
Chapter 13

Path Planning

Path planning allows autonomous mobile robots and manipulators to find
a path to move between two points. A path is a set of poses from a start
configuration to an end configuration that respect a set of specifications (for
example, avoiding obstacles for a mobile base or respecting a specific force
profile at the end e↵ector of a manipulator). It di↵ers from the concept of
trajectory in that a trajectory is the execution of a path over time. Depend-
ing on the choice of the planning algorithm, a path could satisfy various
degrees of optimality with respect to some criteria such as minimizing path
length, minimizing turns, or minimizing the amount of braking. Algorithms
to find a shortest path are important not only for robotics applications, but
also in network routing, video games, and understanding protein folding.
Path planning requires a suitable representation of the environment such

as a map introduced in Chapter 12, and a perceptual understanding of the
robot’s location with respect to such representation We will assume for now
that the robot is able to localize itself, is equipped with a map, and is capable
of avoiding temporary obstacles on its way. The goals of this chapter are to:

• introduce the concept of “configuration space” for planning,

• understand the di↵erence between graph-based and sampling-based
planning algorithms,

• explain basic path algorithms such as Dijkstra, A*, and RRT,

• understand variations of the path planning problem such as coverage
path planning.
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13. Path Planning

Figure 13.1. A map with obstacles and its representation in configuration space,
which can be obtained by growing each obstacle by the robot’s extension.

13.1. The configuration space

In the vast majority of path planning algorithms, the robot is treated as a
point-mass element with no volume. In order for a path to be executed on
the robot, it is important to take into account the physical embodiment of
the robot and its non-zero volumetric occupancy, which complicates the path
planning process. It is possible for the robot to be reduced to a point-mass
while growing all obstacles by its radius. This works for a circular robot.
This can be generalized for robots of any shape by growing each obstacle by
the length of the longest extension of the robot from its center. This repre-
sentation is known as configuration space as it reduces the representation of
the robot to its controllable degrees of freedom (e.g., its x and y coordinates
in the plane for a robot capable of planar translation). An example is shown
in Figure 13.1. The configuration space can now either be used as a basis
for a grid map or a continuous representation.

13.2. Graph-based planning algorithms

The problem to find a “shortest” path from one vertex to another through
a connected graph is of interest for multiple domains, most prominently
network routing, where it is used to find an optimal route for an internet
data packet. The term “shortest” here is defined as the minimum cumulative
edge cost, which could be physical distance (in a robotic application), delay
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Figure 13.2. A generic path planning problem from vertex I to vertex VI. The
shortest path is I-II-III-V-VI, and has length of 13.

(in a networking application), or any other metric that is relevant for the
task. An example graph with arbitrary edge lengths is shown in Figure 13.2.

13.2.1. Dijkstra’s algorithm

One of the earliest and simplest algorithms for path planning is Dijkstra’s
algorithm (Dijkstra 1959). Given a graph, Dijkstra is an iterative process
where, starting from the “start” vertex, the algorithm marks all its direct
neighbors with the cost to reach them. It then proceeds to inspect the
neighboring vertex with the lowest cost and all its adjacent vertices and
marks them with the cost to get to them via the vertex under consideration.
If the cost turns out to be lower, the cost is updated accordingly. Once
all neighbors of a vertex have been checked, the algorithm proceeds to the
vertex with the next lowest cost. Once the algorithm reaches the goal vertex
and there exist no vertex with a lower cost to the goal, it terminates and the
robot can follow the edges pointing towards the lowest edge cost.

In the example in Figure 13.2, Dijkstra would first mark nodes II, III and
IV with cost 3, 5 and 7 respectively. It would then continue to explore all
edges of node II, which so far has the lowest cost. This would lead to the
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13. Path Planning

discovery that node III can actually be reached in 3+ 1 < 5 steps, and node
III would therefore be relabeled with cost 4. In order to completely evaluate
node II, Dijkstra needs to evaluate the remaining edges before moving on and
label node VI with 3 + 12 = 15. The node with the lowest cost is now node
III (cost of 4). We can now relabel node VI with 14, which is smaller than
15, and label node V with 4+ 5 = 9, whereas node IV remains at 4+ 3 = 7.
Although we have already found two paths to the goal, one of which better
than the other, we cannot stop as there still exist nodes with unexplored
edges and overall cost lower than 14. Indeed, continuing to explore from
node V leads to a shortest path I-II-III-V-VI of cost 13, with no remaining
nodes to explore.

As Dijkstra would not stop until there is no node with lower cost than the
current cost to the goal, we can be sure that a shortest path will be found if
it exists. We can therefore say that Dijkstra is both complete and optimal.

As Dijkstra will always explore nodes with the least overall cost first, ex-
ploration of the environment resembles a wave front originating from the
start vertex, eventually arriving at the goal. This is of course highly inef-
ficient, in particular if Dijkstra is exploring nodes away from the goal. As
an example, if we were to add a couple of nodes to the left of node I in
Figure 13.2, Dijkstra would explore all of these nodes until their cost ex-
ceeds the lowest found for the goal. This can also be seen when observing
Dijkstra’s algorithm on a grid, as shown in Figure 13.3.

Figure 13.3. Dijkstra’s algorithm finding a shortest path from ‘S’ to ‘G’ assuming
the robot can only travel laterally (not diagonally) with cost one per grid cell.
Note the few number of cells that remain unexplored once the shortest path
(grey) is found, as Dijkstra would always consider a cell with the lowest path
cost first.
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13.2. Graph-based planning algorithms

Figure 13.4. Finding a shortest path from ‘S’ to ‘G’ assuming the robot can only
travel laterally (not diagonally) with cost one per grid cell using the A* algorithm.
Much like Dijkstra, A* evaluates only the cell with the lowest cost, but takes an
estimate of the remaining distance into account.

Note that the grid can be reduced to a graph in which each vertex, except
those at the borders, have four or eight neighbors.

13.2.2. A*

Instead of exploring in all directions, knowledge of an approximate direc-
tion of exploration to reach the goal may help avoiding the exploration of
nodes that are not needed to succeed in the task. As humans, we can easily
interpret the task in Figure 13.3 and understand that most states in the
top-left and bottom-right corner should not be explored if we want to find
a solution in a short amount of time. Such knowledge may be encoded in
the search algorithm via a heuristic function, i.e. an informed guess or es-
timate of sorts. For example, we could give priority to nodes that have a
lower estimated distance to the goal than others. For this, we would mark
every node not only with the actual distance that it took us to get there
(as in Dijkstra’s algorithm), but also with the estimated cost to target, for
example by calculating the Euclidean distance or the Manhattan distance
between the vertex we are looking at and the goal. This algorithm is known
as A* (Hart, Nilsson & Raphael 1968), and illustrated in Figure 13.4 using
the Manhattan distance metric. Depending on the environment, A* might
accomplish search much faster than Dijkstra’s algorithm, and performs the
same in the worst case.

An extension of A* that addresses the problem of expensive re-planning
when obstacles appear in the path of the robot is known as D* (Stentz 1994).
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13. Path Planning

Unlike A*, D* starts from the goal vertex and has the ability to change the
costs of parts of the path that include an obstacle. This allows D* to re-plan
around an obstacle while maintaining most of the already calculated path.
A* and D* become computationally expensive when either the search space

is large, e.g., due to a fine resolution required for the task, or when the di-
mensions of the search problem are high (e.g. when planning for an arm with
multiple degrees of freedom). Solutions to these problems can be provided
by sampling-based path planning algorithms.

13.3. Sampling-based path planning

Section 13.2 introduced a series of complete algorithms for the path planning
problem, i.e. algorithms that are guaranteed to (eventually) find a solution
if one exists. However, complete algorithms are often infeasible in practice,
e.g. because of a large state space, low available memory, or limited time to
execute the algorithm. This is often the case for robots with many degrees
of freedom such as arms. Importantly, most algorithms are only resolution
complete, i.e. they are only complete if the choice of environment resolution
is fine enough: since the state space needs to be discretized, some solutions
might be missed because of such discretization.
Sampling-based planners are an alternative to graph-based planners that

evaluate all possible solution and non-complete Jacobian-based inverse kine-
matic solutions. In sampling-based motion planning, possible paths are
generated via random sampling and stored in a tree-like structure until
some solution is found or the alloted time expires. As the probability
to find a path approaches one when the number of samples goes to in-
finity, sampling-based path planners are probabilistic complete. Promi-
nent examples of sampling-based planners are Rapidly-exploring Random
Trees (RRT)(LaValle 1998) and Probabilistic Roadmaps (PRM) (Kavraki,
Svestka, Latombe & Overmars 1996).
An example execution of RRT is shown in Figure 13.5; in essence, RRT

grows a single tree from a robot’s starting point until one of its branches hits
a goal. This example illustrates how a sampling-based planner can quickly
explore a large portion of space and refine a solution over time. Conversely,
probabilistic road-maps create a tree by randomly sampling points in the
state space, testing whether they are collision-free, connecting them with
neighboring points using paths that are achievable subject to the kinematics
of the robot, and then using classical graph shortest path algorithms to
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Figure 13.5. Counterclockwise from top-left: Random exploration of a 2D search
space by randomly sampling points and connecting them to the graph until a
feasible path between start and goal is found.

find shortest paths on the resulting structure. The advantage of PRM is
that the map has to be created only once (assuming the environment is
not changing) and can then be used for multiple queries. PRM is therefore
a multi-query path planning algorithm, whereas RRT is known as single-
query path planning algorithm. Over the years the boundary between these
di↵erent algorithms has blurred, and single-query and multi-query variants
of both RRT and PRM exist. In all, there is no ‘silver bullet’ algorithm or
heuristic and even the choice of their parameters is highly problem-specific.
We will therefore limit our discussion on useful heuristics to those that are
common to sampling-based planners.

13.3.1. Rapidly Exploring Random Trees

Let X be a d-dimensional state space. This can either be the robot’s state
given in terms of translation and rotations (6 dimensions or a subset thereof),
or the joint space with one dimension per joint. What representation you
chose will determine how to compute whether a point is reachable or not,
but will not a↵ect the algorithm itself.
Let G ⇢ X be a d�dimensional sphere in the state space that is considered
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13. Path Planning

to be the goal, max dist the longest permissible edge length, t the allowed
time, k the maximum number of vertices to allow in the tree, and goal bias

the percentage of the time the algorithm should try to connect to a goal
state. An RRT planner would follow the below pseudo-code:

Tree=Init(X, G, start, max_dist, t, k, goal_bias);

iteration = 0

WHILE (ElapsedTime() < t AND iteration < k

AND NoGoalFound(Tree,G)) DO:

iteration = iteration + 1

IF RandomPercentage() < goal_bias THEN

q_rand = SampleRandomGoal(G);

ELSE

q_rand = SampleRandomState(X);

ENDIF

q_nearest = NearestVertex(q_rand)

q_new = Extend(q_nearest, q_rand, max_dist)

edge = CreatePath(q_nearest, q_new);

IF IsAllowablePath(edge) THEN

Tree.addVertex(q_new);

Tree.addEdge(edge);

ENDIF

ENDWHILE

return Tree

This process can be iterated as long as time allows and maximum number
of vertices or goal bias) are optional parameters. RRT is known as an Any-
time algorithm, i.e., any user interruption once an initial solution has been
found would still provide some kind of solution. Given a suitable distance
metric, the path cost can be stored at each node of the tree, allowing to
track the shortest path to goal in case there are multiple vertices in the goal
region. There are four key points in this algorithm, which will be discussed
below:

1. determining the next point q rand to add to the tree (SampleRandomGoal,
SampleRandomState, and Extend);

2. finding out where and how to connect this point to the tree taking into
account the robot kinematics (NearestVertex, CreatePath);

240



13.3. Sampling-based path planning

3. testing whether this path is suitable (IsAllowablePath)—i.e., collision-
free;

4. smoothing the path (not shown in the algorithm).

Selecting the next best point. A simple approach is to randomly select a
point in the state space and connect it to the closest existing point in the
tree. Other solutions may assign preference to nodes with few out-degrees
(i.e. those without many connections), and choose points in their vicinity in
order to facilitate expansion in under-explored regions of the state space. Im-
portantly, both approaches allow to quickly explore the entire state space; if
there are constraints imposed on the robot’s path—e.g., if the robot needs to
hold a cup and therefore is not supposed to rotate its wrist—this dimension
can simply be taken out of the state space and fixed at runtime.

Connecting points to the tree. Intuitively, the new point q rand should be
connected to the closest point already in the tree or to the goal. This requires
iterating over all nodes in the tree and calculating their distance to the
candidate point q rand, which is a computationally expensive process; the
resulting point q nearest is the one with the shortest distance. The selection
of the right data structure for storing the graph in memory may reduce the
computational cost to be on average sub-linear in the number of vertices.
Importantly, following this method does not guarantee that the shortest

path will be found. As an alternative, RRT* grows the tree in a way that
always minimizes the overall path length from the root to every vertex. This
is done in two steps. First, only points in the tree within a d�dimensional
sphere (on a 2D map, d = 2, i.e. a circle) of fixed radius from q rand are
considered, and the point that minimizes the overall path length from the
start configuration (rather than simply the shortest distance from q rand)
is found. With this step, we can guarantee that the new vertex q rand is
connected to the shortest reachable path from the root of the tree. Second,
a rewiring step occurs where vertices near q rand are evaluated to inspect if
an edge between them and q rand would be shorter than the current edge.
If this is true and the edge is allowable (i.e., not in collision nor outside of
the physical abilities of the robot), the graph is rewired so that the newfound
vertex becomes the new parent of q rand.
Once the nearest vertex is found, the Extend function uses the max dist

parameter to limit the maximum edge length, replacing q rand with a point
q new on the line connecting q nearest and q rand that is max dist away
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from q nearest. During this step, it is also a good time to take into account
the specific kinematics of a robot and its motion capabilities. In the example
of a car, a local planner can be used to generate a suitable trajectory that
takes into account the orientation of the vehicle at each point in the tree.
Using an open-source physics simulation such has been developed for com-
puter games also allows to consider dynamics, including drift. Using such a
simulation within a planning framework has demonstrated trajectories that
meet the performance of the most skilled operators ((Keivan & Sibley 2013)).

Collision checking. E�cient algorithms for testing collisions deserve a ded-
icated section. While the problem is intuitive in configuration-space 2D
planning and can be solved using a simple point-in-polygon test (since the
robot reduces to a point), this issue becomes more involved for manipula-
tors that are essentially multiple rigid bodies connected together and that
may be subject to self-collisions. Conventionally, collision checking for these
kind of objects has be achieved by converting them into triangle meshes that
can then be tested for intersections. More recently, physics-based computer
game engines that provide built-in collision checking are increasingly used.
This makes particularly sense, when such engines are also used to predict
the dynamics of rigid bodies within the CreatePath function.

Typically, collision checking takes up to 90% of the execution time of a path
planning problem; therefore, methods that aim at reducing computational
cost are desirable. For example, the “lazy collision evaluation” algorithm
di↵ers from standard collision checking in that it does not evaluate every
point for a possible collision. Rather, it first finds a suitable path, and
only after a path is found it evaluates every edge for collisions. Segments
in collision are deleted and the algorithm continues, but only collision-free
segments are maintained.

Once a possible path is found, the sampling space can be reduced to an
ellipsoid that bounds the maximal path length. This ellipsoid can be con-
structed by mounting a wire of the maximum path length between start and
goal and pushing it outward with a pen. Intuitively, only points that are
contained by this ellipsoidal area can provide a shorter path than the one
currently known, so it becomes a waste of time to grow the tree in areas of the
state space that are outside of this ellipsoid. This approach is particularly
e↵ective when running multiple copies of the same planner in parallel and
exchanging the shortest paths once they are found (Otte & Correll 2013).
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Path smoothing. As path planning randomly samples from discrete and ar-
bitrarily coarse maps, the resulting paths are typically jagged and irregular—
i.e., far from optimal in practice. This can be drastically improved via path
smoothing. One way of doing this is to connect points of the path using
splines, polynomial curves, or even trajectory snippets that are known to be
feasible for a specific platform. Alternatively, one can also use a model of
the actual platform and use a feedback controller such as the one described
in Section 3.4.2 for mobile robots and Section 3.2.2 for manipulators, which
will generate a trajectory that the robot can actually drive. When combined
with dynamics, this approach is known as model-predictive control. Again,
using a physics-based simulation environment

13.4. Planning at di↵erent length scales

The reality of performing complex, autonomous behaviors in realistic scenar-
ios is that, in practice, no one map representation and planning algorithm
might be su�cient. Planning a route for a car, for example, is a multi-
step process wherein robot autonomy interleaves with human intelligence:
as detailed in Figure 13.6, a hierarchy of increasingly granular map repre-
sentations and path planning algorithm is needed. First, a coarse search is
performed over the street network (by e.g. your preferred mapping and nav-
igation app), followed by a more precise planner that determines which lanes
to choose and how to navigate roundabouts and intersections; in both these
layers of abstraction, graph-based planning algorithms are ideal. Then, a
sampling-based algorithm may be used to determine how to actually move
the car between lanes and what trajectory to use to avoid obstacles. Finally,
such trajectories need to be turned into wheel speeds and steering angles—
possibly using some form of feedback control. In Figure 13.6, downward-
pointing arrows indicate the input that one planning layer provides to the
one below, whereas upward-pointing arrows instead indicate exceptions that
cannot be handled at the lower levels. For example, a feedback controller
cannot handle obstacles, requiring the sampling-based planning layer to come
up with a new trajectory. Should the entire road be blocked, this planner
would need to hand-o↵ control the lane-based planner. A similar case can be
made for manipulating robots, which also need to combine multiple di↵erent
representations and controllers to plan and execute trajectories e�ciently.

Note that this representation does not include a reasoning level that en-
codes tra�c rules and common sense. While some of these might be encoded
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Figure 13.6. Path planning across di↵erent length scales, requiring a variety of map
representations and planning paradigms. Arrows indicate information passed
between layers.
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using cost-functions, such as maximizing distance from obstacles or insuring
smooth riding, other more complex behaviors such as adapting driving in
the presence of cyclists or properties of the ground need to be implemented
in an additional vertical layer that has access to all planning layers.

13.5. Coverage path planning

So far, we have only considered the problem of finding a (shortest) path. A
variation of the path planning problem is coverage path planning . This is
relevant for applications such as cleaning, mowing or painting and usually
aims at minimizing the time to completion and redundancy during coverage.
This problem is closely related to the shortest path problem. For example,
floor coverage can be achieved by performing a depth-first search (DFS) or a
breadth-first-search (BFS) on a graph where each vertex has the size of the
coverage tool of the robot. “Coverage” is not only interesting for cleaning a
floor: the same algorithms can be used to perform an exhaustive search of a
configuration space, such as in the example shown in Figure 3.3, where we
plotted the error of a manipulator arm in reaching a desired position over
its configuration space. Finding a minimum in this plot using an exhaustive
search solves the inverse kinematics problem.

Doing a DFS or a BFS might generate e�cient coverage paths, but they
are far from optimal as many vertices might be visited twice. A path that
connects all vertices in a graph but passes every vertex only once is known
as a Hamiltonian Path. A Hamiltonian path that returns to its starting
vertex is known as a Hamiltonian Cycle. This problem is also known as the
Traveling Salesman Problem (TSP), in which a route needs to be calculated
that visits every city on his tour only once and is known to be NP Complete.

13.6. Summary and Outlook

Path planning is an ongoing research problem. Finding collision-free paths
for mechanisms with high degrees of freedom (such as multiple arms operat-
ing in a shared space, multi-robot systems, or systems involving dynamics)
is still a computationally intensive problem. Although sampling-based path
planners can drastically speed up the time to find some solution, they are
not optimal and struggle with algorithm-specific concerns such as navigat-
ing in narrow passages. There is no “silver bullet” algorithm for solving
all path planning problems and heuristics that lead to massive speed-up in
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one scenario might be detrimental in others. Also, algorithmic parameters
are mostly ad-hoc and correctly tuning them to a specific environment may
drastically increase performance.

Take-home lessons

• The first step in path planning is choosing a map representation that
is appropriate to the application (Chapter 12).

• The second step is to reduce the robot to a point-mass, which allows
planning in the configuration space (or C-space).

• This allows the application of general-purpose shortest path graph-
based algorithms, which have applications in a large variety of domains
and that are not limited to robotics.

• A sampling-based planning algorithm finds paths by sampling random
points in the environment. Heuristics are used to maximize the ex-
ploration of space and bias the direction of search. This makes these
algorithms fast, but neither optimal nor complete.

• As the resulting paths are random, multiple trials might lead to entirely
di↵erent results.

• There is no one-size-fits-all algorithm for a path planning algorithm
and care must be taken to select the right paradigm (e.g. single-query
vs. multi-query), heuristics, and parameters.

Exercises

1. How does the computational complexity of Dijkstra’s algorithm change when
moving from 2D to 3D search spaces?

2. A* uses a “heuristic” to bias the search in the expected direction of the goal.
Why can it only use a heuristic, not the actual length?

3. Assuming points are sampled uniformly at random in a randomized planning
algorithm. Calculate the limiting behaviour of the following ratio (area of
points in tree)/(area of points sampled) as the number of points sampled
goes to infinity, assuming no duplicates. Assume the total area Atotal and
the area of free space Afree within are known.
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