Autonomous Robotics

Robot Mapping

Josiah Hanna University of Wisconsin — Madison

Programming Assignment #2

- Questions?
- Comments?

Learning Outcomes

After today's lecture, you will:

- Be able to define the robot mapping problem.
- Be able to compare and contrast different types of maps for robot applications.
- Instantiate map estimation using state estimation techniques.

The Mapping Problem

- Recall localization
 - Estimate $p(x_t | z_{1:t}, u_{1:t}, m)$
- Now we flip the problem.
 - Assume that we know $x_{0:t}$ and estimate the static map m.
 - $p(m | x_{1:t}, z_{1:t})$
 - Example: robot is outdoors and has a GPS sensor.

Mapping Challenges

- What to include in the map?
 - Coarse vs. fine-grained detail?
 - The exact distance between places vs just connectivity?
- Maps are high-dimensional objects.

Map Representations

- Several different choices for the map representation.
- Choice depends on downstream application.
- May need to combine multiple types of maps.

Feature-based Maps

- The map is defined by the locations of a set of key features.
 - AKA landmarks

•
$$m = (m_x^1, m_y^1, \dots m_x^k, m_y^k)$$

- The mapping problem then amounts to estimating the coordinates of these features.
- Advantages: low storage requirement, works well with cameras.
- Disadvantages: requires identifiable features, lacks fine-grained details.

Grid Maps

- Represent map as a grid that covers the space of possible locations.
- Grid cells can be either occupied or free (binary valued).
- Assume k = I * w cells in the map.

- Map is a vector that can take on 2^k possible values (all length k binary strings).
- For estimation tractability, often assume conditional independence of grid cells.

$$p(m | x_{0:t}, z_{1:t}) = \prod_{i=1}^{k} p(m_i | x_{0:t}, z_{1:t})$$

Grid Maps (cont.)

- Advantages: works in feature poor environments, high detail.
- Disadvantages: high storage, resolution-dependent.

Topological Maps

- Feature-based and grid maps attempt to capture the exact spatial structure of the robot's environment.
 - Map distances and angles should match the real environment.
- Sometimes you just want the connectivity of the map.
 - Example: the robot can reach the dining room by going through the kitchen.
- A topological map represents the connectivity between a set of locations but not necessarily the distance between locations.

Topological Maps (cont.)

- Advantages: low storage requirement, good for planning methods that only require connectivity.
- Disadvantages: lacks fine-grained details, only considering connectivity could lead to sub-optimal paths, difficult in featureless environments.

Semantic Maps

- Robots need to know more about their environments than just getting around (physical maps).
 - Examples: room numbers, room purpose, location of key objects.
- Semantic maps add semantic information to a physical map.

Grid-mapping with Bayes Filter

- Goal: estimate $p(m^i | x_{0:T}, z_{1:T})$ where m^i is the (binary) value of cell i.
- Can compute estimates with a Bayes filter on map posterior, be $1(m_t^i)$.
- For $t \in 1,...T$:
 - For grid cell *i*:
 - No prediction step (we assume a static map).
 - Update step: bel $(m_t^i) \propto \text{bel}(m_{t-1}^i) p(z_t \mid x_t, m_{t-1}^i)$

EKF Mapping with Landmarks

- Map representation: a set of landmarks with unknown locations.
 - Let m_x^i, m_y^i be the coordinates of the ith landmark and $m=(m_x^1, m_y^1, \ldots, m_x^k, m_y^k)$ be the vector of all landmark coordinates.
 - Define observations as $z_t^i = (r_t^i, \phi_t^i)$
 - Assume $p(z_t^i | m_x^i, m_y^i) = \mathcal{N}(h(x_t, m_x^i, m_y^i), R)$.
 - Initialize belief belief $m) = \mathcal{N}(m; \mu_0, \Sigma_0)$

EKF Mapping with Landmarks

- For $t \in 1,...T$:
 - For landmark *i*
 - No prediction step (we assume a static map).
 - Update step: EKF update on μ_t^i and Σ_t^i .
- Note: if x_t is known, landmark observations are independent of each other.

Data Association

- How to determine which landmark z_t corresponds to?
 - Defined observations based on (noisy) polar coordinates relative to robot. Could be unclear which landmark an observation represents.
- Challenging cases:
 - What if the robot has discovered a new landmark?
 - What if two landmarks are close together?
- Solution:
 - Estimate maximum likelihood correspondence.
 - Choose spatially far apart landmarks for the map.

Summary

- Introduced the robot mapping problem as the complement to the robot localization problem.
- Introduced several different methods for representing maps.
- Introduced two approaches for estimating a posterior belief on the map.

Action Items

- Finish programming assignment #2.
- 2nd SLAM reading for next week; send a reading response by 12 pm on Monday.