Autonomous Robotics

Simultaneous Localization and Mapping

Josiah Hanna University of Wisconsin — Madison

Learning Outcomes

After today's lecture, you will:

- Understand limitations of applying vanilla particle filters to SLAM
- Understand how the Rao-Blackwellized particle filter overcomes these limitations.

SLAM

- Localize and map at the same time.
- Formally, estimate $p(x_t, m \mid z_{1:t}, u_{1:t}, x_0)$
 - Or $p(x_{1:t}, m | z_{1:t}, u_{1:t}, x_0)$, i.e., full SLAM.
- Assume we have a motion and observation model:
 - $p(x_t | x_{t-1}, u_t)$ and $g(z_t | x_t, m)$.

Applications

EKF SLAM with Landmarks

- Key idea: make landmarks part of the state and then run an extended Kalman filter.
- Map representation: a set of landmarks with unknown locations.
 - Let m_x^i, m_y^i be the coordinates of the ith landmark and $m = (m_x^1, m_y^1, \dots, m_x^k, m_y^k)$ be the vector of all landmark coordinates.
- Define z_t^i as the observation of the ith landmark at time t.
- Assume $p(z_t^i | x_t, m_x^i, m_y^i) = \mathcal{N}(h(x_t, m_x^i, m_y^i), R)$.
- Initialize belief bel(x_0, m) = $\mathcal{N}([x_0, m]; \mu_0, \Sigma_0)$
- In practice, incrementally add landmarks as found.
- Must know which landmark an observation is associated with.

$$\mu_0 = \begin{bmatrix} x \\ y \\ \theta \\ m_x^1 \\ m_y^1 \\ \cdots \\ m_x^k \\ m_y^k \end{bmatrix}$$

EKF SLAM with Landmarks

- Covariance matrix Σ_t captures correlation between landmarks.
 - Improves estimate landmark estimates in μ_t even for landmarks that weren't observed at time t.
- Prediction step: only changes μ_t for position components; increases uncertainty for all components.
- Update step: run for each landmark observation z_t^i :
 - $\bar{\mu_t}$, $\bar{\Sigma}_t$ update step with z_t^i .

EKF-SLAM

Map

Covariance Matrix

EKF-SLAM

Map

Covariance Matrix

EKF-SLAM

Map

Covariance Matrix

Data Association

- How to determine which landmark z_t corresponds to?
 - Consider observations based on (noisy) polar coordinates relative to robot. Could be unclear which landmark an observation represents.
- Challenging cases:
 - What if the robot has discovered a new landmark?
 - What if two landmarks are close together?
- Solution:
 - Estimate maximum likelihood correspondence (brittle).
 - Choose spatially far apart and distinctive landmarks for the map.

Loop Closure

Detect when a previously visited location is being revisited.

Limitations of EKF-SLAM

- If uncertainty is high then linearization may be poor.
- Brittle under ambiguity.
- A large number of landmarks requires inverting a large covariance matrix.
 - Polynomial space and time requirement but still bad in practice.

So let's turn to particle filters!

Vanilla Particle Filters for Mapping

- Recall particle filtering from two weeks ago:
 - Represent belief with a set of weighted particles: $\{(x_i, w_i)\}_{i=1}^m$.
 - After new observations are received, resample particles in the set.
- For SLAM:
 - We now represent each particle as: $\{(x_i, m_i, w_i)\}_{i=1}^m$ where m_i is a possible map.
 - Problem: maps are high-dimensional, may require an impractical number of particles for proper convergence.

Rao-Blackwellized Particle Filters

- Alternative idea: each particle also represents uncertainty on the map.
 - $\{x_{0:t}^i, p(m_i | x_{0:t}^i), w_i\}_{i=1}^m$
 - Why does this representation allow us to use fewer particles?
 - Note: particle represents full trajectory. Why useful?
- Use Gaussian belief on map landmarks:

$$p(m_i = (m_x^1, m_y^1, \dots, m_x^k, m_y^k) | x_{0:t}) = \prod_{j=1}^k \mathcal{N}([m_x^j, m_y^j]]; \mu_j, \Sigma_j)$$

- Gaussian belief is updated with EKF assuming a known robot trajectory of $x_{0:t}$.
- Why useful?

FastSLAM

- Both FastSLAM 1.0 and 2.0 are Rao-Blackwellized Particle Filters.
 - Differ in the proposal distribution for resampling step:

$$p(z_{i}|x_{0:t}) = \int_{m} p(m|x_{0:t}, z_{1:t})p(z_{i}|m, x_{1:t})$$

$$w_{i} \propto \frac{p(z_{i}|x_{0:t})p(x_{t}|x_{t-1}, u_{t})}{\pi(x_{t}|x_{0:t-1}, z_{t})}$$

$$\pi(x_{t}|x_{0:t-1}, z_{t}, u_{t}) = p(x_{t}|x_{t-1}, u_{t})$$

$$\pi(x_{t}|x_{0:t-1}, z_{t}, u_{t}) = p(x_{t}|x_{0:t-1}, u_{t}, z_{t})$$

FastSlam 1.0 Sampling from the motion model

$$\pi(x_t | x_{0:t-1}, z_t, u_t) = p(x_t | x_{0:t-1}, u_t, z_t)$$

FastSlam 2.0

Use observation to get better samples
Josiah Hanna, University of Wisconsin – Madison

Rao-Blackwellization

- Why this works.
- Replace sampling of one variable with an analytic expectation.
- Imagine we want to estimate $\theta = E[f(X, Y)] = \sum_{x} \sum_{y} p(x, y)f(x, y)$.
 - We do not know p(x) but 1) we can sample from it and 2) for any x, we know p(y|x). We can also sample from p(y|x).
- Compare estimators:

$$\theta_0 \approx \frac{1}{n} \sum_{i=1}^n f(x_i, y_i)$$
 $\theta_1 \approx \frac{1}{n} \sum_{i=1}^n \sum_y p(y \mid x_i) f(x_i, y)$

• θ_0 will have higher variance than θ_1 because it uses random sampling for both x and y.

GMapping

- Both FastSLAM and EKF-SLAM use a feature-based map.
- The GMapping algorithm is a Rao-Blackwellized particle filter that uses a grid map representation.
 - Each particle represents $p(m \mid x_{0:t}, z_{1:t})$ with the most likely map (the maximum a posteori (MAP) estimate no pun intended) when necessary to integrate over the map for computing weights.
- Also, uses an improved proposal distribution (not discussed here)
- Finally, only performs resampling when effective sampling size drops too low.
- GMapping is a widely used approach with good open source implementations.

Summary

- Discussed limitations of using particle filters for SLAM.
- Introduced the Rao-Blackwellized particle filter.
- Discussed differences between FastSLAM 1.0 and 2.0

Action Items

- Kinematics reading for next week; send a reading response by 12 pm on Monday.
- SLAM assignment released soon.