above is that it does
not scale easily with an increase of DoF at the joints, and it quickly becomes
unwieldy with more dimensions. For higher-DoF platforms, we can calculate
a numerical solution using an approach that we will later see is very similar to
path planning in mobile robotics. To this end, we will take an optimization-
based approach: first we calculate a measure of error between the current
solution and the desired one, and then change the joint configuration in
a way that minimizes this error. In our example, the measure of error is
the Euclidean distance between the current end-effector pose (given by the
forward kinematics equations in Section 3.1.1) and the desired solution [z, y]
in configuration space, i.e. (assuming [l = lo = 1 for simplicity):

P (@ B) =\ (50 + 00— 1) + (Cap + o — 2 (3.16)
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3.2. Inverse Kinematics

Figure 3.3. Distance to (x = 1,y = 1) over the configuration space of a two-arm
manipulator. Minima corresponds to exact inverse kinematic solutions.

Here, the first two terms in parentheses are given by the forward kinematics

of the robot, whereas the third term in the parentheses is the desired y and

x position, respectively. Equation (3.16) can be plotted as a 3D function of
« and [, our joint-space variables. As shown in Figure 3.3 this function has
a minima, in this case zero, for values of o and 3 that bring the manipulator
o (1,1). These values are (a — 0,8 — —3) and (o — =3, 8 — 7).

You can now think about inverse kinematics as a path finding problem
from anywhere in the configuration space to the nearest minima. A more
formalized approach to this will be discussed in Section 3.4.2. How to find
the shortest path in space, that is finding the shortest route for a robot to
get from A to B, is one of the subjects covered within Chapter 13.
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3. Kinematics

3.3. Differential Kinematics

The two-link arm in Figure 3.1 involved only two free parameters, but was
already pretty complex to solve analytically if the end-effector pose was not
specified. One can imagine that things become very hard with more degrees
of freedom or more complex geometries (mechanisms in which some axes
intersect are simpler to solve than others, for example). It is worth noting
that, so far, we have analyzed the geometry of motion of a robot at its
simplest level of abstraction, i.e. in the space of positions. This abstraction
becomes useless as soon as the order of motions matters. For example, in a
differential wheel robot, turning the left wheel first and then the right wheel
will lead to a very different position than turning the right wheel first and
then the left wheel. This is not the case in a robotic arm with two links,
which will arrive at the same position no matter which joint will be moved
first.

In order to include a notion of temporal evolution of the robot configu-
ration, it is convenient to shift toward a slightly more complex abstraction,
that is the space of generalized velocities. This modeling is called differen-
tial kinematics, as velocities are the time derivative (i.e. the differential) of
positions. Similarly to before, with “generalized velocities” we mean “any
velocity-equivalent quantity needed to describe the element”, as we will de-
tail below.

3.3.1. Forward Differential Kinematics

Forward differential kinematics deals with the problem of computing an ex-
pression that relates the generalized velocities at the joints (i.e. the “speed”
of our motors) to the generalized velocity of the robot’s end-effector. In
all, it is the corresponding differential version of Equation (3.1). Let the
translational speed of a robot be given by:

x

v=|y|. (3.17)

z
As the robot can potentially not only translate, but also rotate, we also need
to specify its angular velocity. Let these velocities be given as a vector w:

Wy
w= |wy|. (3.18)

Wy
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3.3. Differential Kinematics

We can now write translational and rotational velocities in a 6 x 1 generalized
velocity vector as v = [v w]”. This notation is also called velocity twist. Let
the generalized configuration in joint space (i.e. joint angles/positions) be
q = lq1,...,qn)"; therefore, we can define the set of joint speeds as ¢ =
[41,--.,Gn]". We now want to compute the differential kinematics version
of Equation (3.1), and in this case relate joint velocities ¢ with end-effector
velocities [v w]?. A simple derivation of Equation (3.1) with respect to time
gives:

v=[ " =J()[d,-- " = T(a) 4, (3.19)

which is our forward differential kinematics equation. J(q) is known as the
Jacobian matrix; it is a function of the joint configuration ¢, and contains
all of the partial derivatives of f, relating every joint angle to every velocity.
In practice, J looks like the following;:

t Oz O Oz
! dq1 Oq2 " Oqn .
" oy oy 9y | | @
v < 0q1 O0g2 " Ogn . .
V= = = | =J(q) - 3.20
LJ o Co || (9) -4 (3.20)
Wy Ow, Ow, Ow 4n
Oq1 Oq2 """ Oqn
LWz

This notation is important as it tells us how small changes in joint space
will affect the end-effector’s position in Cartesian space. It may be helpful
to think of each column of this matrix as telling us something about how
each component of velocity changes when the configuration (i.e., angle) of
a particular joint changes, or each row of the matrix as showing how move-
ment in each joint affects a particular component of velocity. The forward
kinematics of a mechanism and its analytical derivative can always be calcu-
lated, which allows us to calculate numerical values for the entries of matrix
J for every possible joint angle/position.

3.3.2. Forward Kinematics of a Differential Wheeled Robot

After abstractly considering differential kinematics in the previous section,
we will now study a mechanism for which general non-differential kinematic
models do not exist. We recall that the pose of a robotic manipulator is
uniquely defined by its joint angles, which can be estimated using encoders.
However, this is not the case for a mobile robot. Here, the encoder values
simply refer to wheel orientations, which need to be integrated over time
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left wheel [rad] y [m]
A A
right wheel [raud]> E x}[m}
a [rad] y [m]
A A
2 ™ B [rad] x [m]

Figure 3.4. Configuration or joint space (left) and workspace or operational space
(right) for a non-holonomic mobile robot (top) and a holonomic manipulator
(bottom). Closed trajectories in configuration space result in closed trajectories
in the workspace if the robot’s kinematics is holonomic.

in order to assess the robot’s position with respect to the world’s frame of
reference. As we will later see, this is a source of great uncertainty. What
complicates matters is that for so-called non-holonomic systems, it is not
sufficient to simply measure the distance that each wheel traveled, we must
also measure when each movement was executed.

A system is non-holonomic when closed trajectories in its configuration
space may not return it to its original state. A robot arm is holonomic
because each joint position corresponds to a unique position in space (Fig-
ure 3.4, bottom): a generic joint-space trajectory that comes back to the
starting point will position the robot’s end-effector at the exact same po-
sition in operational space. A train on a track is holonomic too: moving
its wheels backwards by the same amount they have been moving forward
brings the train to the exact same position in space. Conversely, a car and
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a differential-wheel robot are non-holonomic vehicles (Figure 3.4, top): per-
forming a straight line and then a right-turn leads to the same amount of
wheel rotation as doing a right turn first and then going in a straight line;
however, getting the robot to its initial position requires not only rewind-
ing both wheels by the same amount, but also getting their relative speeds
right. The configuration and corresponding workspace trajectories for a non-
holonomic and a holonomic robot are shown in Figure 3.4. Here, a robot first
moves on a straight line, meaning both wheels turn an equal amount. Then,
the left wheel remains fixed and only the right wheel turns forward. Then,
the right wheel remain fixed and the left wheel turns backward. Finally, the
right wheel turns backwards, arriving at the initial encoder values (zero).
Yet, the robot does not return to its origin. Performing a similar trajectory
in the configuration space of a two-link manipulator makes the robot return
to its initial position.

It should be clear by now that for a mobile robot, not only does traveled
distance per wheel matter, but also the speed of each wheel as a function of
time. Interestingly, this information was not required to uniquely determine
the pose of a manipulating arm. We will establish a world coordinate system
{I}—which is known as the inertial frame by convention (see Figure 3.5).
We establish a coordinate system {R} on the robot and express the robot’s
speed B¢ as a vector B¢ = R TR G]T Here R4 and %y correspond to
the speed along the z and y directions in {R}, whereas R§ corresponds to
the rotation velocity around the z—axis, that you can imagine to be sticking
out of the ground. We denote speeds with dots over the variable name, as
speed is simply the derivative of distance. Now, let’s think about the robot’s
position in {R}. It is always zero, as the coordinate system is fixed on the
robot itself. Therefore, velocities are the only interesting quantities in this
coordinate system and we need to understand how velocities in { R} map to
positions in {I}, which we denote by ‘¢ = [‘x,7 5,7 0]T. These coordinate
systems are shown in Figure 3.5.

Notice that the positioning of the coordinate frames and their orientations
are arbitrary, meaning it is a choice that we can make. Here, we choose to
place the coordinate system in the center of the robot’s axle and align Fx
with its default driving direction. In order to calculate the robot’s position in
the inertial frame, we need to first find out how speed in the robot coordinate
frame maps to speed in the inertial frame. This can be done again by
employing trigonometry. There is only one complication: a movement into
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Yr A

>
I X7

Figure 3.5. Mobile robot with local coordinate system {R} and world frame {I}.
The arrows indicate the positive direction of position and orientation vectors.

the robot’s x—axis might lead to movement along both the x—axis and the
y—axis of the world coordinate frame I. By looking at Figure 3.5, we can
derive the following components to ;. First,

&1y = cos(0)ip. (3.21)

There is also a component of motion coming from §r (ignoring the kine-
matic constraints for now, see below). For negative 6, as in Figure 3.5, a
move along yr would let the robot move into positive X; direction. The
projection from gg is therefore given by

x1y = —sin(0)yr. (3.22)
We can now write
Zr = cos(0)rr — sin(0)yr. (3.23)
Similar reasoning leads to:
Y1 = sin(0)xr + cos(0)yr (3.24)
and . _
0y =0r , (3.25)
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which is the case because both the robot’s and the world coordinate system
share the same z—axis in this example. We can now conveniently write:

&= T(0)¢r (3.26)
with L7(6) being a rotation around the z—axis:

cos(0) —sin(6) 0
LT(6) = | sin(8) cos(f) 0 . (3.27)
0 0 1

Maybe unsurprisingly, this is simply the well-known equation for a generic
rotation of # around the z—axis, which applies to both velocity vectors as
well as poses.

We are now left with the problem of how to calculate the speed {R in
robot coordinates. For this, we make use of the kinematic constraints of the
robotic wheels. For a standard wheel in an ideal case scenario, the kinematic
constraints are that every rotation of the wheel leads to strictly forward or
backward motion and does not allow sideways motion or sliding. We can
therefore calculate the forward speed of a wheel & using its rotational speed
qB (assuming the encoder value/angle is expressed as ¢) and radius r by

i = ¢r. (3.28)

This becomes apparent when considering that the circumference of a wheel
with radius r is 27r. The distance a wheel rolls when turned by the angle
¢ (in radians) is therefore x = ¢r, see also Figure 3.6, right. Taking the
derivative of this expression on both sides leads to the above expression.

How each of the two wheels in our example contributes to the speed of
the robot’s center—where its coordinate system is anchored—requires the
following trick: we calculate the contribution of each individual wheel while
assuming all other wheels remaining un-actuated (see Figure 3.6, left). In
this example, the left wheel will move of r¢;, and the right wheel will move
of r¢,., which in the space of velocities will become rd)l and rqu respectively.
Then, the distance traveled by the center point is exactly half of that traveled
by each individual wheel (Figure 3.6). We can therefore write:

TrRp = % (qugl + Tér) = 7“@ + Tfr

(3.29)

given the speeds Qél and <;5,~ of the left and the right wheel, respectively.
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Figure 3.6. Left: Differential wheel robot pivoting around its left wheel first and
its right wheel next. For infinitesimal motion, it is possible to decouple left and
right wheel to simplify computation of the forward kinematics. Right: A wheel
with radius r moves by ¢r when rotated by ¢ degrees.

Think about how the robot’s speed along its y-axis is affected by the
wheel speed given the coordinate system in Figure 3.5. Think about the
kinematic constraints that the standard wheels impose.

It may be unintuitive at first, but the speed of the robot along its y-axis
is always zero. This is because the constraints of the standard wheel tell us
that the robot can never slide. We are now left with calculating the rotation
of the robot around its z-axis. This rotation can be seen when imagining the
robot’s wheels spinning in opposite directions. In this case, the robot does
not move forward but rather spins in place. We will again consider each
wheel independently. Assuming the left wheel to be non-actuated, spinning
the right wheel forwards will lead to counter-clockwise rotation. Given an
axle diameter (distance between the robot’s wheels) d, we can now write

wrd = ¢pr (3.30)

with w, the angle of rotation around the left wheel (Figure 3.6, left). Taking
the derivative on both sides yields speeds and we can write

_ qb.r"”

g (3.31)

W

Adding the rotation speeds up (with the one around the right wheel being
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negative based on the right-hand grip rule), leads to:

] (lgrr ¢‘17‘
0= - — 3.32
7 d (3.32)
Putting it all together, we can finally write:
X7 cos(0) —sin(6) 0 %’ﬁl + %
yr | = | sin(#) cos(9) 0 0 (3.33)
0 0 0 1 % _ %

The interested reader might want to compare this form with Equation (3.20),
the general Jacobian form of differential kinematics. For this, we ignore the
rotation matrix in Equation (3.33) and rewrite its second term in matrix
notation:

. - 9zp Jrp
: _ L _ | %yr 9yr (Z‘Sl
AIREEAIEIEL 1 ATCI
i T_rT T 90 9 T
d d gy Oy
with Xg = Téﬂ + %) t and similar expressions for 6, we observe the valid-

ity of the Jacobian approach.
From Forward Kinematics to Odometry

Equation (3.33) only provides us with the relationship between the robot’s
wheel speed and its speed in the inertial frame. Calculating its actual pose in
the inertial frame is known as odometry. Technically, it requires integrating
Equation (3.33) from 0 to the current time 7". As this is not possible but
for very special cases, one can approximate the robot’s pose by summing up
speeds over discrete time intervals, or more precisely:

$[<T) T ﬂf[(t) k=T Amj(k‘)
(@ | = [ i a= Y |du|ac @)
o(T) 0| dt) =0 | AG(k)

which can be calculated incrementally as

xr(k+1) =z1(k) + Ax(k)At (3.36)
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using Ax (k) ~ 2;(t) and similar expressions for y; and 6. Note that Equa-
tion (3.36) is just an approximation. The larger At becomes, the more
inaccurate this approximation becomes as the robot’s speed might change
during the interval.

Don’t let the notion of an integral worry you! As robots’ computers
are fundamentally discrete, integrals usually turn into sums, which are
nothing more complex than for-loops.

3.3.3. Forward kinematics of Car-like steering

Differential wheel drives are very popular in mobile robotics as they are very
easy to build, maintain, and control. Although not holonomic, a differential
drive can approximate the function of a fully holonomic robot by first ro-
tating in place to achieve a desired heading and then driving straight. The
primary drawbacks of a differential drive are its reliance on a caster wheel,
which performs poorly at high speeds, and difficulties in driving straight
lines as it requires both motors to drive at the exact same speed.

These drawbacks are mitigated by car-like mechanisms, which are driven
by a single motor and can steer their front wheels. This mechanism is known
as “Ackermann steering”. Ackermann steering should not be confused with
“turntable” steering where the front wheels are fixed on an axis with central
pivot point. Instead, in Ackermann steering each wheel has its own pivot
point and the system is constrained in such a way that all wheels of the
car drive on circles with a common center point, avoiding skid. As the
Ackermann mechanism lets all wheels drive on circles with a common center
point, its kinematics can be approximated by those of a tricycle with rear-
wheel drive, or even simpler by a bicycle. This is shown in Figure 3.7.

Consider a car with the shape of a box with length L between its front and
rear axis. Let the center point of the common circle described by all wheels
be distance R from the car’s longitudinal center line. Then, the steering
angle ¢ is given by

tan ¢ = % (3.37)

The angles of the left and the right wheel, ¢; and ¢, can be calculated
using the fact that all wheels of the car rotate around circles with a common
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i U A [m _____ ]
[ 3 R I_l > L

Figure 3.7. Left: Kinematics of car-like steering and the equivalent bicycle model.
Right: Mechanism of an Ackermann vehicle.

center point. With the distance between the two front wheels [, we can write:

L
R—12" tan (¢r)

m = tan (¢) (3.38)
This is important, as it allows us to calculate the resulting wheel angles
resulting from a specific angle ¢ and test whether they are within the con-
straints of the actual vehicle.

Assuming the wheel speed to be w and the wheel radius r, we can calculate
the speeds in the robot’s coordinate frame as:

Ty =wr
yr =0 (3.39)
. wrtan ¢
0, =—
L

using (3.37) to calculate the circle radius R.

3.4. Inverse Differential Kinematics

It would now be desirable to just invert J in Equation (3.20) in order to
calculate the necessary joint speeds for every desired end-effector speeds—a
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problem known as Inverse Differential Kinematics. Unfortunately, J is only
invertible if the matrix is quadratic (i.e. the number of degrees of freedom
in joint space n equals the number of degrees of freedom in task space m)
and full rank. In the example detailed in Section 3.2.2, the velocity wrench
[v w]T is 6—dimensional, which means that n should be equal to 6: therefore,
inversion of J is only possible if the robot under consideration is equipped
with exactly 6 actuators/joints. If this is not the case, we can use the
pseudo-inverse computation:

Jt = S JE(JJT=t (3.40)

- JJT ’

As you can see, J cancels from the equation leaving 1/.J, while being ap-
plicable to non-quadratic matrices. We can now write a simple feedback
controller that drives our error e, defined as the difference between desired
and actual position, to zero:

Ag=—J"e (3.41)

That is, we will move each joint a tiny bit in the direction that minimizes
our error e. It can be easily seen that the joint speeds will only be zero if e
has become zero.

This solution might or might not be numerically stable, depending on the
current joint values. If the inverse of J is mathematically not feasible, we
speak of a singularity of the mechanism. One case where this can happen
is when two joint axes line up, therefore effectively removing a degree of
freedom from the mechanism, or when the robot is at the boundary of its
workspace. As it happens very often in robotics, the concept of singularity
has both a strong mathematical justification (the joint configuration is such
that the Jacobian is not full rank any more), and a direct physical conse-
quence: singularity configurations are to be avoided as no solution for the
inverse differential kinematics problem exists and the robot might become
unsafe to operate. In a singularity, the solution to J* “explodes” and joint
speeds go to infinity. In order to work around this, we can introduce damping
to the controller.

In this case, we do not only minimize the error, but also the joint velocities.
The minimization problem then becomes:

17AG — el + X*|| Ag|? (3.42)
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where ) is a constant. One can show that the resulting controller that
achieves this has the form:

Ag=(JTT+ X)) te (3.43)

This is known as the Damped Least-Squares method. Problems that can
arise when taking this approach include the existence of local minima and
singularities of the mechanism, which might render solutions suboptimal or
infeasible.

3.4.1. Inverse Kinematics of Mobile Robots

There is no unique relationship between the amount of rotation of a robot’s
individual wheels and its position in space for non-holonomic robots. In-
stead, we can treat the inverse kinematics problem as solving for the ve-
locities within the local robot coordinate frame. Let’s first establish how
to calculate the necessary speed of the robot’s center given a desired speed
f 7 in world coordinates. We can transform the expression 5 1= T(H)gR by
multiplying both sides with the inverse of 7'(6):

T 0)6 =T HO)T(O)r (3.44)
which leads to £ = T~1(0)¢;. Here

cosf sinf0
Tt = | —sinf cosf 0 (3.45)
0 01

which can be computed by performing the matrix inversion or by deriving
the trigonometric relationships from the drawing. Similarly to Section 3.2.2,
we can now solve Equation (3.33) for ¢y, ¢,:

d= (205 — 0d)/2r (3.46)
¢r = (2ip + 0d)/2r

allowing us to calculate the robot’s wheel speed as a function of a desired
ip and 6, which can be calculated using (3.44).

Note that this approach does not allow us to deal with yr # 0, which
might result from a desired speed in the inertial frame. Non-zero values
for translation in y-direction are simply ignored by the inverse kinematic
solution, and driving toward a specific point either requires feedback control
(Section 3.4.2) or path planning (Chapter 13).
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Figure 3.8. Omni-directional robot using “swedish wheels” in different configu-
rations. Each wheel has two velocity components, speed perpendicular to the
wheel’s main axis and speed of the rollers. Arrows on the robot body indicate
the resulting direction of motion and rotation.

Inverse kinematics of an omnidirectional robot

Omnidirectional robots using “Swedish wheels” or “Meccano wheels” are
common in factories and educational settings. A drawing of a swedish wheel
is shown in Table 2.1. It consists of an actuated wheel with non-actuated
rollers around its circumference that are attached in a 45 degree angle. We
recall that, similarly to the caster wheel, the Swedish wheel has full three
degrees of freedom in the plane, but can enable omnidirectional motion of a
robotic platform without the need to rotate. A typical four-wheel configu-
ration is shown in Figure 3.8. Notice the arrangment of the wheels, and in
particular the orientation of the rollers, which is critical for the operation as
shown.

When actuated by itself, the wheel will perform a sideways motion that is
perpendicular to the main axis of its rollers. When used in pairs, opposite
directions of motions cancel out, resulting for example into forward motion
as shown in Figure 3.8, top, center, or sideways motion, bottom, right.

Similar to a differential wheel platform, each wheel also imparts a rotation
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on the robot body. As the wheels are mounted off the center axle, each wheel
contributes to two angular moments. One is around the horizontal axis with
distance h; to the robot’s center, and the other is around the vertical axis
with distance 7; to the robot’s center (Figure 3.8, bottom, center). All
combined, the rotation of each wheel will add up to the robot moving with
velocities vz, vy and w..

The velocity at each wheel has two components, the velocity of the i-th
wheel perpendicular to its main axis v;,,, and the velocity of the rollers
v;, that is either +45deg or —45deg to the wheel axis. Note that for the
system to work, diagonally opposite wheels need to have the same angle.
Let the angle of the roller of wheel ¢ be ;. We can now derive the following
equations following (Maulana, Muslim & Hendrayawan 2015):

Viym, + Vi c08(7;) = vz — hy ¥ w, (3.47)

That is, the velocity components perpendicular to the wheel axis are equiv-
alent to the forward velocity of the robot plus the velocity component at the
wheel resulting from the robot’s angular velocity. Positive angular veloc-
ity would result in backward motion, by definition of the robot coordinate
system. Similarly, we can write

Vi Sin(y;) = vy + 1k w, (3.48)

Note that there is no lateral component to the main wheel’s motion, as
lateral motion can only be achieved via the rollers.
Dividing (3.48) by (3.47) and solving for v; results into

Vy + Tiwy

A4
tany; (3.49)

v; = Uy — hjw, —

With h; € h = {h,—h,h,—h}, , € r = {r,r,—r,—r} and v; € v =
{—45deg, +45 deg, +45 deg, —45 deg} to reflect the different configuration of
each wheel, we can derive an expression for the controllable wheel velocities

Vim
Vim = Vg + Uy + 1w, — hw, (3.50)

Vom = Vg — Uy — W, + hw,

V3m = Vg — Uy + 1w, — hw,
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V4m = Vg + Uy — 7w, + hw,

With v; ,, = Rw; and R the radius of each Swedish wheel, we can now
compute the required wheel velocity for any desired robot velocity v, vy,
and w,.

3.4.2. Feedback Control for Mobile Robots

Assume the robot’s position to be given by z,,1y,. and 6, and the desired
pose as 4, Yy, and 0,—with the subscript g indicating “goal”. We can now
calculate the error in the desired pose by:

= tan™! % — 0, (3.51)
g r
n= 99 07“ y

which is illustrated in Figure 3.9. These errors can be converted directly
into robot speeds, for example using a simple proportional controller with
gains pi, p2 and ps:

&=p1p (3.52)
0 = paa + p3n (3.53)

which will let the robot drive in a curve until it reaches the desired pose.
3.4.3. Under-actuation and Over-actuation

As detailed at the beginning of this Chapter, kinematics is concerned with
analyzing the mapping between our control variables (i.e. the robot’s motors
represented by the n DoFs in joint space) and their effect on the motion of
the robot (our m DoF's in task/configuration space). These two spaces might
have different dimensionality, and the relation between these two dimensions
greatly affects how we can solve the kinematic problem. It is convenient to
analyze these differences by looking at the Jacobian J, since the size of the
matrix is m X n; in all, we have three different conditions:

e n = m — The robot is fully actuated. The Jacobian J is square and
full rank, and the forward kinematics equation is directly invertible;
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(g, yg)

Figure 3.9. Difference in desired and actual pose as a function of distance p, bearing
« and heading 7.

e n < m — The robot is under actuated, and the kinematics problem is

kinematically deficient. The Jacobian J is “wide”, because there are
more columns m than rows n, and not invertible any more; the only
way to solve the inverse kinematics problem is through the pseudo-
inverse J* (and similar/more advanced approaches).

n > m — The robot is over actuated, and the kinematics problem is
kinematically redundant. The Jacobian J is “tall”, because there are
more rows n than columns m, and not invertible any more; the only
way to solve the inverse kinematics problem is through the pseudo-
inverse J* (and similar/more advanced approaches). In this scenario,
it is useful to determine the redundancy coefficient n —m which affects
the space of solutions of the inverse kinematics problem.

Over- and under-actuation are important design considerations to keep in
mind when choosing a robot for a particular task. In a kinematically defi-
cient scenario, the robot is not capable of full motion in task space, as it does
not have sufficient degrees of freedom in joint space to “cover” every possible
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configuration in task space. This does not mean that the robot is useless! It
can still perform tasks—just not every possible task you might ask it to per-
form. Conversely, if the problem is kinematically redundant, the robot has
more joint DoFs available than it needs, and there exist an infinite number
of inverse kinematics solutions in non-singular configurations. Contrary to
what one may think, redundancy is actually a great feature to have in a robot
system, in that it enables flexibility and versatility in solving the kinematic
problem: that is, it is possible to choose the best solution among many, and
one that satisfies additional constraints and requirements. A human arm
(without considering the hand) is a good example of a kinematically redun-
dant manipulator, as it is equipped with seven DoFs in joint space (three
at the shoulder, one at the elbow and three at the wrist), whereas the task
space is of dimension six (i.e. the three positions and three orientations of
the wrist). This additional degree of mobility allows humans to reach for
objects in multiple configurations, choose motions that are energy efficient,
avoid obstacles, and more!

Take-home lessons

e Forward kinematics deals with finding a coordinate transform from a
world coordinate system into a coordinate system on the robot. Such a
transform is a combination of a (3 x 1) translation vector and a (3 x 3)
rotation matrix that consists of the unit vectors of the robot coordinate
system. Both translation and rotation can be combined into a 4 x 4
homogeneous transform matrix.

e Forward and Inverse Kinematics of a mobile robot are performed with
respect to the speed of the robot and not its position.

e To calculate the effect of each wheel on the speed of the robot, you
need to consider the contribution of each wheel independently.

e The inverse kinematics of a robot involves solving the forward kinemat-
ics equations for the joint angles. Calculating the inverse kinematics
analytically becomes quickly infeasible, and is impossible for compli-
cated mechanisms.

e A simple numerical solution is provided by taking all partial derivatives
of the forward kinematics in order to get an easily invertible expression
that relates joint speeds to end-effector speeds.
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e The inverse kinematics problem can then be formulated as feedback
control problem, which will move the end-effector towards its desired
pose using small steps. Problems with this approach are local minima
and singularities of the mechanism, which might render this solution
infeasible.

e Redundancy allows a robot to solve a kinematic problem in multiple
different ways, thus providing better dexterity and versatility in its
motion.

Exercises

Coordinate systems

1. a) Write out the entries of a rotation matrix 4R assuming basis vectors
XA7 YA7 ZA7 and XB> Y37 ZB~

b) Write out the entries of rotation matrix §R.

2. Assume two coordinate systems that are co-located in the same origin, but
rotated around the z—axis by the angle . Derive the rotation matrix from
one coordinate system into the other and verify that each entry of this matrix
is indeed the scalar product of each basis vector of one coordinate system with
every other basis vector in the second coordinate system.

3. Consider two coordinate systems {B} and {C}, whose orientation is given
by the rotation matrix gR and have distance ZP. Provide the homogenous
transform §7 and its inverse 27

4. Consider the frame {B} that is defined with respect to frame {A} as {B} =
{4R,* P}. Provide a homogeneous transform from {A} to {B}.

5. Program a simple application that displays a 2D (or 3D) coordinate system
and add the ability to move and turn the coordinate system using your key-
board.

Forward and inverse kinematics

1. Consider a differential wheel robot with a broken motor, i.e., one of the wheels
cannot be actuated anymore. Derive the forward kinematics of this platform.
Assume the right motor is broken.

2. Consider a tri-cycle with two independent standard wheels in the rear and
the steerable, driven front-wheel. Choose a suitable coordinate system and
use ¢ as the steering wheel angle and wheel-speed w. Provide forward and
inverse kinematics.
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10.

84

Program an application that displays a differential wheel platform and allows
you to control forward and rotational speed with your keyboard. Output the
robot’s pose after every step.

. Program an application that displays a two-link robotic arm moving in the

plane and lets you change both joint angles using your keyboard.

. Derive the forward kinematics of a two-link robotic arm as well as its Jacobian.

Implement its inverse kinematic using the inverse Jacobian technique.

Program an application that displays a two-link robotic arm moving in the
plane and lets you change the position of its end-effector using your keyboard.

Explore the internet for toolkits that allow you to manage forward and inverse
kinematics for a robotic arm. What kind of tools do you find and what kind
of input do they require to model the robot’s geometry?

Download the manual of a commercially available robot arm of your choice.
What kind of input does it take from its user? Does it allow you to control
its position directly?

Use a robot simulator of your choice to access a simulated vehicle. What
kind of actuator input can you provide and what are the sensors that are
available? Drive the car using your keyboard and try to estimate its pose by
implementing odometry.

Can you provide an example of a kinematically deficient and a kinematically
redundant robot manipulator?
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