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Learning Outcomes
After today’s lecture, you will:


• Understand the foundational topics in probability necessary for this 
course.


• Be able to describe the fundamental parts of a general model of robot-
environment interaction.
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Why probability?
• Represent uncertainty in the world.


• Represent beliefs about the state of the world.
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Probability in robotics
• Represent beliefs about the true state 

of the world.


• Represent uncertainty about the 
effects of actions.


• Represent uncertainty about what 
observation is produced in different 
states.
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Discrete Random Variables
• Let X be a random variable that takes on a value , where  is a set with a 

finite number of elements.


• Example: the result of rolling a single dice.


•  is the probability that X takes on the value x.


•  and , .


• For compactness, write .


•  is a probability mass function.

x ∈ 𝒳 𝒳

p(X = x)

∑
x

p(X = x) = 1 ∀x 0 ≤ p(X = x) ≤ 1

p(x)

p
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Continuous Random Variables
• Or X could be a random variable that takes on a value , where  is a 

continuous set.


• Example: the height of the first person you see after leaving this classroom.


•  is the probability that X takes on the value x.


•  and , .


•  is a probability density function.

x ∈ 𝒳 𝒳

p(X = x)

∫x
p(X = x)dx = 1 ∀x p(X = x) ≥ 0

p



Josiah Hanna, University of Wisconsin — Madison

Random Sampling
• Sampling is assigning a value to a random variable according to some 

probability distribution (either a pmf or a pdf).


• Example: roll a dice and observe the outcome.


• Write  to denote that variable X has value distributed according to p.X ∼ p
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Joint Distributions
• Move from one variable to multiple variables.


• Joint distribution of X and Y: 


• Why? Work with multiple types of uncertainty and model interactions.

p(X = a, Y = b)



• Given a joint distribution:  

– Get the distribution in just one variable: 

– This is the “marginal” distribution of . 

– “Marginalize out” the other variable, .

P(X = a, Y = b)

X
Y

Marginal Distributions



Basics: Marginal Probability

cold
hot 5/36540/365150/365

60/36560/36550/365

RainyCloudySunny



Probability Tables

• Write our distributions as tables 

• # of entries? 6. 
– If we have  variables with  values, we get    entries 
– Big! For a 1080p screen, 12 bit color, size of table: 
– No way of writing down all the terms.

n k kn

cold
hot 5/36540/365150/365

60/36560/36550/365

RainyCloudySunny



Independence
• Two random variables are independent if 

• Why useful? Go from  entries in a table to .  
• Collapse joint distribution into the product of 

marginals.

kn ≈ kn



Independence Example

Monthly 
Ice Cream 
Sales (X)

Monthly 
Crime Rate 

(Y)

p(X = a, Y = b) = p(X = a)p(Y = b)



Conditional Probability

• Express how knowledge of one variable changes belief 
about another variable, 

• Variables can be conditionally independent: 



Conditional Independence Example
Average 
Monthly 

Temperature 
(Z)

Monthly 
Ice Cream 
Sales (X)

Monthly 
Crime Rate 

(Y)

p(X = a, Y = b) ≠ p(X = a)p(Y = b)

Bayesian Network: nodes are 
variables and edges show 
probabilistic dependencies.



Conditional Independence Example

p(X = a, Y = b |Z = c) = p(X = a |Z = c)p(Y = b |Z = c)

Average 
Monthly 

Temperature 
(Z)

Monthly 
Ice Cream 
Sales (X)

Monthly 
Crime Rate 

(Y)



Reasoning With Conditional Distributions

• Evaluating probabilities: 
– Wake up with a sore throat.  
– Do I have the flu? 

• Logic approach: 
– Too strong.  

• Inference: compute probability given evidence  
– Can be much more complex!



• Want:  
• Bayes’ Rule: 
• Parts: 

–                                    Sore throat rate 
–                                    Flu rate 
–                                    Sore throat rate among flu sufferers 

So:

Using Bayes’ Rule



Using Bayes’ Rule

• Interpretation 
– Much higher chance of flu than normal rate (0.01). 
– Very different from 

• 90% of folks with flu have a sore throat. 
• But, only 9% of folks with a sore throat have flu. 

• Idea: update probabilities from evidence 



• Fancy name for what we just did. Terminology: 

• H is the hypothesis 
• E is the evidence

Bayesian Inference



Bayesian Inference

• Terminology: 

• Prior: estimate of the probability without evidence

Prior



Bayesian Inference

• Terminology: 

• Likelihood: probability of evidence given a hypothesis.

Likelihood



Bayesian Inference

• Terminology: 

• Posterior: probability of hypothesis given evidence.

Posterior



Quick Quiz
A robot is placed in front of a door that has an equal probability of being open or 
closed. The robot has a sensor that measures if the door is open or closed. With 
probability 0.75, the sensor gives the correct measurement and otherwise gives the 
opposite response. The robot receives two independent sensor readings that both 
indicate the door is open. What should a Bayesian robot believe about the true 
state of the door? 

p(D |O1, O2) =
p(D, O1, O2)

p(O1, O2)

=
p(D)p(O1 |D)p(O2 |D)

p(D)p(O1 |D)p(O2 |D) + p(D)p(O1 |D)p(O2 |D)

=
1
2

3
4

3
4

1
2

3
4

3
4 + 1

2
1
4

1
4

=
9
10



Quick Quiz
A robot is placed in front of a door that has an equal probability of being open or 
closed. The robot has a sensor that measures if the door is open or closed. With 
probability 0.75, the sensor gives the correct measurement and otherwise gives the 
opposite response. The robot receives two independent sensor readings that both 
indicate the door is open. What should a Bayesian robot believe about the true 
state of the door? 

First update:

p(D |O1) ∝ p(D)p(O1 |D) = (
1
2

)(
3
4

) = 3/8

p(D |O1) ∝ p(D)p(O1 |D) = (
1
2

)(
1
4

) = 1/8
p(D |O1) = 3/4⟹



A robot is placed in front of a door that has an equal probability of being open or 
closed. The robot has a sensor that measures if the door is open or closed. With 
probability 0.75, the sensor gives the correct measurement and otherwise gives the 
opposite response. The robot receives two independent sensor readings that both 
indicate the door is open. What should a Bayesian robot believe about the true 
state of the door? 

Second update:

p(D |O1, O2) ∝ p(D |O1)p(O2 |D, O1) = (
3
4

)(
3
4

) = 9/16

p(D |O1, O2) ∝ p(D |O1)p(O2 |D, O1) = (
1
4

)(
1
4

) = 1/16

p(D |O1, O2) = 9/10⟹

Note:  by 
independence assumption.

p(O2 |D, O1) = p(O2 |D)

Quick Quiz

(Bayes Filter (Week 3))
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Learning Outcomes
After today’s lecture, you will:


• Understand the foundational topics in probability necessary for this 
course.


• Be able to describe the fundamental parts of a general model of 
robot-environment interaction.
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States
• From Probabilistic Robotics: the collection of all aspects of the robot and 

its environment that can impact the future.


• Examples: robot pose, battery life, location of people, velocity


• Aspects that change (dynamic state) vs aspects that don’t (static state).


• State variables often take on continuous values.


• Example: The pose of a robot in a plane is a point in .


• Write  to define the state at time t.

ℝ3

xt
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Observations
• Information about the state of the environment at a moment in time.


• Perceived by the robot through its sensors.


• Also called measurements or percepts.


• Typically, do NOT fully reveal the state.


• Observations can be noisy. Example: lidar scan returns noisy distance readings.


• Observations can be partial. Example: occlusion hides some aspects of state.


• Write  or (sometimes)  to denote the observation at time t.zt yt
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Markov Assumption
• We will assume that the state is defined in a way that is sufficient for 

predicting the future.


• Call this a complete or Markov state.


• Formally, we say that .


• Knowing the past does not help you predict the next state any better.


• This assumption is for developing tractable algorithms and often only 
holds approximately in practice.

p(xt+1 |xt, ut) = p(xt+1 |x0:t, u0:t)

Control at time t.
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Probabilistic Interaction Model

Environment

Robot

xt+1 ∼ p(xt, ut)
zt+1 ∼ g(xt+1)

ut

𝚋𝚎𝚕(xt)

zt
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Deterministic Interaction Model

Environment

Robot

yt+1 ← G(xt+1)

ut
yt

ut ← H(yt)

xt+1 ← xt + ·xΔtxt+1 ← F(xt, ut)
·xt ← F(xt, ut)

Or
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Summary

• Review of key probability concepts: distributions, joint, marginal, 
conditional, conditional independence, Bayes rule, Bayesian inference.


• Introduced robot-environment interaction model:


• States, observations.


• Markov assumption.


• Interaction models.
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Action Items

• Join Piazza and Gradescope.


• Complete the background survey: https://forms.gle/
d8hmnQGWQc9SMVcN6


• [Optional but encouraged] Download Webots and complete a tutorial.


• Send a reading response by 12pm on Monday.

https://forms.gle/d8hmnQGWQc9SMVcN6
https://forms.gle/d8hmnQGWQc9SMVcN6

